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Abstract
A three-dimensional coupled thermomechanical model is proposed which can simulate crack initiation, propagation and 
coalescence, as well as the distribution of stress and temperature during thermal cracking. The model consists of two parts: 
The temperature distribution of the system is calculated according to the heat conduction equation, the thermal stress caused 
by temperature is applied to the system equation and a mechanical calculation considering cracking is performed. Three 
examples are given to verify the model regarding the problems of heat conduction, thermomechanical coupling and thermal 
cracking. This model has the potential to be applied to geothermal or oil exploitation and nuclear waste disposal.

Keywords Finite–discrete element method (FDEM) · FDEM-TM3D · Thermomechanical coupling · Thermal stress · 
Thermal cracking

1 Introduction

The thermal cracking of rock is a very common phenomenon 
that occurs in both nature and engineering activities. Ther-
mal cracking increases the fracture length, density and con-
nectivity within a rock, which greatly improves its transport 
characteristics. In nuclear waste storage, the decay of nuclear 
waste produces heat and significantly increases the tempera-
ture of the surrounding rock. This temperature change results 
in the thermal cracking of rock, leading to radionuclide dif-
fusion and groundwater pollution eventually. In oil devel-
opment, thermal cracking increases the permeability of the 
reservoir and raises oil production. In the geothermal devel-
opment of hot dry rock, rock contraction occurs when cold 
water is injected into the reservoir and influences the flow 

rate, outlet water temperature and heat recovery efficiency 
of the enhanced geothermal system (EGS).

In the past, extensive laboratory experiments have been 
conducted to study the thermomechanical behavior or 
thermal cracking of brittle material [1–7]. However, large 
expense and limitation in simple cases of such experiments 
led to an increased interest in using numerical methods to 
study thermal cracking [8–11]. For example, Fu et al. [12] 
and Tang et al. [13, 14] proposed a thermomechanical cou-
pled model in a realistic failure process analysis system 
(RFPA) for simulating the thermal cracking of brittle mate-
rial [15, 16]. Jiao et al. [17] proposed a thermomechani-
cal coupled model in discontinuous deformation analysis 
method for simulating rock fracturing induced by thermal 
stress. Wanne and Young [18], Xia [19] and Andre et al. [20] 
simulated the thermal cracking of rock based on the bonded 
particle model (BPM). Nechnech et al. [21] presented an 
elastoplastic damage model for the thermomechanical analy-
sis of concrete. Sun and Liew [22] studied the thermome-
chanical coupling fracture behavior of materials based on the 
cohesive segment model. Tenchev and Purnell [23] extended 
a damage constitutive model to account for the effect of high 
temperature on concrete.

The aforementioned numerical methods can be clas-
sified into two categories: methods based on continu-
ous mechanics and approaches based on discontinu-
ous mechanics. For the methods based on continuous 
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mechanics, crack initiation, propagation and coalescence 
are difficult to handle, or the contact may be not explic-
itly considered. For the methods based on discontinuous 
mechanics, such as discrete element method, it is difficult 
to simulate the fracture of the block itself. Although it 
can simulate the fracture of the block through the Voro-
noi grain-based model [24], contact detection and contact 
force calculation are required for the adjacent Voronoi ele-
ments, which take a long time and cause huge calculation 
amount. For PFC—another method based on discontinuous 
mechanics, pores exist in the model despite the arrange-
ment of spheres, which leads to nonintuitive characteriza-
tion of cracks. The stress and strain in PFC are obtained 
indirectly by a measurement circle that is different from 
that in continuous mechanics. The values of the stress and 
strain in PFC are related to the radius of the measurement 
circle, and the physical meanings of stress and strain are 
not adequately clear. In addition, the microscopic param-
eters of PFC are difficult to calibrate. To overcome the 
drawbacks of the above methods, we attempt to construct 
a three-dimensional thermomechanical coupling model in 
the combined finite–discrete element method (FDEM) to 
simulate the thermal cracking of rock.

