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Abstract
A fluid–structure interaction (FSI) methodology is presented for simulating elastic bodies embedded and/or encapsulating 
viscous incompressible fluid. The fluid solver is based on finite volume and the large eddy simulation approach to account 
for turbulent flow. The structural dynamic solver is based on the combined finite element method–discrete element method 
(FEM-DEM). The two solvers are tied up using an immersed boundary method (IBM) iterative algorithm to improve infor-
mation transfer between the two solvers. The FSI solver is applied to submerged vegetation stems and blades of small-scale 
horizontal axis kinetic turbines. Both bodies are slender and of cylinder-like shape. While the stem mostly experiences a 
dominant drag force, the blade experiences a dominant lift force. Following verification cases of a single-stem deforma-
tion and a spinning Magnus blade in laminar flows, vegetation flexible stems and flexible rotor blades are analysed, while 
they are embedded in turbulent flow. It is shown that the single stem’s flexibility has higher effect on the flow as compared 
to the rigid stem than when in a dense vegetation patch. Making a marine kinetic turbine rotor flexible has the potential of 
significantly reducing the power production due to undesired twisting and bending of the blades. These studies point to the 
importance of FSI in flow problems where there is a noticeable deflection of a cylinder-shaped body and the capability of 
coupling FEM-DEM with flow solver through IBM.

Keywords  Fluid–structure interaction · FEM-DEM · Immersed boundary method · Submerged vegetation · Kinetic turbine 
blades

1  Introduction

Fluid–structure interaction (FSI) is a topic spanning 
through many engineering disciplines from aeronautics 
and renewable energy to biomedical engineering and par-
ticle transport. Traditionally FSI has been treated as an 
aeroelasticity or hydroelasticity problem, where reduced-
order modelling has been used along with an assumption 
of small deformation for the solid body [1]. Unsteady flow 
dynamics that is usually based on potential flow theory 

and sometimes with a boundary layer correction is then 
coupled with structural dynamics that is often modelled 
using a system of equivalent springs and dampers as for 
wind turbine blades [2]. A similar approach can also be 
used for acoustic–structure interaction, where a fluid-phase 
wave equation is coupled with a solid-phase wave equation 
by requiring continuity in the displacement and pressure at 
the solid–fluid interface [3].

Although the reduced-order modelling has been found 
successful in various problems ranging from wings flutter 
to feathering of wind turbine blades, it has limitations in 
terms of the simplified assumptions used in the fluid and 
solid dynamics. Extensions to include large deformations 
and computational fluid dynamic (CFD) results through 
reduced-order modelling have been suggested [1], but 
they also point to the need for a full computational FSI 
solver. Such solvers exist as monolithic or partitioned [4, 
5]. The monolithic solver uses the same solver for the fluid 
and solid phases. An example is the use of the structural 
dynamics Y-Code based on the combined finite element 
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method–discrete element method (FEM-DEM) to simulate 
the propagation of an acoustic pulse through the solid part 
of a hammer into liquid metal [6]. This was done by modi-
fying the elastic properties in the solver for the liquid phase 
in order to agree with the wave equation for the liquid. 
Another example is the particle finite element approach, 
where an assumption of a quasi-incompressible flow is 
used for the fluid [7].

The monolithic solver can also yield a stable informa-
tion transfer between the fluid and solid phases. However, 
it has the disadvantage of not using the well-established 
optimised algorithms that were already separately devel-
oped for the fluid and solid phases [5]. This is the advantage 
of the partitioned solver, using specialised solvers for the 
fluid and solid phases [5], and it is the solver to be pursued 
in this study.

Partitioned solvers can use deforming meshes that adjust 
to the displacement of the fluid–solid interface or station-
ary meshes. The arbitrary Lagrangian–Eulerian approach 
(ALE) is a common approach for the deforming mesh 
approach and is widely used in commercial packages. Its 
advantages are that it can provide a clear cut between the 
fluid and the solid and an optimal level of grid clustering 
near the fluid–solid interface. However, ALE can become 
complicated for bodies of large deformations, problems 
of contact between bodies and problems containing many 
complex geometry bodies.

