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Abstract
This aim of this paper is to present the application of the combined finite–discrete element method (FDEM) in structural 
mechanics. FDEM is an innovative numerical technique, which has been intensively used in the past several decades in 
various engineering simulations. FDEM combines the advantages of both the finite and the discrete elements and enables 
the simulation of initiation and propagation of cracks, as well as interaction of a large number of discrete elements. The 
examples presented in this paper show the advantages of FDEM in the analysis of structural mechanics issues including dry-
joint masonry structures, concrete and reinforced concrete structures, masonry structures with mortar joints and confined 
masonry structures, cable and truss structures, membrane structures, and plate and shell structures.
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1 Introduction

With the rapid developments in the area of computer perfor-
mance, complex structural design tasks can be reduced to 
a mathematical problem solved with the help of a numeri-
cal method. Finite element method (FEM) was the first 
widely accepted numerical method for structural analysis. 
Numerical models based on the finite element method treat 
a structure a priori as a continuum and, as a result, exhibit 
difficulties in describing the discontinuous nature of certain 
structural problems. This method was further extended to 
include the propagation of various discontinuities which 
resulted in the extended finite element method (XFEM). 
However, XFEM proved to be inadequate for problems 
with large deformations, significant mesh distortions and 
discontinuities. In the last two decades, meshfree methods 
have been intensively developed. These methods provide a 
solution using a set of randomly distributed nodes without 
the predefined elements linking the nodes. However, when 
dealing with a structural problem involving several, maybe 
even thousands of mutually interacting separate particles, 

each of them should be treated as one discrete element. 
The latter problem resulted in the discrete element method 
(DEM), which, in combination with FEM, allows the con-
tact interaction between discrete elements paired with large 
displacements, large rotations, deformability and, finally, 
the transition from continuum to discontinuum within each 
discrete element. The aim of this paper is to present the 
advantages of the combined finite–discrete element method 
in structural mechanics, which is an approach combining the 
benefits of the finite and discrete elements method.

2  Aspects of structural engineering in FDEM

Combined finite–discrete element method is intended for the 
dynamic analysis of a large number of mutually interacting 
discrete elements, where the elements can fracture and frag-
ment, thus increasing the total number of discrete elements 
[1]. Within FDEM, each discrete element is discretised with 
its own finite element mesh, thus enabling the deformability 
of discrete elements. Fracture and fragmentation processes 
are also implemented within the finite element mesh. The 
mass of discrete elements is lumped into the nodes of finite 
elements, while the time integration of the motion equation 
is applied node by node and degree-of-freedom by degree-
of-freedom. This is performed in explicit form by using the 
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central difference time integration scheme. The contact forces 
resulting from the interaction process between two discrete 
elements are determined by the numerical representation of 
contact impact, which is executed by employing contact detec-
tion and contact interaction procedures [1–3].

2.1  Contact detection and interaction

A contact detection algorithm is aimed at detecting the pairs 
of mutually contacting discrete elements and eliminating the 
non-contacting pairs that are far apart. Munjiza-NBS contact 
detection algorithm is implemented in Y code based on FDEM 
[2]. The total CPU time required by this algorithm to detect 
all contacting pairs of discrete elements is proportional to the 
total number of discrete elements.

Once the contacting couples are detected by the contact 
detection algorithm, the contact interaction algorithm is 
applied to calculate the contact forces between them. The con-
tact interaction between the discrete elements is calculated by 
using the distributed potential contact force based on the pen-
alty function method [3] which is based on the assumption that 
two contacting bodies, one denoted as the contactor and the 
other as the target, penetrate into each other, thus generating a 
distributed contact force (Fig. 1). As the contactor penetrates 
an elemental volume dV into the target, it generates the infini-
tesimal contact force given by:

where Pt and Pc represent the points in which the target and 
the contactor overlap, while φ is a potential field assuming 
the zero-equalling value on the edge and the maximum value 
at the centre of the discrete element. 

The total contact force exerted by the target onto the contac-
tor is obtained by the integration of the infinitesimal contact 
force dfc over the overlap volume V (Fig. 6), which leads to:

(1)d�c =
[

grad�c

(

Pc

)

− grad�t

(

Pt

)]

dV

(2)�c = ∫
V=�t∩�c

(

grad�c − grad�t

)

dV

The previous equation can also be written as an integral 
over the surface S of the overlapping volume as follows:

It should be emphasised that each tetrahedron is considered 
twice: once as a contactor and once as a target.

Within the contact interaction algorithm, Coulomb-type 
law of friction is also implemented [4].

