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Abstract
In this study, a reduced-order model for a deformable particle is introduced and implemented in the framework of discrete
elementmethod (DEM)with the application in biological cells such as red blood cell (RBC). In thismodel, a single deformable
particle comprises a clump of rigid constituent spheres whose centroids are interconnected utilizing mathematical elastic
bonds. To preserve the deformability, the bond model is calibrated for the static and dynamic behaviour of an RBC by using
the experimental data from the literature. Good accuracy is observed in reproducing the mechanical response of various
types of RBCs under different static loadings. For the dynamic calibration, the viscoelastic behaviour and the time-dependent
deformation of the RBC are investigated and exhibit a good agreement with the literature. Then, the model is coupled with
the immersed boundary method to evaluate the flow characteristics of a single RBC in blood plasma. The results reveal a
consistent trend in predicting the drag force on the RBC with the previous investigations. This coupled model can be used in
the resolved CFD–DEM simulation of biological flows in microfluidics.
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1 Introduction

Deformable particles are present in many complex multi-
phase flows such as aerosols, fibre flows, and biological
flow. The physics of the particulate flows with suspended
deformable particles is more complicated than the ones with
rigid particles. Rigid particles exhibit no topology change
in interaction with the surrounding flow while deformable
particles undergo severe changes in their shape due to their
elasticity which in turn leads to complex interaction with
the carrier fluid. In the case of blood flow, the biological
cells (e.g. RBC) can be described as deformable particles
suspended in the blood plasma. During the blood transport
process, the RBCs deform and migrate towards the centre of
the blood vessel which leads to the formation of a cell-free
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layer (CFL) and changing the apparent viscosity of blood
[1–5].

Mathematical modelling of the deformable particle in
interaction with the surrounding fluid is a challenging task
because of the level of complexity in their strongly coupled
physics. Thus, modelling the dynamics of biological cells is
still an active area in biomedical engineering research. Sev-
eral continuum and discrete approaches have been developed
for this purpose such as boundary element method (BEM),
smoothed particle hydrodynamics (SPH), dissipative parti-
cle dynamics (DPD), and lattice Boltzmann method (LBM)
[6–18]. Continuum-based approaches utilize fluid dynamics
and elasticity theories to model deformable particles and the
inner fluid as a homogeneous material. On the other hand, in
discrete approaches the membrane structure is represented
by a spring network structure and particles are used to model
the surrounding and inner fluids.

Several mathematical models are available to study the
behaviour of a single RBC as well as RBC aggregates in
blood flow. A finite element model was developed by Dao
et al. [7] to extract the elastic and viscoelastic properties of
an RBC. The effects of various parameters on the deforma-
tion behaviour were studied to derive constitutive equations
for RBC mechanics. Liu et al. [19] constructed an Eulerian–
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Lagrangianmethodwhere the Navier–Stokes equations were
solved on an Eulerian mesh and the deformable particles
were represented in a Lagrangian manner. They incorpo-
rated an immersed finite element method (IFEM) and protein
molecular dynamics to study RBC dynamics and aggrega-
tion. Chee et al. [9] presented a continuum model where an
RBC was represented as a hyperelastic membrane enclos-
ing a deformable viscous capsule for the cytoplasm. Another
continuummodelwas presented byYoon andYou [15]where
a generalized Maxwell model was used to model the viscous
dynamic behaviour of an RBC.

Cimrák et al. [20] also employed a LBM-based immersed
boundary method to represent biological cells in plasma.
Dupin et al. [21] utilized a LBM solver for fluid flow and a
Lagrangian method for the RBC deformation. They incorpo-
rated the bending rigidity and the volume and surface-area
conservation criterion of RBCs. Nakamura et al. [12] pre-
sented RBC as a shell membranemade up of spring networks
based on the energy minimum concept and studied RBC
deformation in a shear flow.