The immersed boundary method (IBM) is commonly 
used for the stationary mesh approach [4, 5]. It provides a 
simple geometry grid that can deal with complex geometry 
bodies, large deformations and a large number of bodies. 
However, it can smear the interface between the fluid and 
the solid, and when implemented along with a partitioned 
solver, the problem of information transfer between the 
fluid and solid may lead to instability if implemented in a 
weak formation [4]. The latter means that no convergence 
procedure has been performed as part of the IBM in order 
to make sure that the fluid solver and the structural solver 
show the same displacement and stress at the interface at 
the same time [4]. This study will use the IBM approach 
with an iterative procedure to ensure the stability of the 
information transfer at the interface between the fluid and 
solid phases.

Two FSI topics will be dealt: aquatic vegetation in 
channel flow and hydro-/aerokinetic turbines of renew-
able energy. Both are similar by requiring simulation 
of f low around f lexible cylinder-like slender bodies, 
which are the vegetation stems or the turbine’s blades. 
Both topics are of strong current engineering and envi-
ronmental interest. They also present computational 
challenges of capturing the flow’s relevant spatial and 
temporal scales while accounting for the structural 
response of the flexible bodies. However, the two topics 

also exhibit differences in the physical behaviour of 
the flow and structure, most notably due to the differ-
ence in the level of the flow Reynolds number and the 
rigidity of the body. The typical Reynolds number of 
the vegetation stem is less than a few thousands when 
based on the stem’s diameter [8, 9], while the blade’s 
Reynolds number is at least about 50 k for small tur-
bines when based on the blade’s chord length and going 
over 1 M for larger turbines [2, 10]. Vegetation stem can 
be highly flexible, while a tidal marine turbine blade is 
much more rigid.

Traditionally, aquatic vegetation has been seen as nui-
sance in waterways, slowing down the flow and increas-
ing the risk of flooding. Thus, the interest was mainly 
in calculating the drag caused by vegetation in order to 
support a policy of dredging the waterways. However, 
studies in the last two decades have also pointed out the 
positive environmental effects of aquatic vegetation that 
include reducing the erosion of river bed by reducing sedi-
ment, acting as filters against pollutants and supporting 
an aquatic ecosystem [8, 9]. Aquatic vegetation can be 
classified as floating, emerging, i.e. piercing the water sur-
face and submerged. In this paper, we will focus on the 
submerged vegetation.

Much research has been directed into identifying the 
effects of vegetation density, categorising it as sparse 
or dense, its blockage area as relative to the waterway’s 
cross section and its proximity to the water surface. 
CFD and experiments where the vegetation stems were 
modelled as cylinders have shown sparse vegetation to 
have higher turbulence intensity and sediment activ-
ity than in dense vegetation [8, 9]. Inflection points in 
the mean axial velocity profile are also dependent on 
the vegetation density and height, affecting the f low 
instability and creation of vortices. Flexibility of the 
vegetation has been modelled using an immersed body 
approach, where in order to reduce computational cost 
the stems were modelled using one-dimensional (1D) 
structural dynamics [11, 12]. Good agreement was gen-
erally achieved for the time-averaged flow between the 
FSI computations and similar experiments, but agree-
ment in the bulk drag prediction could be improved. 
One-dimensional structural dynamic modelling for the 
stems will also be used in this study due to its rela-
tively low computational cost while using the FEM-
DEM methodology.