2.2  Fracture and fragmentation

There are several approaches to fracture and fragmentation in 
the numerical analysis. The early solutions were based on the 
smeared crack model. Later, these were substituted by the dis-
crete crack model. The model adopted within FDEM is actu-
ally a combination of smeared and discrete crack approaches 
[5]. It was designed with the aim of modelling progressive 
fracture and failure including fragmentation and of creating a 
large number of rock fragments. For that purpose, the strain 
softening which appears in the material after reaching the ten-
sile or shear strength is described in terms of displacement. 
The separation of the surfaces of the adjacent finite elements 
induces a bonding stress (see Fig. 2a) which is assumed as a 
function of the size of separation δ (see Fig. 2b).

The area under the stress–displacement curve represents 
the energy release rate Gf = 2γ, where γ is the surface energy, 
i.e. the energy needed to extend the crack surface by a unit 
area. Theoretically, there is no separation δ before reaching 
the tensile strength. In the actual implementation, it is enforced 
by the penalty method. For the separation δ ≤ δt, the bonding 
stress is given by:

where δt = 2hft/p is the normal separation inducing the bond-
ing stress equal to the tensile strength ft, h is the size of the 
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)
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−
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)2
]
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Fig. 1  Contact force due to an infinitesimal overlap around points Pt 
and Pc

Fig. 2  a Single crack model [5], b strain softening defined in terms of 
displacement [5]
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finite element, and p is the penalty term. Hence, the relative 
displacement error is independent of the finite element size 
[6–8].

After reaching the tensile strength ft, the stress decreases 
with an increase of the normal separation δ, whereas at 
δ = δc the bonding stress tends to zero. For the separation 
δt < δ < δc, the bonding stress is given by:

where z is the scaling function representing the softening 
behaviour of the concrete. According to Hillerborg [1], it 
is used for approximating the experimental stress–displace-
ment curves for the concrete:

where a = 0.63, b = 1.8 and c = 6.0, while the damage param-
eter D is determined according to the expression:

The same formulation can be used for other semi-brit-
tle materials using appropriate parameters, as obtained by 
experimental research.

2.3  Trusses and cable structures in FDEM

The discretisation of cable and truss structures within 3D 
FDEM is performed by two-noded finite elements [9] as 
shown in Fig. 3.

Based on the length of the finite element in initial li and 
current lc configuration (see Fig. 4a), the axial strain is 
obtained according to the following equation:

which, taking into account the linear viscoelastic material 
behaviour, yields the axial strain in the form of:

where E represents the modulus of elasticity, while ͞μ rep-
resents the damping coefficient. Axial forces acting in the 

(5)� = zft

(6)

z =

[

1 −
a + b − 1

a + b
e

(

D
a+cb

(a+b)(1−a−b)

)
]

[

a(1 − D) + b(1 − D)c
]

(7)D =

{

(𝛿 − 𝛿t)∕(𝛿c − 𝛿t), if 𝛿t < 𝛿 < 𝛿c;

1, if 𝛿 > 𝛿c

(8)� =
(

lc − li
)

∕li

(9)𝜎 = E 𝜀 + �̄� �̇�

finite element nodes (see Fig. 4b) are obtained according to 
the equation:

where A is the area of the cross section.
This numerical scheme facilitates the introduction of aer-

oelastic damping as an external force, acting contrary to the 
relative motion of fluid and the structure. In the structures 
with large deflections, such as cable, truss and membrane 
structures, the aeroelastic damping is a significant dissipator 
of kinetic energy [9].

2.4  Frame structures in FDEM

The analysis of frame structures within FDEM is enabled by 
introducing the beam-type finite element and bending stiff-
ness [10]. For that purpose, the finite element nodes are con-
sidered together with two adjacent nodes (see Fig. 5) defin-
ing a fictitious circle with curvature obtained according to:

Based on the change of the curvature between the current 
and the initial configuration Δκ, and by adopting the linear 

(10)f0 = f1 = �A

(11)� = 2
sin�

d

Fig. 3  Discretisation of: a cable structures, b truss structures

Fig. 4  Two-noded finite element: a initial configuration and current 
configuration, b forces in the finite element nodes due to deformation 
of the finite element

Fig. 5  Initial and current positions of observed node 1 with adjacent 
nodes 0 and 2
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viscoelastic material behaviour, the moment m acting in the 
observed node 1 is obtained according to the equation:

where E represents the modulus of elasticity, I represents the 
moment of inertia of the cross section, while μ represents 
the damping coefficient.

The bending moment m (see Fig. 6a) is finally transferred to 
the nodes of the finite elements i and j in the form of the pair 
of forces (see Fig. 6b) equalling:

The forces resulting from the moment are then added to 
the nodal forces resulting from the axial bearing mechanism.

2.5  Membrane structures in FDEM

The discretisation of the membrane structures within FDEM is 
performed by three-noded triangular finite elements [11] trans-
ferring only the membrane stress, i.e. stresses in their plane. 
In order to improve the CPU efficiency while calculating the 
membrane stresses, a local coordinate system is adopted within 
each finite element, as shown in Fig. 7, where (x̅, y̅, z̅) represent 
the initial local Cartesian coordinates, while (x̃, ỹ, z̃) represent 
the current local Cartesian coordinates.