The FDEM [25–27] is very suitable for simulating the 
fracture and fragmentation of solids [28–40] with the fol-
lowing outstanding advantages: (1) the advantages of the 
discrete element method dealing with contact are absorbed, 
but the concepts of stress and strain in the continuum are 
also retained; (2) the initial modeling has no voids, and the 
crack surface consists of a series of triangular faces, which 
make the characterization of discontinuity (such as a crack 
or joint) very intuitive; (3) the contact detection and contact 
force calculation can be standardized because they are con-
verted into the contact detection and contact force calcula-
tion between tetrahedral elements; (4) the input parameters 
of the FDEM are easier to determine than that of PFC; for 
example, the elastic modulus and Poisson’s ratio obtained 
from experiments can be directly used in the FDEM.

Therefore, if the thermomechanical coupling model can 
be constructed directly in this work, the defects of the exist-
ing numerical methods in simulating thermal cracking can 
be avoided, and the advantages of the FDEM for simulat-
ing cracking can be fully absorbed. However, the FDEM 
was only able to perform a purely mechanical calculation 
initially. Later, Yan et al. [41–46] developed several fully 
coupled hydromechanical models (FDEM-flow2D/3D) for 
simulating rock fracturing driven by fluid. Lei et al. [47] 
proposed a hydraulic solver to simulate fluid-driven cracks 
in FDEM. Ha et al. [48] modeled thermal–mechanical well-
bore instability in shale formations using 2D FDEM, but 
the temperature field of the rock is only estimated by the 
analytical formula. Joulin et al. [49] presented a model based 
on FDEM for modeling the contact heat transfer between 

particles without considering thermal stress and thermal 
cracking.

To overcome the shortcomings of the above researches, 
we directly construct a three-dimensional thermomechani-
cal coupling model (namely, FDEM-TM3D) in 3D FDEM, 
which considers thermal-induced deformation, stress, crack-
ing and the evolution of the temperature field.

The paper is organized as follows: The fundamentals of 
the 3D FDEM are briefly introduced in Sect. 2. In Sect. 3, 
the three-dimensional heat conduction model, thermome-
chanical coupling model and the calculation procedure for 
the FDEM-TM3D model are presented in detail. In Sect. 4, 
two examples are given to verify the FDEM-TM3D model 
in terms of dealing with the problems of heat conduction 
and thermomechanical coupling. Furthermore, an example 
of thermal cracking is also provided in Sect. 4.

2  Fundamentals of three‑dimensional 
combined finite–discrete element method

In 3D FDEM, the continuum is discretized into a finite ele-
ment mesh (tetrahedral elements) and the six-node joint ele-
ments with zero initial thickness are inserted into the adja-
cent tetrahedral elements as shown in Fig. 1. Crack initiation, 
propagation and coalescence in the continuum can be simu-
lated by the breaking of joint elements. The deformation of 
the continuum is represented by the constant strain tetrahedral 
element and the joint element with the bonding stress. Pro-
cessing the contact between tetrahedral elements in FDEM is 
similar to the discrete element method (DEM), and the stress 
in the tetrahedral element is obtained using the finite element 
method (FEM). Although the meshing in FDEM is not nec-
essarily consistent with reality, it provides convenience for 
cracking simulation without introducing the complex fracture 
mechanics theory to determine the direction and length of 
crack propagation. During the process of crack propagation, 
remeshing like the finite element method is unnecessary. Since 

Tetrahedral 
element

Tetrahedral 
element

Joint 
element

Fig. 1  Connection between the tetrahedral elements and joint ele-
ments
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the explicit method is used, there is no need to assemble an 
overall stiffness matrix and crack generation will not cause ill-
conditioned solutions. In addition, for the internally adjacent 
tetrahedral elements connected by the unbroken joint elements, 
the contact detection and contact force calculation are avoided 
and the computational cost can be greatly reduced compared 
with the discrete element method. It should be noted that crack 
propagation has a certain degree of mesh dependence since 
cracks extend along the boundaries of the tetrahedral elements. 
However, as the mesh density increases, this mesh dependency 
gradually decreases [50, 51].