Hydro- and aerodynamic modelling of kinetic turbines 
traditionally relies on blade element methods [2]. These 
low-order models can be coupled with beam models for 
the blades in order to deal with FSI. Recent CFD develop-
ment along with the ALE approach has delivered several 
studies where FSIs of horizontal and vertical axis kinetic 
turbines have been studied. The blade was modelled using 
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shell elements to reduce computational cost and it was 
found that the blade’s flexibility could reduce the power 
production [13, 14]. IBM has been less common for study-
ing kinetic turbines because of its reduced ability to cap-
ture sharp interfaces as compared to ALE. Nevertheless, 
it has been successfully applied to marine tidal turbines, 
yielding excellent agreement with experimental results for 
the power production [10], while utilising the simplicity 
of the grid to achieve high computational efficiency in 
parallel computing infrastructure [15]. Recently, interest 
has risen in using the blade flexibly in order to actually 
achieve higher hydro-/aerodynamic performance through 
the concept of smart structure and thus getting optimal 
geometry of the blade for different flow scenarios [16]. 
FSI simulations can have a significant role in achieving 
this aim.

The computational methodology of the FSI simulations 
used in this study is presented in the next section. It is fol-
lowed by results analysis of flexible submerged cylinders, 
modelling aquatic stems and FSI analysis of horizontal 
axis kinetic turbine blades of the common type based on 
an aero-hydrofoil section as well as of spinning (Magnus) 
blades.

2 � Methodology

FSI methodology was developed and implemented for study-
ing deformable bodies embedded in incompressible viscous 
flow and/or containing such flow. A partitioned FSI solver 
named CgLES-Y has combined three advanced numerical 
technologies and the corresponding computing codes. The 
fluid solver is based on the finite volume approach, while the 
structural dynamic solver is based on the FEM-DEM scheme 
[17]. An IBM algorithm ties the two solvers together. This 
FSI methodology has already been successfully imple-
mented for a range of problems from bio-fluids of red blood 
cells flow [18, 19] and urine flow in the ureter [20] to sedi-
ment [21, 22] and marine tidal turbines [10]. In this section, 
the main points of the method are highlighted, where further 
details are given in Refs. [10, 15, 21, 23].

2.1 � The flow field solver

The three-dimensional (3D) incompressible Navier–Stokes 
(NS) equations are simulated using a rectangular grid:

(1)
�ui

�xi
= 0,

where t, ui, p, �, �, �ij are time, a velocity component in the xi 
direction, pressure, density, kinematic viscosity coefficient 
and the large eddy simulation (LES) sub-grid scale (SGS) 
stress, respectively. The SGS stress was modelled using the 
mixed timescale (MTS) model that has a mechanism to turn 
itself off at laminar flow [24]. In case of direct numerical 
simulation of low Reynolds number, the SGS stress was 
taken as zero. fi is the body force in the xi direction, and this 
is the term where the IBM force is applied on the flow field.

The NS equations were discretised using the finite vol-
ume approach where the spatial derivatives were calcu-
lated using second-order central schemes. Grid clustering 
in areas requiring fine computational grid was achieved 
using grid mapping. Continuity was achieved using the pro-
jection method that was coupled with the time marching 
methods of third-order Runge–Kutta method or second-
order Adams–Bashforth [15]. The Poisson equation for the 
pressure that results from the projection method was solved 
using rapid solvers based on the bi-stab approach [15].

2.2 � The structural dynamic solver

The FEM-DEM approach was used to simulate the dynamic 
equation [17]:

where y⃗, F⃗, 𝜌s, 𝜎̄ are the element’s displacement vector, body 
force vector, the solid body density and the Cauchy stress 
tensor, respectively. Elastic behaviour was used to relate the 
stress to the strain for the problems discussed in Sect. 3. For 
the vegetation stems problem, Eq. (3) was modelled using 
1D elements, reducing it to a flexural wave equation of a 
beam as in Refs. [11, 12].

2.3 � FSI solver

Strong coupling through an iterative procedure was used 
to match the fluid and solid velocity at the interface while 
enforcing continuity. The stress was matched between the 
fluid and the solid every time step. The iterative procedure 
is based on the direct injection FSI approach, and only the 
main steps are illustrated here for the Adams–Bashforth time 
marching scheme. The reader is referred to Refs. [10, 15, 
18–23] for further details.