Based on the coordinates of nodes in the initial and the 
current configuration, the deformation gradient F is obtained 
according to the equation:

which yields the Green–St. Venant’s strain tensor E accord-
ing to:

(12)m = EI𝜅 + 𝜇 �̇�

(13)
f0i = f1i =

m

li

f1j = f2j =
m

lj

(14)� =

[

x̃1 x̃2
ỹ1 ỹ2

] [

x̄1 x̄2
ȳ1 ȳ2

]−1

(15)� =
1

2

(

��
T − �

)

By adopting the linear viscoelastic material behaviour, 
the Cauchy’s stress tensor T is obtained according to:

where E is the modulus of elasticity, v is the Poisson’s ratio, 
Ĕd is the shape-changing part, Ĕs is the volume-changing 
part of the Green–St. Venant’s strain tensor [1], ͞μ is the 
damping coefficient, and D is the rate of the strain tensor [1].

Traction forces over each of the edges of the triangular 
finite element (see Fig. 8a) are obtained according to the 
equation:

where nx̃ and nỹ represent the components of the outer nor-
mal to the edges. Finally, the traction forces are transformed 
onto the nodes of finite elements in the form of equivalent 
nodal forces, where each node assumes half of the traction 
force of the corresponding finite element edge, as shown in 
Fig. 8b.

(16)� =
E

1 + 𝜈

⌣

�
�
+

E

1 − 2𝜈

⌣

�
�
+ �̄��

(17)� = �� =

[

sx̃
sỹ

]

=

[

tx̃x̃ tx̃ỹ
tỹx̃ tỹỹ

][

nx̃
nỹ

]

Fig. 6  Bending moment: a in finite element node; b in the form of 
equivalent nodal forces

Fig. 7  Three-noded triangular finite element in initial configuration 
and current configuration

Fig. 8  Forces due to membrane stresses: a traction forces; b equiva-
lent nodal forces
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2.6  Plate and shell structures in FDEM

The analysis of plate and shell structures within FDEM is ena-
bled by introducing the bending stiffness over the finite ele-
ment edges within the numerical model for membrane struc-
tures [12–14]. In order to account for the bending-carrying 
capacity, the triangular finite elements are observed together 
with the three nodes of adjacent finite elements, as shown in 
Fig. 9.

The second-order polynomial in the local coordinate system 
is determined through six nodes in both the current

and the initial configuration

which yields the change of the curvature within the finite 
element in the local coordinate system according to:

Considering the linear viscoelastic material behaviour, 
bending and twisting moments within the observed finite ele-
ment are determined according to:

where �̇�x̃ , �̇�ỹ and �̇�x̃ỹ represent the velocity of the change 
in curvature, μ represents the damping coefficient, while I 
represents the bending stiffness given by

(18)z̄ = �̄�1 + �̄�2x̄ + �̄�3ȳ + �̄�4x̄ȳ + �̄�5x̄
2 + �̄�6ȳ

2

(19)z̃ = �̃�1 + �̃�2x̃ + �̃�3ỹ + �̃�4x̃ỹ + �̃�5x̃
2 + �̃�6ỹ

2

(20)
𝜅x̃ = 2

(

�̃�5 − �̄�5
)

, 𝜅ỹ = 2
(

�̃�6 − �̄�6
)

, 𝜅x̃ỹ = 2
(

�̃�4 − �̄�4
)

(21)

mx̃ = I
(

𝜅x̃ + v𝜅ỹ
)

+
(

�̇�x̃ + v�̇�ỹ
)

𝜇

mỹ = I
(

𝜅ỹ + v𝜅x̃
)

+
(

�̇�ỹ + v�̇�x̃
)

𝜇

mx̃ỹ = I(1 − v) 𝜅x̃ỹ + (1 − v) �̇�x̃ỹ𝜇

(22)I =
Et3

12(1 − v2)

with t being the shell thickness. Equations (21) yield the 
bending moment mnA (see Fig. 10a) along the corresponding 
side of the observed finite element according to the equation

where nx̃ and nỹ represent the components of the unit outer 
normal on the corresponding side of the finite element in the 
local coordinate system.

Bending moment mn is subsequently converted into the 
equivalent nodal forces

perpendicular to the plane of the observed finite element 
A and the adjacent finite element B, as shown in Fig. 10b.

This procedure is repeated for each side of the observed 
finite element and subsequently for each finite element. The 
forces resulting from the moment are then added to the nodal 
forces resulting from the membrane carrying mechanism.