A coarse-grainedmultiscalemodel ofRBCwas developed
by Pivkin andKarniadakis [10] based onDPD.Here, an RBC
membrane constituted of spring network and the internal
and external fluids were represented by colloidal particles.
Fedosov et al. [11] further extended this model to consider
the viscoelasticity of the membrane and the viscosity con-
trast between the internal and external fluids. Závodszky et
al. [16] developed a coupled method which handles the fluid
and solid structures independently. A LBM-algorithm was
utilized for the plasma flow and immersed boundary lay-
ers were used to represent the biological cells. Furthermore,
Kostalos et al. [22] introducedLBM-based immersedmethod
with a nodal projective FEM (npFEM) to handle biological
cells in blood plasma. It had the advantage of being more sta-
ble than spring network-based models. All these models can
provide accurate simulation of RBCs; however, they prove
to be computationally expensive when simulating complex
flows. Model order reduction concept provides a methodol-
ogy to reduce the complexity of the problem and impose a
less computational cost. One of the existing reduced-order
models for biological cells has been introduced by Pan et
al. [23], where a red blood cell was represented by a torus
arrangement of spheres connected by the worm-like chain
(WLC) springs. This model can reduce the computational
cost with a good degree of accuracy but lacked some of the
critical behaviours of RBC such as viscoelasticity [24] and
tank-treading behaviour.

Coupled simulation of fluid and particles has been gain-
ing prominence due to their applicability for investigations
on particle-laden flows such as fluidized beds and dispersion
of pollutants. In coupled simulations, the fluid and particle
phases are handled separately (i.e. continuous and dispersed
phases, respectively) [25] and their interaction is determined

through source terms in the governing equations. One such
approach is resolved CFD–DEM, where the fluid flow is
resolved on a finite volume grid and the particle presence is
introduced utilizing discrete forcing [26]. The coupled nature
of CFD–DEM makes it a feasible approach for developing
reduced-order models for deformable particles. However, to
the authors’ best knowledge, no reduced-order model in this
context is developed so far.

In the present work, a new CFD–DEM-based deformable
particle model is presented, which follows the concept of
model order reduction. In this model, a single RBC consists
of constituent spheres with their centroids connected by the
elastic mathematical bonds [27,28]. The bond mechanics are
controlled by a variety of parameters that are determined by
calibration tests. First, a static calibration of the mechan-
ical behaviour of different red blood cells was performed
by validating the corresponding force–displacement curves
against experimental data from the literature. Second, the
viscoelastic behaviour of RBC was studied and the time-
dependent creep behaviour was investigated as the dynamic
calibration test. The model demonstrates a high degree of
accuracy in reproducing the viscoelastic behaviour of an
RBC. Finally, the suspension behaviour of a single RBC
in blood flow is evaluated by coupling the proposed model
with the fictitious domain method. Here, the drag force on
the red blood cell was analyzed and revealed a consistent
behaviour with the physics. Additionally, a global angular
momentum is introduced in the fluid flow field to represent
the membrane rotation which is an important component
when considering the interaction between membrane and
surrounding fluid. The proposed model can be employed
in modelling blood flow in bio-microfluidic applications for
future design prospects.

2 Mathematical model description

2.1 Resolved CFD–DEM

In the particulate flows, the physics of suspended particles
and the carrier fluid is strongly coupled. The fluid flow can
be described by the incompressible continuity and Navier–
Stokes equations as:

∇ · u = 0 (1)

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇ p + µ∇2u + F (2)

where F is the source term used to incorporate the continu-
ous forcing between the fluid phase and the particles and is
written as

F = λρ(up − u)

�t
(3)
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Fig. 1 a Schematic
representation of the
computational domain in
CFD–DEM: �f is the fluid
domain and �S and �S are the
particle domain and boundary,
respectively. b The sub-domain
�sub with the corresponding grid
resolution for resolved
CFD–DEM

Fig. 2 a Schematic of the
deformable particle model: The
solid black lines represent the
virtual elastic bonds, and the
white dotted line is a constituent
sphere. b Schematic of the bond
with the forces and moments
between two constituent spheres
(right). The green band
represents the virtual bond. The
bond model is redrawn from
[27]. (Color figure online)

λ being the solid volume fraction in the finite volume com-
putational cell. So, the forcing term is active only in the cells
with λ = 1.