Equation (2) can be marched from time n to time n + 1 
using an intermediate velocity u* as follows:

(2)
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where

and hi
n−1 is similarly defined. The IBM fi

n+1/2 is found through 
an iterative procedure that yields from iteration k−1 to itera-
tion k:

where v is the desired velocity from the structural dynamic 
solver. D and I are the IBM distribution and interpolation 
around the IBM points illustrated in Fig. 1 and are speci-
fied in “Appendix”. The next intermediate velocity is found 
as ūk

i
= u∗

i
+ f

n+1∕2,k

i
Δt , and one solves for pn,k in order to 

ensure continuity:

The next iteration goes back to Eq. (6). The procedure 
stops when the change in I
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enough, leading to
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= ūk
i
−

3Δt

2𝜌

𝜕pn,k

𝜕xi
.

3 � Results and analysis

As already noted, two types of FSI problems are investi-
gated: submerged vegetation in a channel flow and kinetic 
turbine rotors. The FSI code has already been extensively 
verified in previous publications [10, 18–23], and thus, only 
verifications specific to the class of the investigated cases are 
shown followed by results of interest.

3.1 � Vegetation in a channel flow

Submerged vegetation stems are modelled as circular cyl-
inders following Refs. [11, 12]. The channel is taken as 
straight where the case of a curved channel is left for a future 
study. The channel’s bed is taken as no-slip wall, while the 
top of the channel is taken as free-slip wall, and hence, free 
surface effects are neglected. This can be justified by assum-
ing a low Froude number Fr = US∕

√
gH , i.e. less than 0.5, 

where US is the typical velocity at the top of the channel and 
H is the depth of the channel [25]. Periodic boundary condi-
tions are taken in the streamwise and spanwise directions. 
In order to sustain the flow in the channel, a body force fi 
is assumed and it corresponds to a gravity force acting on a 
channel with a shallow slope angle α ≪ 1 rad. This yields 
the following velocity profile for the laminar channel flow 
without vegetation:

Hence, the bed friction velocity is u� =
√
�gH . uτ is 

used to normalise the velocity field. The slope α is taken as 
1/1000 rad in the following results.

The computational domain size is (6, 1.5, 4) d in the 
streamwise, stream-normal and spanwise directions, respec-
tively, where d is the characteristic length scale used to nor-
malise all lengths in the following results. The stem’s height 
is taken as 0.5 d and its diameter is 0.02 d. The flexible stem 
is assumed to be of elastic material with a Poisson ratio of 
0.3. The density ratio between the stem and the surrounding 
water is taken as 1.1. The flow computational domain was 
discretised using 963 grid points, and the stem was modelled 
using 32 1D FEM-DEM elements. This kind of discretisa-
tion was found to be sufficient for the following results.

3.1.1 � A single stem

Laminar flow of low Reynolds number Red = 50 was ini-
tially simulated for verification purposes. A single flexible 
stem was placed at the middle of the channel, while it was 
clamped to its bed. The Young’s modulus normalised by 
�u2

�
 was taken as 5 × 105 in order to achieve a noticeable 

(9)
u(y)

US

=
y

H

(
2 −

y

H

)
,US =

�gH2

2�
.

Fig. 1   Illustration of the immersed boundary method (IBM) layout
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deflection with such a low flow velocity. The deformation 
of the stem is shown in Fig. 2 as calculated by the FSI code 
after the flow reached a steady-state condition. An analytical 
prediction based on beam theory is also plotted where the 
load on the stem was taken from the FSI solver. Both predic-
tions show excellent agreement, verifying at least the FSI 
structural solver that is based on the FEM-DEM approach. 
As the rest of the solver was extensively verified in other 
references including channel flows [21, 22], we proceed to 
the results of a stem embedded in a turbulent channel flow.