2.7  Reinforced concrete structures in FDEM

For the purpose of analysing the reinforced concrete struc-
tures [15–17], the original Y-FDEM programme package 
was extended with a reinforcing bar finite element and a 
reinforcing bar contact element simulating the behaviour 
of the reinforcing bar (see Fig. 11). The reinforcing bar 
finite elements are implemented within the concrete finite 
elements and simulate the behaviour of the reinforcing bar 

(23)mnA =
1

2

(

mx̃nx̃ + mỹnỹ + 2mx̃ỹnx̃nỹ
)

(24)
f2 =

mnA l

hA
, f0A = f2

lA2

l
, f1A = f2

lA1

l

f3 =
mnA l

hA
, f0B = f3

lB2

l
, f1B = f3

lB1

l

Fig. 9  Observed finite element A with adjacent finite elements B, C 
and D in initial configuration and current configuration

Fig. 10  Bending moment along the corresponding side of the 
observed finite element (a) and equivalent nodal forces due to bend-
ing moment (b)
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within the uncracked concrete assuming the linear elas-
tic behaviour of the reinforcing bar in the concrete finite 
element and a perfect bond between the concrete and the 
reinforcing bar, which means that the deformation of the 
concrete finite element influences the deformation of the 
reinforcing bar finite element. The axial forces in the rein-
forcing bar finite element nodes due to the deformation of 
the reinforcing bar finite element are transferred onto the 
nodes of the concrete finite elements in the form of equiva-
lent nodal forces.

The behaviour of the reinforcing bar within the crack 
surface, which occurs upon reaching the tensile strength of 
the concrete, is modelled with the reinforcing bar contact 
elements by a non-dimensional slip s given by:

where S is the local slip of the bar from the crack interface 
(see Fig. 12a), D is the diameter of the bar, while fc is the 
concrete compressive strength in (MPa). Considering the 

(25)s =
(

S

D

)

Kfc, Kfc =

(

fc

20

)2∕3

experimentally based relation between the non-dimensional 
slip s and the strain of the reinforcing bar in the crack εs [18] 
shown in Fig. 12, it is possible to obtain the strain, which, 
considering the material model of steel, yields the stress in 
the reinforcing bar within the crack faces. In the proposed 
numerical model, the Kato’s model [19] was adopted for 
defining the stress–strain relationship in the reinforcing bar. 
The forces in the reinforcing bar finite element nodes result-
ing from the stress in the reinforcing bar contact element are 
transferred onto the nodes of the concrete finite elements in 
the form of equivalent nodal forces.

Detailed information related to the numerical model of the 
reinforcing bar within FDEM can be found in [15–17].

2.8  Brick masonry structures in FDEM

For the purpose of analysing the masonry structures with mor-
tar joints [20], the original Y-FDEM programme package was 
extended with a constitutive model in the brick finite elements 
considering the orthotropic behaviour, failure and softening 
in compression, which is especially pronounced in masonry 
structures with perforated bricks, and with the material model 
in joint elements simulating mortar joints and unit-mortar 
interface.

The elliptical hardening followed by the parabolic/expo-
nential softening law in compression, as shown in Fig. 13, is 
considered in the finite elements for both material axes, with 
different compressive fracture energies Gfci and different com-
pressive strengths fci, where subscript i refers to the material 
axes corresponding to global axes x and y.

The material model in joint elements accounts for the 
decrease in the friction coefficient due to the increasing shear 
displacement, cyclic behaviour and the increase in the fracture 
energy in shear due to the increasing pre-compression stress 
according to the equation:

(26)GII
f
= GII

f0
− 106.31 � (N/m)

Fig. 11  Discretisation of reinforced concrete structures

Fig. 12  a Definition of local slip; b strain–slip relation under mono-
tonic loading

Fig. 13  Hardening/softening law for compression with cyclic behav-
iour
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where Gf0
II is the value of the fracture energy in shear with-

out the normal pre-compression stress, while σ is the pre-
compression stress in MPa.

The material model in joint elements fits rather well with 
the experimental results related to the behaviour of the unit-
mortar interface in direct and cyclic tension and shear as 
shown in Figs. 14 and 15, respectively.

3  Some examples of FDEM simulations 
in structural engineering

This section presents a series of examples demonstrating the 
application of FDEM in the analysis of dry-joint masonry 
structures, concrete and reinforced concrete structures, 
masonry structures with mortar joints and confined masonry 
structures, cable and truss structures, membrane structures, 
plate and shell structures.

Trusses and cable structures The following example dem-
onstrates the application of FDEM in the dynamic analysis 
of a space truss tower laterally secured with 12 prestressed 

cables placed in four levels, with three cables at each level 
[9] as shown in Fig. 16a. The truss tower is 35 m high with 
an equilateral triangular body and l50 cm long in the ground 
plane. The chord of the truss is a tubular cross section with a 
139.7 mm diameter and 8 mm thickness, while the diagonal 
and horizontal infill of the truss is also a tube cross section 
with a 60.3 mm diameter and 4 mm thickness. The cables 
are steel circular cross sections with a 20 mm diameter. The 
topmost level and the following level cables have the pre-
tensioning force of 10 kN, the third level ones have the force 
of 35 kN, while the bottommost level ones have the pre-
tensioning force of 40 kN. The anchors for the stay cable 
are 5 m away from the centre of the truss. The geometry of 
the combined truss and the cable structure was described 
with 1167 two-noded finite elements. The material of the 
structure is structural steel with the modulus of elasticity 
E = 210 GPa and the mass per unit volume of 7850 kg/m3.