And, particle physics is governed by Newton’s laws of
motion. The conservation of linear and angular momentum
reads:

mp
dup
dt

= mpg + fp,f +
∑

Np

fp,p +
∑

Nw

fp,w (4)

Ip
dωp

dt
= r ×

⎛

⎝ fp,f +
∑

Np

fp,p +
∑

Nw

fp,w

⎞

⎠ (5)

where g is the gravitational acceleration, fp,f is the fluid–
particle interaction force, and fp,p and fp,w are the forces due
to particle–particle and particle–wall interactions, respec-
tively. Ip is the second moment of inertia of the particle,
ωp is the angular velocity, and r is a position vector from the
centroid to a point on the particle radius.

In the context of resolved CFD–DEM, these sets of equa-
tions are coupled. On the fluid side, the particle is seen as an
immersed object (larger than the grid size) whose velocity is
used to update the fluid velocity through forcing terms. This
is shown in Fig. 1. Also in the particle conservation equa-
tions, the fp,f , which comes from the stress between fluid
and particle, is obtained by integrating the stress tensor σ

over the �s. Using the divergence theory, the fluid–particle
interaction force reads

f p, f =
∫

�S

[
µ∇2u − ∇ p

]
d�S (6)

For more details on the resolved CFD–DEM approach and
the algorithm, the reader is referred to [26,29–31].

2.2 Deformable particle model

The reduced-order modelling approach considers geometri-
cal as well as mathematical simplification of the problem.
In this study, we reduce the complex deformation of a soft
particle to the mechanical behaviour of a finite number of
rigid spheres interconnected by virtual mathematical bonds.
The connected spheres can represent the granular behaviour
of a larger deformable particle such as biological cells and
flexible fibres [27]. As illustrated in Fig. 2, the deformable
particle can be represented by a combination of overlapping
constituent spheres forming the contour of the particle. These
spheres do not interact with each other but with spheres
from other particles. The centroids of the spheres are con-
nected by means of flexible bonds (Fig. 2). As the spheres
translate and rotate, the bonds also deform and transfer and
damp inter-sphere forces to control the relative motion of the
spheres. Forces and moments of the bonds between each pair
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Table 1 Elastic bond model parameters

Parameter Definition

rb Bond radius

Ab Cross-sectional area of the bond = π r2b
lb Bond length = 2 L rb

L Bond length coefficient

Kb Normal/tangential stiffness

Sb Bending/torsional stiffness

vr Relative linear velocity between two spheres

ωr Relative angular velocity between two spheres

Eb Young’s modulus of the bond

Gb Shear modulus of the bond

Is Moment of inertia of constituent sphere

m Mass of constituent sphere

of constituent spheres are calculated incrementally and read
[28,32]

dFb = Kb vr dt (7)

dMb = Sb ωr dt (8)

Kb = EbAb

lb
, Sb = GbAb

lb
(9)

where dFb and dMb are the increments in the forces and
moments of the bond. They are calculated both as normal
and tangential components. The parameters used in Eqs. 7
and 8 are defined in Table 1.

The damping of the bond forces should account for the dis-
sipation of energy due to the elastic wave propagation within
the bond and the particles [28]. The elastic bonds are mod-
elled as cantilever beams, and thus, under no friction and or
external damping, the beam is free to oscillate about its equi-
librium position. When damping is provided, the oscillations
will decrease and the beam will finally reach its equilibrium
position. Force damping is essential to attain the equilibrium
orientation of the deformable particle under load.

Fb
d = 2β

√
mKb vr (10)

where β is the damping coefficient which determines the rate
of energy dissipation.