Turbulent channel flow for Red = 250 was achieved by 
initiating the flow with random disturbance and waiting until 
a fully developed turbulent channel flow was reached [21, 
22]. A single stem was then placed in the middle of the com-
putational domain again and the simulation continued until 
the flow settled to a steady periodic state. The normalised 
Young’s modulus for the flexible stem was raised to 2 × 108 
to account for the higher flow velocity while achieving a 
reasonable deflection. Typical contours of the instantaneous 
streamwise velocity are shown in Fig. 3 for the cases of a 
rigid stem and a flexible stem. A similar pattern is revealed 
for both cases where the highest velocity is near the top of 
the channel as expected and the effect of the stem is simi-
lar in both cases while only mildly causing any noticeable 
velocity reduction behind the stem. This is because of the 
stem’s small size and the associated low Reynolds number 
flow. The time development of the drag force acting on the 
two stems is shown in Fig. 4, where the drag force was nor-
malised by 0.5�u2

�
A and A is the cross-sectional area of a 

virtual square enclosing the stem, i.e. (0.02 d)2. The time 
was normalised by d/uτ. The rigid stem is seen to experience 
a higher drag force, showing that vegetation can reduce the 
drag force acting on it through bending towards the direc-
tion of the flow.

3.1.2 � A vegetation patch

A circular vegetation patch was placed at the middle of the 
computational domain instead of the single stem. The patch 
had a diameter of 0.5 d, and the stems were uniformly dis-
tributed inside it with a volumetric ratio of 0.1188. The nor-
malised Young’s modulus for the flexible stem was reduced 
to 2 × 107. Typical instantaneous streamwise velocity con-
tours are shown in Fig. 5. As in the single-stem case, the 
peak velocity is near the top of the channel. However, a 
more profound wake is seen behind the patch than behind 
the single stem in Fig. 3, and in that instant of time, the 
wake behind the rigid stems’ patch is longer than behind 
the flexible stems’ patch. One can also notice that while the 
upstream side of the flexible stems’ patch shows some defor-
mation, the stems on the downstream side of the patch do 
not, hence further contributing towards the wake generation.

In order to look at the time history of the patch, the time 
variation of the drag force felt by the patch is plotted in 
Fig. 6, where the drag force was normalised by the cross-
sectional areas of the virtual squares enclosing the stems, 
i.e. 297*(0.02 d)2. Obviously, the drag forces for the rigid 
and flexible patches are not the same, but unlike in the case 
of the single stem, both forces show similar level when in 
some instant of time the drag force of the flexible patch is 
higher and sometimes the opposite. Increasing the normal-
ised Young’s modulus back to 2 × 108 further reduced the 
difference between the two drag forces, making them almost 
identical. This is because the stems acted in a synchronised 
way strengthening each other as fibres of a rope strengthen 
each other.

3.2 � The horizontal axis kinetic turbine rotor

While the vegetation stem is dominated by the drag force, 
the blade of the horizontal axis kinetic turbine is dominated 
by the lift force. The current FSI code was already success-
fully used to investigate the flow around a three-blade hori-
zontal axis marine current turbine (HAMCT), where the lift 
was generated due to the hydrodynamic profile of the blade 
[10]. However, lift can also be generated by a spinning cylin-
der as in the Magnus blade with an ability to achieve high lift 
coefficient, but at a cost of a reduced lift-to-drag ratio [26]. 
The Magnus blade is also a good problem to demonstrate the 
ability of the current FSI formulation to accurately capture 
the shear stress at the interface between the solid and the 
fluid, and hence simulate correctly the generated circulation 
in the flow, leading to the lift. Therefore, a single Magnus 
blade is investigated next, followed by a flexible three-blade 
rotor with the same geometry of the rigid rotor that was 
studied by Bai et al. [10].

Fig. 2   Single stem’s streamwise deflection in a laminar channel flow
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3.2.1 � The spinning cylinder