The structure was loaded with a uniform wind speed of 
49.2 m/s at the full height of the column. Wind force act-
ing on the truss elements and cables was obtained by using 
the force coefficients for the circular tubes. The force on 

Fig. 14  Numerical results in comparison with the experimental behaviour of unit-mortar interface in: a direct tension [21] for fs = 0.30 MPa, GIf 
= 12 N/m and b direct shear [22] for fs = 0.87 MPa, μ0 = 1.01, μr = 0.73

Fig. 15  Numerical results in comparison with the experimental behaviour of unit-mortar interface in: a cyclic tension [23] for: fs = 0.36 MPa, 
Gf

I = 100 N/m and b cyclic shear [24] for: fs = 0.17 MPa, Gf
I = 147 N/m and μ0 = μr = 0.70
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the belts was 700 N/m and 54 N/m by the cables. The wind 
force on the antenna mounted at 25 m from the ground was 
1000 N, while the wind force on the antenna at the top of 
the truss was 6000 N. Antenna is modelled as an additional 
surface powered by the wind force.

Figure 16b shows the horizontal oscillations of the 
top of the truss tower in time up to achieving the state 
of rest due to the aeroelastic dumping force. The results 
obtained by the presented FDEM numerical model were 
compared to the results obtained by the commercial soft-
ware ROBOT. In the FDEM numerical model, the largest 
displacement occurring in the system is in the middle of 
the second level of the cable and is equal to 42.9 cm. The 
displacement of the top of the truss tower was 39.6 cm, 
which is 2% less in comparison with the ROBOT, while 

the highest cable force was 77.5 kN, which is 3% less in 
comparison with the cable force obtained by ROBOT.

Beam-type structures The performance of the FDEM 
numerical model in the dynamic analysis of beam-type 
structures was presented on a simple supported beam with 
hinged and clamped boundary condition subjected to gravity 
load [10] as shown in Fig. 17. The beam end was assigned 
with the modulus of elasticity E = 210 GPa and the density 
of ρ = 7850 kg/m3. The width and the height of the cross 
section were adopted in the amount of 1 m and 0.01 m, 
respectively. For the purpose of the numerical analysis, the 
beam was discretised with 16 finite elements. Figure 17 
shows the dynamic behaviour of the beam obtained by 
FDEM compared to the numerical solutions from ABAQUS 
where a rather good agreement of the results is obtained for 
both beams. In ABAQUS, beams were discretised by using 
100 three-noded quadratic beam finite elements.

The application of the numerical model in the stability 
analysis and the behaviour of the structure after reaching the 
critical force were demonstrated on a simple supported and 
clamped arch structure subjected to a monotonically increas-
ing displacement at their midspan, as shown in Fig. 18. Arch 
was assigned with the modulus of elasticity E = 210 GPa, 
density of ρ = 7850 kg/m3, 1 m width of the cross section 
and 0.2 m thickness. Geometry was discretised with 128 
finite elements. Figure 18 shows the geometry of the arch 
and midspan deflections obtained by the FDEM numerical 
model compared to those obtained by ABAQUS, where a 
rather good agreement of the results can be observed. The 
numerical solutions from ABAQUS were obtained by using 
244 three-noded quadratic beam finite elements.

Membrane structures The following example demon-
strates the application of the FDEM numerical model in the 
analysis of the fracture pattern of the membrane exposed 
to tensile load over two edges [9]. The overall membrane 
dimensions are 2 m by 2 m with a 0.1-m-radius circular 
opening. The geometry of the membrane is described 
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Fig. 16  a Truss tower secured with cables; b horizontal displacement 
of the top in time

Fig. 17  Problem description 
of the steel beam and midspan 
deflection in time for: a hinge 
edges and b clamped edges
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with 3072 finite elements. The membrane material was 
poly(methyl methacrylate), also known as the acrylic glass 
with a thickness of 0.5 mm and the modulus of elasticity 
E = 3.15 GPa. The ultimate tensile strength of the material 
equalled 73 MPa with the fracture energy of 310 J/m2. The 
stress is introduced as the stretching of the membrane by 
constant velocity displacement of 0.1 m/s of both the top 
and the bottom sides of the membrane. The fracture pattern 
of the membrane in time is shown in Fig. 19.

In addition, FDEM was applied to the analysis of the 
membrane wrinkling [9], which is manifested in local insta-
bilities due to compression loading in the membrane.