2.1  Governing equation of FDEM

The governing equation of the FDEM is as follows [27] 

where � is the mass diagonal matrix and � is the damp-
ing diagonal matrix, which is used to consume the kinetic 
energy of the system since the quasi-static problems are 
solved using the dynamic relaxation method; � is the nodal 
displacement vector; � (�) represents the total nodal force 
vector, which includes the nodal force vector �c caused by 
contact force (Sect. 2.2), the nodal force vector �d caused 
by tetrahedral element deformation (Sect. 2.3), the nodal 
force vector �j caused by bonding stress of the joint ele-
ment (Sect. 2.4), and the nodal force vector �e caused by 
the external load.

2.2  Contact force

Before the contact force calculation is completed, potential 
contact pairs are identified by the contact detection algorithm. 
In this work, the NBS algorithm [52] is used to find the poten-
tial contact pairs. The detection time of this algorithm is linear 
with the number of elements for the system having a similar 
element size. Later, Munjiza invented the MR contact detec-
tion algorithm [53], which has a high efficiency even for a 
system with a different element size. The detection time of 
the algorithm is also linear with the number of elements. After 
finding the contact pairs, the contact force can be calculated by 
a penalty function method [54]. The contact force in this work 
includes a normal contact force and tangential contact force.

As shown in Fig. 2, the contact pair contains two tetrahedral 
elements in contact. One of the tetrahedral elements is denoted 
as the contactor �c , and the other is the target �t [27]. The nor-
mal contact force between the contact pairs is as follows [27]:

where p is the normal penalty, Pt is a point of the target �t in 
the overlapping zone V = �t ∩ �c , �t(Pt) is the potential of 

(1)𝐌�̈� + 𝐂�̇� = 𝐟 (𝐱),

(2)f = ∫
V=�t∩�c

p[�����c(Pc) − �����t(Pt)]dV .

the point Pt in the target �t , and �c(Pc) is the potential of the 
point Pc in the contactor �c.

According to the Gaussian formula, Eq. (2) can be rewrit-
ten as an integration over the outer surface of the overlap-
ping zone [27] 

where n is the outer normal unit vector of the surface of the 
overlapping zone V .

For contact forces between blocks with complex shapes, 
these blocks are discretized into tetrahedral elements as 
follows:

Thus, the total normal contact force between the blocks 
can be translated into the sum of the normal contact forces 
between a series of tetrahedral elements by using the fol-
lowing formula [27]:

After obtaining the normal contact force f  and its acting 
point, the tangential contact force is calculated according to 
the classical Coulomb friction:

where f t
t
 is the test value at the current time step, f t−Δt

t
 is 

the tangential contact force at the previous time step, pt is 
the tangential penalty and Δ�s is the tangential relative dis-
placement increment at the current time step, SB is the area 
of the contact surface, which can be calculated according 
to Ref. [55].

If the test value ||f tt|| ≤ u|f | ( u is friction coefficient) is 
calculated by Eq. (4), then

(3)
f = p ∫

S�t∩�c

n(�c(Pc) − �t(Pt))dS,

(4)
�c = �c1 ∪ �c2 ⋯ ∪ �ci ⋯ ∪ �cn

�t = �t1
∪ �t2

⋯ ∪ �tj
⋯ ∪ �tm

.

(5)f =

n∑
i=1

m∑
j=1

p ∫
S�ci ∩�tj

n(�ci
− �tj

)dS.

(6)f t
t
= f t−Δt

t
− ptΔ�sSB,

Fig. 2  Contact force calculation in 3D FDEM
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If the test value ||f tt|| > u|f | is calculated by Eq. (4), then

According to Eqs. (5) and (6), the tangential contact force 
is obtained.

2.3  Stress calculation of the tetrahedral element

The stress–strain relationship of the tetrahedral element satis-
fies [27]: 

where � is the stress tensor, � is the deformation gradi-
ent, E is the elastic modulus, v is Poisson’s ratio, �d is the 
shape-changing part of Green–St. Venant strain tensor, �s 
is volume-changing part of Green–St. Venant strain tensor, 
� is the damping coefficient, and � is the strain rate tensor. 
The values of � , �d , �s and � can be calculated according to 
the initial and current coordinates, and the initial and current 
velocities of the four nodes of a tetrahedral element.