A rigid spinning cylinder was placed in a computational 
domain of [− 17.8, 47.8] × [− 32.8, 32.8] × [0, 0.5] in the 
streamwise, stream-normal and spanwise directions, respec-
tively, where the cylinder’s diameter was normalised to one. 
The cylinder spanned all along the domain’s spanwise length 

and was placed at the origin of the streamwise-normal coor-
dinates. The Reynolds number was set to ReD = 200 as rela-
tive to the free-stream velocity U and the cylinder’s diameter. 
Hence, the flow is laminar by its nature. The ratio between 
the tangential velocity of the cylinder’s circumference and U 
was set to 1.5. Dirichlet inflow boundary condition was used 
together with free-slip top and bottom boundary conditions. 
A Neumann-type boundary condition was adopted at the 
outflow, and periodicity was imposed in the spanwise direc-
tion to mimic a cylinder with an infinite length. The com-
putational domain was discretised using a gradual stretched 
Cartesian mesh with a grid resolution of 384 × 384 × 16 with 
a gradual stretching mesh spacing in order to cluster grid 
points near the cylinder. Along the circumference of the cyl-
inder, 256 immersed boundary points (IBPs) were evenly 
distributed in each x–y layer and 16 layers of IBPs in the 
spanwise direction were adopted.

Figure 7 shows the contours of the instantaneous pres-
sure as relative to the ambient pressure and the vorticity 
component pointing spanwise, together with the stream-
lines. One should note that the pressure was normalised by 
ρU2. Clearly, a low-pressure region can be observed near 
the cylinder’s top surface, which attributes to the increase 
in lift as compared with a stationary cylinder. This is also 
evident by the vortex wake shedded downwards, thus 

Fig. 3   Instantaneous streamwise 
velocity contours for a single a 
rigid stem and a b flexible stem

Fig. 4   Time history of the normalised drag force acting on the single 
stem
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causing a lift force acting on the cylinder. One should 
note that increasing the ratio of the tangential velocity to 
the free-stream velocity U from 1.5 to 2 will suppress the 
vortex shedding at this Reynolds number as was found by 
Mittal and Kumar [27].

Table 1 compares the statistical features of the present 
results with those of Mittal and Kumar [27] who studied 
laminar flow past a spinning cylinder at various rotation 
rates using a body conformal (BC) grid with a very fine 
mesh near the cylinder. The Strouhal number St relates the 
vortex shedding main frequency, and hence, the oscillations 

of the force act on the cylinder. The lift and drag coefficients 
are normalised as relative to the ρU2A/2, where A is the cross 
section of the cylinder. While the mean lift coefficient shows 
excellent agreement between two results, a mild discrepancy 
is found in the averaged drag coefficient. Our mean drag 
coefficient is about 8% larger than of Mittal and Kumar [27].

The mildly over-predicted drag coefficient is mostly 
related to the side-wall effects. Mittal and Kumar [27] did a 
convergence study on the drag and lift coefficients by chang-
ing the wall–cylinder distance from 15 to 150 times of the 
cylinder’s diameter. They stated that the drag coefficient 
showed a close dependency on the cylinder’s length and the 
side-wall effects were negligible when the length is larger 
than 100 times the cylinder’s diameter, while the lift force 
was insensitive to the distance.

3.2.2 � The three‑blade HAMCT flexible rotor

The rigid HAMCT studied by Bai et al. [10] was further sim-
ulated, but by making the blades flexible and composed of a 
material with a Young’s modulus of 80 MPa, which is about 
100 times smaller than the modulus of the standard steel in 
order to hasten the process of the blade deformation. The 
Poisson ratio was set as 0.3, and the density of the solid body 
was set as seven times of water. The computational domain 
size was set as [− 3, 7]D, [− 1.95, 1.05]D and [− 2.5, 2.5]D 
in the streamwise stream-normal and spanwise directions, 
respectively, where D is the diameter of the rotor. Inflow 

Fig. 5   Instantaneous streamwise 
velocity contours for a circular 
patch of a rigid and b flexible 
stems

Fig. 6   Time history of the normalised drag force acting on the stems’ 
patch
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velocity condition and outflow condition were used in the 
streamwise direction, and free-slip walls were used on the 
bottom of the computational domain and the spanwise sides. 
Free surface was assumed at the top of the computational 
domain [10]. A stretched Cartesian mesh was used with a 
grid resolution of (640, 320, 512) points, while clustering 
points were near the rotor. The Reynolds number based on 
the free-stream velocity and the rotor’s diameter is 1.4 M.