For that purpose, a circular hollow membrane with a 
60 cm outer diameter, 10 cm inner diameter and 0.18 cm 
thickness was adopted. Polyvinyl chloride (PVC) with the 
modulus of elasticity E = 5.56 GPa and the shear modulus 

G = 2.22 GPa was used as the membrane material. The 
geometry of the membrane is described by 12,480 finite 
elements. The membrane is preloaded with the mean radial 
stress of 766 N/m. The outer rim of the membrane was fixed, 
while the internal border was displaced with a constant 
angular speed of 0.016 rad/s. As in the physical experiment, 
the first wrinkling was observed at a torque of 15.7 Nm in 
the inner ring. Figure 20 presents the experimental [25] and 
numerical displacement field at a torque of 39.2 Nm, where 
a rather good agreement of results can be observed.

Plate and shell structures The performance of the FDEM 
numerical model in the analysis of shell structures with a 
highlighted geometric nonlinearity was demonstrated on 
a hinged cylindrical roof subjected to the central pinching 
force [20] as shown in Fig. 21a. The cylindrical roof has 
the modulus of elasticity E = 3102.75 N/m2, Poisson’s ratio 

Fig. 18  Problem description 
of the arch under point load 
and force–midspan deflection 
relation for: a hinge edges and b 
clamped edges

Fig. 19  Membrane exposed to tensile load over two edges in time of: a t = 1.05 s; b 1.08 s and c t = 1.1 s
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ν = 0.3 and thickness of 12.7 m. Geometry was described 
with 962 (Mesh A) and 3710 (Mesh B) finite elements. 
Figure 21b shows the comparison of numerical solution 
obtained by the FDEM numerical model with a reference 
solution obtained with the programme package ABAQUS by 
using 1024 S4R finite elements. The results show excellent 
correspondence for both mesh refinements.

Another example [13] demonstrates a large rotation 
capability of the FDEM numerical model. For that purpose, 
a 12-m-long, 1-m-wide and 0.1-m-thick cantilever plate 
was subjected to different moments at the unrestrained 
end. Geometry was described with 24 × 4 and 48 × 4 finite 
elements. The cantilever has the modulus of elasticity 
E = 1.2 × 106 N/m2 and Poisson’s ratio ν = 0. Figure 22a 
shows the comparison of the numerical and analytical results 
for the vertical tip deflection and the horizontal tip deflec-
tion, where a rather good agreement of the results can be 
observed for both finite element meshes, while Fig. 22b 
shows a deformed 48 × 4 mesh for different end moments.

In order to demonstrate the application of FDEM in 
the stability analysis of shell structures, a cylindrical shell 
was exposed to the compression stress at unrestrained 

ends via the displacement at the top of the shell. The 
velocity of the displacement was proportional to time t 
as v = 2.27t × 10−5 m/s. The cylinder has the modulus of 
elasticity E = 210 GPa, Poisson’s ratio ν = 0.3, 1 m radius, 
3 m height and 5 mm thickness. Geometry was discretised 
with 3922 finite elements. Figure 23 shows the form of 
stability loss of the cylindrical shell in different moments.

Concrete and reinforced concrete structures The fol-
lowing example demonstrates the application of FDEM 
in the analysis of concrete and reinforced concrete beams 
exposed to impact loading. The problem description and 
finite element mesh used in the analysis are presented 
in Fig. 24a, b, respectively. The missile mass and initial 
velocity equalled 37.5 kg and 80 m/s, respectively. The 
impact was analysed for the case of a beam without the 
reinforcement and for the beam reinforced with a longitu-
dinal reinforcing bar and stirrups. Material characteristics 
of the concrete and the reinforcement used in the analysis 
are presented in Table 1.

Figures 25 and 26 show the crack patterns in differ-
ent times in the concrete and reinforced concrete beams, 
respectively.

Fig. 20  Membrane wrinkling: 
a experimental results [25]; b 
numerical results

Fig. 21  Hinged cylindrical roof subjected to the central pinching force: a problem description and meshes used for the numerical analysis; b 
load–deflection curves
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The ability of the model to simulate the structural 
response under cyclic loading conditions was presented on 
the reinforced concrete beam [15, 16] (see Fig. 28a) which 
was experimentally tested by Maekawa [18] et  al. The 

modulus of elasticity and the compressive strength of the 
concrete equalled 29 GPa and 29 MPa, respectively, while 
the reinforcement had the modulus of elasticity of 190 GPa, 
yielded the stress of 350 MPa, ultimate stress of 540 MPa, 

Fig. 22  Cantilever plate subjected to end moment. a Load–deflection curves. b The deformed 48 × 4 mesh under the moment

Fig. 23  Cylindrical shell under compression load over the free edges in time a 10 s; b 21 s and c 40 s

Fig. 24  a Geometry characteristics of reinforced concrete beam; b discretisation of beam



1040 Computational Particle Mechanics (2020) 7:1029–1046

1 3

strain at the onset of hardening of 0.0165, ultimate strain of 
0.1 and the strain at the fracture of 0.019. Figure 27a shows 
the comparison of experimental and numerical results of 

the reinforced concrete beam exposed to cyclic tensile load-
ing where a rather good agreement can be observed, while 
Fig. 27b, c shows the crack pattern obtained with the FDEM 
numerical model for coarse and fine finite element meshes, 
respectively.