Since the tetrahedral element in this work is constant strain 
element, the equivalent nodal force of each surface caused by 
the deformation of the tetrahedral elements can be calculated 
by:

where l is the local number of the node in the tetrahedral ele-
ment ( l = 1, 2, 3, 4), �(l) is the outward normal unit vector of 
the triangular face opposite to node l of the tetrahedral ele-
ment and S(l) is area of the triangular face opposite to node l 
of the tetrahedral element, as shown in Fig. 3.

(7)f t = f t
t
.

(8)f t =
f t
t

||f tt||
u|f |.

(9)� =
1

(|det�|)2∕3
[

E

1 + v
�d +

E

1 − 2v
�s + 2��

]
,

(10)� (l) =
1

3
��(l)S(l) =

1

3

⎡⎢⎢⎣

�xx �xy �xz
�yx �yy �yz
�zx �zy �zz

⎤⎥⎥⎦

⎡⎢⎢⎣

n(l)
x

n(l)
y

n(l)
z

⎤⎥⎥⎦
S(l),

2.4  Constitutive behavior of the joint element

Initially, the FDEM method can only be used to simulate 
two-dimensional cracking problems. Due to the contribution 
of Lei [56], who incorporated the 3D fracture model in Y 
code, FDEM can be used to simulate the three-dimensional 
cracking problems. Here, in the joint element, only a single 
integration point is used to calculate the cohesive consti-
tutive law to improve the calculation efficiency. For more 
information on using more integration points to improve 
calculation accuracy of cohesive constitutive law, Ref. [56] 
is recommended.

As shown in Fig. 4, two triangular faces of the tetrahedral 
elements are connected by a joint element. Initially, the three 
vertices of the two triangular faces coincide with each other, 
which means P1 and P′

1
 , P2 and P′

2
 , P3 and P′

3
 all coincide 

with each other. According to the relative displacements of 
the three vertices �1 , �2 and �3 , the average normal open-
ing and tangential slipping amount of the joint element are 
obtained by:

where � and � are the normal unit vector and tangential unit 
vector of the middle section, which consist of the three mid-
points of the edges P1P

′
1
 , P2P

′
2
 and P3P

′
3
.

The normal opening amount and tangential slipping 
amount of the joint element determine the normal and tan-
gential bonding stress of the joint element. The relationship 
between the opening displacement and the bonding stress is 
shown in Fig. 5.

As shown in Fig. 5a, when the normal opening amount 
o of the two triangular surfaces connected by the joint ele-
ment reaches the critical value op (o < op, joint element is 

(11)
o =

(�1 + �2 + �3) ⋅ �

3

s =
(�1 + �2 + �3) ⋅ �

3
,

Fig. 3  The number of nodes, triangular faces and their normal vectors 
of tetrahedral element Fig. 4  The opening and slipping amount of a joint element
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in elastic state), the normal bonding stress of the joint ele-
ment is exactly equal to the tensile strength ft. If the normal 
opening amount o continues to increase, the normal bonding 
stress σ gradually reduces until the normal opening amount 
o reaches the maximum value or. At this time, the normal 
bonding stress σ is zero, i.e., the joint element breaks, and a 
Mode I crack is generated.

As shown in Fig. 5b, when the tangential slip s of the two 
triangular surfaces connected by the joint element reaches 
the critical value sp (s < sp, joint element is in elastic state), 
the tangential bonding stress of the joint element is exactly 
equal to the shear strength fs. If the tangential slip amount 
s continues to increase (joint element is in yield state), the 
tangential bonding stress decreases gradually until the tan-
gential slip amount s reaches the maximum value sr. At this 
moment, the tangential bonding stress is zero, i.e., the joint 
element breaks, and a Mode II crack is generated. The shear 
strength fs is determined according to the Mohr–Coulomb 
criterion, which is given by:

where c is the cohesion of the joint element, � is the normal 
bonding stress of the joint element, where a negative sign 
is in front of it because the provisions of the compressive 
stress for � are negative, and � is the internal friction angle. 
Although the residual shear strength does not exist in the 
joint element, it has been considered in the tangential contact 
force between the two tetrahedral elements connected by the 
joint element, which is shown in Sect. 2.2.