By adding the effects of the bond forces to Newton’s
second law of motion, Eq. 4 can be re-written for each con-
stituent sphere as [28]

m
dup
dt

= Fc + Fb + mg + Fc
d + Fb

d + fp,f +
∑

Nw

fp,w

(11)

Fc and Fc
d are the contact forces and the damping of the con-

tact forces. Similarly, Fb and Fb
d are the bond forces and the

damping of the bond forces. It has to be noted themoments of
these forces can also be calculated for each sphere. However,
the angular momentum for the herein proposed deformable
particle model is accounted in a different way which is dis-
cussed later.

2.3 Global angular rotation of deformable particle

The motion of an RBC in simple shear flow is characterized
by three main behaviours: tumbling, swinging and tank-
treading [33–36]. The transition to the different trends is
dependent on the shear rate, viscoelasticity, viscosity con-
trast and the near-wall effects. The transition from tumbling
to a tank-treading motion is observed on increasing the Cap-
illary number [34,35,37,38]. The tank-treading behaviour is
important in the migration of RBCs, platelet margination
and cell-free layer formation [39]. During the tank-treading
motion, it is observed that the RBC will maintain almost a
constant inclination to the flow and the internal fluid follows
a rotational motion comparable to the tank-treading [36,37].
Taking this into account and tracking themotion of a point on
the membrane during the tank-treading motion reveals that
it follows a rotational motion about the centre of mass of the
RBC.

As mentioned earlier Sect. 2.1, the fluid velocity is cor-
rected by the particle velocity to introduce the particle
presence in the flow field. This step is completed for each
constituent sphere and eventually accounts for the axial trans-
lation of the deformable particle. However, this does not hold
true for rotation. In other words, accounting for the angular
velocity of the constituent spheres about their centroids do
not conserve the angularmomentumof thewhole deformable
particle. To compensate for the lack of a deformable particle
rotation, the relative rotation of the constituent spheres about
the centre of mass of the deformable particle is taken into
account in this study.

Accordingly, the modification of the particle velocity in
the finite volume computational cell is performed:

up,i = up + r f v × ωp (12)

whereup,i is the velocity of the constituent sphere as observed
in the i th finite volume cell, up is the velocity of the con-
stituent sphere from the DEM simulations, r f v is the length
vector between the centre of mass of the deformable particle
and the cell-centre of the finite volume cell and ωp is the
rotation velocity of the constituent sphere about the centre of
mass of the deformable particle given by

ωp = r × urel
|r |2 (13)

123



Computational Particle Mechanics (2020) 7:593–601 597

where urel is the relative velocity between the centroid of the
constituent sphere and the centre of mass of the deformable
particle (ucm) and r is the length vector between the cen-
troid of the constituent sphere and the centre of mass of the
deformable particle. Introducing this global angular rota-
tional velocity provides the motion of the points on the
surface of the constituent spheres relative to the centre of
mass of the deformable particle.

3 Results and discussions

3.1 Static calibration of deformable particle model

The flexible bond model has been implemented in the open-
sourceDEMsoftware LIGGGHTS� [40]with application in
flexible fibres [27,28]. In our deformable particle model, we
have adapted this bond model to connect the centroids of the
constituent spheres. The determination of the bond parame-
ters is a key step to accurate prediction of the deformability.
Therefore, for each specific application, experimental data
are required for calibration of the bond parameters. In the
present study, we focus on the bio-microfluidic application.
Thus, the model parameters are calibrated using RBC phys-
ical properties and force-displacement curves.

To this end, we considered a single RBC at an unstressed,
undeformed equilibrium state and placed it in a domain iso-
lated from the external flow. Then, a stretching force ranging
from 0 to 200 pN is applied to the cell. The cell is allowed
to deform until the equilibrium configuration is achieved
for the given load. The calibration is performed for three
resolution of constituent spheres N = 8, 10 and 16. The
force-displacement curves for each N are plotted against the
experimental data in Fig. 3a. The Young’s modulus and the
shear modulus as given in the literature are in the range of
18.9–20.3µN/m and 2.5–6.9µN/m, respectively [11,23,41].
The values of Kb and Sb obtained here are 18.9 µN/m and
6.3 µN/m, respectively. The bond radius (rb) is taken as the
radius of the constituent sphere. Accordingly, the values of
the parameters in Table 1 can be calculated.