The rigid HAMCT simulation result for tip speed 
ratio TSR = 6 was used as the initial condition, where 
TSR = ΩR/U, Ω is the rotational speed of the rotor and R 
is its radius. This means the Reynolds number based on the 
overall speed and chord length was about 200 k, and hence, 
the blade section is dominated by a laminar boundary layer 
going to transition through a laminar separation bubble on 
the suction side of the blade. Such process was well cap-
tured by the current FSI solver for rigid blades [10, 15]. The 
y + resolution on the blade was about 30 to 50.

The deformation of the blade at different time stages is 
shown in Fig. 8, where the blade in its initial rigid condition 
is shown in Fig. 8a. The blade starts to deform after about 20 
rotations as demonstrated in Fig. 8b, where the highest stress 
is found at the root of the blade and near the trailing edge 
of the blade’s profile. The deformation process accelerates, 
resulting in a clear twist in the blade after 50 rotations as 
shown in Fig. 8c. After 100 rotations, the blade lost its shape 
and also bended opposite to the direction of the rotation. In 
that situation, the HAMCT power has been reduced by about 
40% as compared to the rigid rotor’s produced power.

4 � Conclusions

The presented FSI methodology coupled a FEM-DEM struc-
tural solver with a LES incompressible flow solver using 
an IBM algorithm. The FSI solver has been applied to sub-
merged vegetation stems and small kinetic turbine blades 
embedded in laminar and turbulent flows. Both bodes have 
slender cylinder-like shapes, but the stem experiences a 
dominant drag force, while the blade experiences a domi-
nant lift force due to its design. Verification cases of a single 
stem and a spinning Magnus blade in laminar flows were 
successfully pursued following previous verification studies 
which used this solver for bio-fluids and sediment problems. 
It was shown that the flexibly of the stem could reduce the 
drag force experienced by the stem, but when the stem was 
part of a dense patch, the patch could act as a group and thus 
considerably reduced the effect of the stem’s flexibility. A 
small horizontal axis marine turbine rotor was studied for 
the effect of its blade’s flexibility by significantly reducing 
the Young’s modulus as compared to steel. This resulted 
in a significant loss of power due to unwanted twisting and 

Fig. 7   Contours of a instantaneous pressure and b z-vorticity, 
together with streamlines flow past a spinning cylinder with 
ReD = 200 and tangential-to-free-steam velocity ratio of 1.5

Table 1   Comparison of drag coefficient, lift coefficient and Strouhal 
number for flow past a spinning circular cylinder at ReD = 200 and 
tangential-to-free-steam velocity ratio of 1.5

C̄D
CD,rms C̄L

CL,rms St

Mittal and Kumar [27] 0.781 0.164 3.884 0.468 0.188
Present 0.845 0.173 3.895 0.497 0.190
Difference 8.2% 5.5% 0.3% 6.2% 1.1%
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bending of the blades in less than 100 revolutions of the 
rotor.

This study has demonstrated the capability of a parti-
tioned FSI solver based on IBM and FEM-DEM to deal with 
slender bodies. It has pointed to the growing importance of 
FSI in water flows as of vegetation and renewable energy 
flow systems as of the kinetic turbine to help in enhancing 
our understanding and ability to control and use such flows 
for the benefit of society.
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Appendix

The IBM distribution D and interpolation I functions are 
defined, respectively, as follows:

𝜙(x̄) represents the variables on the Cartesian grid x̄ , while 
𝛷
(
X̄
)
 indicates the variables on the IB points X̄ . The inter-

polation function projects physical fields from the Carte-
sian grids to the IB points, while the distribution function 
maps physical fields from the IB points back to the Carte-
sian grids. In the above, gh represents the set of Cartesian 
grids both inside and outside the immersed boundary, Nibm 
is the total number of the IB points and ΔVi is the discrete 
volume of the IBM point Xi . These volumes should form a 
thin shell of thickness equal to one mesh width around each 
IB point, as shown in Fig. 1. The discrete delta function �h 
is defined as:

where h is the grid spacing.
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