Brick masonry with mortar joints and confined masonry 
walls The performance of the FDEM numerical model in 
the analysis of a masonry structure was demonstrated on 
the masonry shear wall exposed to monotonically increas-
ing lateral loading. The experimental testing of the wall was 
conducted by Raijmakers and Vermeltfoort [26].

The wall had a width/height ratio of 990 mm/1000 mm 
and consisted of 18 rows of blocks. The wall was made of 

Table 1  Material characteristics of the concrete and the reinforcement

Concrete Steel

Ec/MPa 29,730 Es/MPa 210 000
Ν 0.2 fy/MPa 420
ft/MPa 3.12 As1/cm2 1.02
fc/MPa 40 As2/cm2 4.52

Stirrups ϕ 8/15 cm

Fig. 25  Concrete beam exposed to missile impact in time: a t = 1.0 ms and b t = 5.0 ms

Fig. 26  Reinforced concrete beam exposed to missile impact in time: a t = 1.0 ms and b t = 5.0 ms

Fig. 27  Reinforced concrete 
beam exposed to tensile cyclic 
load: a geometry and loading 
history; b crack pattern for 
coarse finite element mesh and 
c crack pattern for fine finite 
element mesh
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solid clay bricks with the dimensions of 210 × 98 × 50 mm 
and 10-mm-thick mortar. After applying the pre-compres-
sion stresses in the amount of 1.21 MPa, the wall was sub-
jected to the horizontal load, which was achieved through 
the controlled displacement of the steel beam at the top of 
the wall. The loading rate was 12 × 10−6 m/s. The mechani-
cal characteristics of materials used in the numerical analy-
sis are based on the data taken from the literature [26] and 
shown in Table 2.

Figure 28 shows the behaviour of the wall after collapse. 
This example highlights the ability of a combined FEM/
DEM in simulating the behaviour of the structure after 
reaching the ultimate load which can be important in ana-
lysing the progressive collapse of the structure.

The combination of the material model for the brick 
masonry with the material model for the reinforced concrete 
structures enables the analysis of confined masonry walls 
whose application was demonstrated on the example of a 
two-storey wall exposed to a gradually increasing seismic 
loading until collapse [20]. Geometry and discretisation of 
the confined masonry wall are shown in Fig. 29. Wall thick-
ness equalled 0.25 m.

Material characteristics of the wall are presented in 
Tables 3 and 4. Vertical load of 0.5 MPa was applied to 
the horizontal reinforced confining elements of each storey. 
The wall was exposed to the horizontal ground accelera-
tion recorded on April 15, 1979, in Dubrovnik on rock soil 
during an earthquake with the epicentre in Petrovac (Mon-
tenegro). Figure 30 shows the crack pattern in the confined 
masonry wall exposed to earthquake loading with a pickup 
acceleration of ag = 4.0 m/s2 in time.

Dry-joint masonry structures Due to its discontinuous 
nature, FDEM proved to be rather suitable for the analysis of 
dry-joint masonry structures where each block is observed as 
one discrete element [27–29]. The energy dissipation mecha-
nisms due to dry friction and contact impact, implemented 
within the numerical algorithm for calculating contact 
forces, has yielded rather good results in the simulation of 
tangential friction forces between the blocks and the simula-
tion of rocking motion of the block in comparison with the 
experimental results [27–29].

The following example presents the ability of FDEM to 
reproduce the mechanical behaviour and the failure mecha-
nism of the brick masonry wall subjected to vertical in-plane 
loading. Numerical analysis was performed on single-leaf 
brickwork masonry walls CL1 tested by Bui et al. [30] in 
the laboratory. The arrangement of CL1 test panel is shown 
in Fig. 31a, while the discretisation of the wall used in the 
numerical analysis is shown in Fig. 31b. One part of the 
wall was supported on a fixed base, while the other part 
of the wall was supported on the base allowing vertical 
displacement. The test panel wall was constructed with 
50 mm × 105 mm × 220 mm (height × span × breadth) bricks. 
The unit weight of the brick was 2200 kg/m3, while the angle 
of friction between the faces of bricks, which equalled 38°, 
was determined experimentally. The Young’s modulus and 
the Poisson’s ratio of the masonry block were adopted from 
the experimental analysis and equalled 9700 MPa and 0.2, 
respectively. The wall panel was tested under gravity load 

Table 2  Material characteristics of materials

Unit Interface element

Ex/Ey
MPa

7520
3960

ft
MPa

0.16

fcx/fcy
MPa

10.5
10.5

fs
MPa

0.224

ft/fs
MPa

2.0
2.8

GI
f

N/m
18

GI
f
 / GII

f

N/m
80
500

GII
f

N/m
50

G
fcx

 / G
fcy

N/m
20,000
15,000

μ0 =  μr 0.75

Fig. 28  Collapse mechanism of the masonry wall exposed to lateral in-plane loading at displacement: a δ = 18  mm, b δ = 21  mm and c 
δ = 24 mm
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and vertical deflection of the movable base. The settlement 
of the base was applied incrementally until the failure mech-
anism occurred. The failure mechanism is shown in Fig. 32 
where a rather good agreement can be observed in compari-
son with the experimental results.