The results show that with increasing loads, the axial
diameter increases and the radial diameter decreases. The
values obtained from the simulation matches the experimen-
tal data well, and for all resolutions, the cell diameters lie
within the error bar of the experiment. Small discrepancies
can be observed due to the effect of the angle of observation.
Thus, the force–displacement curve represents only the in-
plane deformation of RBC. Additionally, by increasing the
resolution of the model no significant change in the mechan-
ical behaviour is observed, and an optimal resolution of 10
constituent spheres provides sufficient accuracy for the rep-
resentation of the cell contour as well as the cell mechanics.

(a)

(b)

Fig. 3 Force–displacement curves from single RBC: a the healthyRBC
with different particle resolutions. b The RBCs at different stages of
malaria infection. In both plots, the lines represent the simulation results
and the dots represent the experimental data from [41]

Therefore, for the remainder of this study, we use N = 10 to
represent an RBC.

In order to test the performance of the model for different
cell types, the RBC behaviour at different stages of malaria
infection was also simulated and compared with the experi-
ment. As the malaria infection period progresses, the shape
and mechanical behaviour of RBC change as they become
stiffer which relates to lower mechanical responses. Our
model is capable of mimicking this mechanical behaviour of
malaria-infected RBC under different conditions with great
accuracy as shown in Fig. 3b.

Although the model can address the static and dynamic
mechanical behaviour of RBC with good accuracy, certain
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characteristics have not been considered here. The surface
area and volume of the RBC are shown to remain almost con-
stant [42], and they form additional force constraints on the
RBC [11,16]. Additionally, the RBC is filled with cytoplasm
which is incompressible in nature which is not considered in
the current state of our model.

3.2 Dynamic calibration of the deformable particle

The red blood cells exhibit a time-dependent deformation
at given loads according to the micropipette aspiration and
optical tweezer tests [7,43]. To provide accurate mechani-
cal behaviour of the RBC by the proposed model, it is also
important to incorporate the viscoelastic behaviour of the
membrane. In the model presented in this study, RBC vis-
coelasticity is incorporated employing damping forces on
the bonds. By varying the damping coefficient β, the time-
dependent deformation is controlled.

The viscoelastic behaviour of a red blood cell can be
described using the normalized creep compliance, and it pro-
vides a measure of the time-dependent deformation of red
blood cells.

NCC = J∞ − Jt
J∞ − J0

(14)

where Jt is the strain per unit stress (i.e. Jt = εt/σ ) at a
given moment in time (0 < t < ∞). The numerical setup
for the dynamic test is similar to that for static calibration
tests. A constant load of 7 pN was applied on the opposite
sides of the RBC, and it was allowed to deform and attain its
equilibrium state under different damping coefficients (β).
The normalized creep compliance is plotted against time for
the experiments and the simulations as in Fig. 4a. It highlights
that the calibrated model with β = 1500 shows a better
agreement with experimental data in most of the times. This
damping coefficient is then used for the rest of this study.

A similar test was performed with various forces, and the
corresponding creeping behaviours are shown in Fig. 4b.
With increasing the force, the rate of deformation is also
affected showing a faster transition to the final equilibrium
state. The presentedmodel can reproduce the creep behaviour
which was well documented in previous studies.

3.3 Single RBC in amicrochannel

After proper calibration of themodel parameters, the deform-
able particle model can be coupled with fluid flow solver
for more complex problems such as suspension of RBC
in blood plasma. To this end, a modified version of the
solver cfdemSolverIB (i.e. the resolved CFD–DEM tech-
nique [26]) is adapted from the open-source libraries of the
CFDEMcoupling® software [40]. To study a single RBC

(a)

(b)

Fig. 4 Normalized creep compliance of the red blood cell as a function
of time: a simulation (solid lines) and experiment [43,44] (dashed lines
with markers) for the constant load of 7 pN and b simulation results for
β = 1500 for different loads

behaviour in a microchannel, the drag force acting on RBC
during the suspension is analyzed. Gironella Torrent and
Ritort [45] have recently performed an experimental study to
explore the viscoelastic properties of an RBC in fluid flow.
They used a plasma buffer solution (i.e. Newtonian fluid)
as the surrounding fluid. In one experiment, they utilized a
microbead to entrap the RBC in the channel flow and mea-
sure the forces acting on it using optical tweezers. The drag
force on the RBC was measured for different flow velocities
ranging from 650 to 1200 µm/s.