In order to demonstrate the performance of FDEM in 
reproducing the failure mechanism due to the coupled 
in-plane and out-of-plane behaviour, three connected 

dry-stone masonry wall with the geometry shown in 
Fig. 33 were exposed to the horizontal monotonically 
increasing base acceleration given by a0x(t)/g = ± 0.02t. 
The width, height and thickness of the block used in the 
numerical analysis were 60 cm, 30 cm and b = 30 cm, 
respectively, while the friction coefficient between the 
blocks was equal to 0.7. The discretisation of the walls is 
shown in Fig. 33b.

Figure 34 shows the failure mechanism of the walls 
for both the positive acceleration and the negative 
acceleration.

Y-FDEM programme package was also used as a basis 
for the implementation of the numerical model of metal 
clamps and bolts, and the seismic loading [29] which ena-
bles the estimation of seismic resistance of strengthened 
dry-stone masonry structures as presented in the example 
of the Prothyron structure within the Diocletian’s Palace in 
Split (see Fig. 35). The structure was exposed to horizontal 
and vertical ground acceleration recorded on April 15, 1979, 
in Dubrovnik on rock soil during an earthquake with the 
epicentre in Petrovac (Montenegro). Material characteris-
tics of stone used in the numerical analysis include the ten-
sile strength of 10 MPa, shear strength of 20 MPa, fracture 
energy in tension of 720 N/m and fracture energy in shear of 
1440 N/m. Bolts were made of steel with the Young’s modu-
lus of elasticity of 181,000 MPa and the tensile strength 

Fig. 29  Geometry and discreti-
sation of confined masonry wall

Table 3  Material characteristics of reinforced concrete elements

Concrete Steel

Ec/MPa 30,500 Es/MPa 2,10,000
ft/MPa 3.8 fy/MPa 500
fc/MPa 38.0 fu/MPa 650
Gf/(N/m) 150

Table 4  Material characteristics of unit and interface elements

Unit Interface element

Ex =  Ey/MPa 1033 ft/MPa 0.16
ν 0.141 fs/MPa 0.224
fcx/MPa 2.7 Gft/(N/m) 12
fcy/MPa 10.33 Gfs/(N/m) 50
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of 414 MPa. The collapse mechanism for the dry stone 
structure with steel bolts and peak ground acceleration of 
ag = 0.45 g over time is shown in Fig. 36.

4  Conclusion

This paper demonstrates the application of FDEM in struc-
tural mechanics. Compared to the experimental results and 

Fig. 30  Crack pattern in con-
fined masonry wall exposed to 
earthquake loading with pickup 
acceleration of ag = 4.0 m/s2 at 
time: a t = 4.85 s; b t = 8.75 s; c 
t = 12.00 s

Fig. 31  Test CL1: a configuration of the test [31] and b discretisation

Fig. 32  Failure mechanism of 
in-plane loading masonry wall: 
a experimental; b numerical 
FDEM
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due to its simplicity based on the explicit presentation of 
the equation of motion, taking into account large rotations, 
large displacements and finite deformations, this method 
has shown to be promising in the analysis of various types 

of structural systems such as dry-joint masonry structures, 
concrete and reinforced concrete structures, masonry 
structures with mortar joints, confined masonry structures, 

Fig. 33  Three connected dry-
stone masonry walls: a geom-
etry and b discretisation

Fig. 34  Failure mechanism of 
dry-stone masonry structure 
exposed to monotonically 
increasing lateral loading in: a 
positive direction; b negative 
direction

Fig. 35  Prothyron structure: a geometry and b discretisation
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cable and truss structures, membrane structures, plate and 
shell structures.

In the follow-up to the recent research, FDEM is to be 
applied for geotechnical analysis, including the stability 
analysis combined with the dynamic loads and with paired 
gravitational and earthquake loads. In addition, the applica-
tion of FDEM in the analysis of the laminar fluid flow and in 
the interaction of fluid with the structures is yet to be tested. 
Special emphasis will be attributed to shock waves caused by 
sudden dynamic loads, such as earthquakes and underwater 
explosions. Other objectives include the extensions of the 
existing algorithms for the analysis of beam, plate and shell 
structures in order to account for the material nonlinearity, 
thus enabling the analysis of the 3D frames released from 
the rotational degrees of freedom.
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