In the present study, we consider a similar configuration
by using a rigid spherical particle attached to a single RBC
in the flow stream as shown in Fig. 5. The computational
domain (Lx = 50µm, Ly = 50µm, Lz = 25µm) was
discretized by a structured grid �x . Periodic inlet and outlet
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Fig. 5 Schematic of the simulations and experiment setup [45] top
view (a) and side view (b). The blue sphere is the microbead, and the
red particle is the RBC. (Color figure online)

conditions were applied along the x-direction, and periodic
conditions were applied along the z-direction. The no-slip
wall boundary was applied on walls along the y-direction.
According to the grid dependency study (not presented here),
the ratio D/�x = 4 was chosen for the simulation (where D
is the size of each constituent sphere in the RBCmodel). This
ratio provides a sufficiently accurate representation of each
constituent sphere in theCFDdomain (i.e. void fraction). The
simulation for each case was performed for 106 simulation
time steps corresponding to 1 s. To calculate the drag force
in the simulation, (i) the effect of the rigid particle has been
removed similarly to the experiment [45], and (ii) the force on
theRBC is computed after it reached the equilibriumposition
and is time-averaged for all simulation time steps.

The experimental and simulation results are compared in
Figure 6 where the drag coefficient is plotted as CD(FD/u).
The drag coefficient is shown to be within the range obtained
from experiment [45] for the given velocity range. The dis-
crepancy between the simulation and experiment arises from
the reduced complexity ofRBCshape in the presentedmodel.
In the presented model, the RBC thickness remains almost
constant due to the fixed diameter of the constituent spheres.
However, in reality, the thickness of the RBC also changes
with the shear rate. While the model can capture the change
in the axial and transverse diameters of RBC with good
accuracy, its thickness does not vary. Nevertheless, the dis-

Fig. 6 Drag coefficient obtained from simulation and experiment [45]
along with the respective error bars

crepancy between simulation and experiment varies from
about 4% at higher velocities to about 9% at lower velocities.
In fact, in many capillary-driven microfluidic applications,
the flow velocity is in the range of 1000–10,000 µm/s
[46], where our model exhibits lower discrepancies with the
experiment. Thus, this model can be employed to study the
behaviour of RBCs (eventually whole blood) in microfluidic
applications.

4 Conclusion

In this work, a reduced-order model for deformable particles
is proposedwith a particular focus on red blood cell dynamics
in the bio-microfluidic systems. Themodel is first introduced
in the framework of DEM in which a clump of rigid spheres
interconnected utilizing mathematical bonds, form a bigger
deformable particle. The deformability is preserved by such
elastic bonds. After calibrating the bond parameters for a
single RBC, the static and dynamic response of the RBC to
different forces is analyzed and showed a good agreement
with experimental data. The model is then coupled with the
flow solver (i.e. the immersed boundary method of resolved
CFD–DEM) to investigate the interaction of RBC with the
surrounding fluid. The simulation results highlight the good
accuracy of this reduced-ordermodel to predict the drag force
on the RBC in a plasma buffer solution. However, there are
some modelling aspects to be improved in our future stud-
ies, such as accounting for the incompressibility of internal
fluid in RBCwhich causes the volume conservation. Further-
more, the present model will be employed for the simulation
of blood flow in realistic conditions wheremultiple RBCs are
suspended and interact with other biological cells. Here, the
prediction of blood flow characteristics in micro-capillaries
such as cell-free layer formation and change in apparent vis-
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cosity will be investigated. Also, the proposed model can be
used for the future development of bio-microfluidic devices.
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