Additionally, in Mode I–II, the two surfaces connected 
by the joint element are both in the open and slip states, 
but the normal opening and tangential slipping amounts 
are both smaller than or and sr.  However,  if (
o−op

or−op

)2

+
(

s−sp

sr−sp

)2

< 1&&(o > op&&s > sp) , the joint ele-

(12)fs = c − � tan�,

ment is in yielding state at this point, located in the yellow 
zone in Fig. 5c; if 

(
o−op

or−op

)2

+
(

s−sp

sr−sp

)2 ≥ 1 , when (o,s) is 
located in magenta zone of Fig. 5c, the joint element is 
broken and a Mode I–II crack is generated and the tensile-
shear mixed failure occurs. It should be noted that the joint 
element with (o, s) at the left zone (o < op, sp < s < sr) is 
under shear yielding state (Mode I); the joint element with 
(o, s) at the bottom zone (s < sp, op < o < or) is tensile yield 
(Mode II).

The above discussion demonstrates that if the joint ele-
ment yields, there is still a bonding stress acted on the two 
triangular faces, which are connected by the joint element. 
If the joint element breaks, no bonding stress acts on the 
two triangular faces connected by the joint element and a 
crack is generated.

2.5  Time integration

The contact force, action force caused by the deformation 
of tetrahedral element, bonding force of the joint element 
in Sects. 2.2–2.4, and external load are assigned to the 
element nodes to obtain the total nodal force vector. Then, 
according to Eq. (1) and the central difference integral 
strategy, the nodal velocity and coordinate can be updated 
by:

where F(t)

i
 is the total nodal force, Δt is the time step size and 

mn is the nodal mass that is equal to one quarter of the mass 
of the tetrahedral element.

(13)
v
(t+Δt)

i
= v

(t)

i
+
∑

F
(t)

i

Δt

mn

x
(t+Δt)

i
= x

(t)

i
+ v

(t)

i
Δt,

Fig. 5  The constitutive model of the joint element [51, 57]: a the 
relationship between the normal bonding stress and normal opening 
amount; b the relationship between the tangential bonding stress and 
tangential slipping amount of the joint element; and c the relationship 
between the failure type and opening displacement (where GfI and 

GfII are the energy release rates at Mode I and Mode II, o
p
 is the criti-

cal normal opening value and s
p
 is critical tangential slip value, p

n
 

and p
s
 are the normal and tangential penalty parameters of the joint 

element, respectively). (Color figure online)
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3  FDEM‑TM3D model for thermal cracking

3.1  The basic concepts and assumptions 
of the thermomechanical coupling model

Rock expansion or shrinkage occurs when the temperature 
of the rock mass increases or decreases. If this shrinkage or 
expansion deformation is restrained, the thermal stress is 
produced in the rock, which means the temperature change 
makes the change of stress field. In turn, some mechanical 
energy may be transformed into heat when the external force 
acts on rock. However, since the loading and unloading rates 
for the quasi-static problem in rock mechanics are usually 
very slow, the heat produced has a very limited influence 
on the temperature field of the rock. Therefore, for the 3D 
thermomechanical coupling model used in this paper, the 
effects of the stress field on the temperature field have been 
neglected, while only the effect of the temperature field on 
the stress field is considered.

The entire thermomechanical coupling calculation is 
divided into two parts: (1) during the thermal cracking, the 
evolution of the temperature field is calculated, and (2) the 
temperature stress applied to the FDEM model is calculated 
and the mechanical calculation considering fracturing is 
performed. According to the two parts, the model can be 
applied to simulate the thermal cracking of the rock.

3.2  Heat conduction model

According to Fourier’s law, the heat flow along the i-direc-
tion can be expressed as:

where kij is the thermal conductivity and T is the temperature.
For any given mass M, the temperature change is given 

by:

where Qtotal is the net heat flow into the mass M per unit time 
and Cp is the specific heat.

A heat conduction model based on the unique connection 
between tetrahedral elements and joint elements is built as 
shown in Fig. 6. The temperature field of the continuum is 
represented by the temperature of the nodes (such as nodes 
1–7 in Fig. 6). Here, the calculation of the temperature field 
in the continuum is presented based on the topological con-
nection in Fig. 6.

Taking Fig. 6 as an example, eight tetrahedral elements 
(T1236, T1346, T1456, T1526, T1237, T1347, T1457 and 

(14)qi = −kij
�T

�xj
,

(15)
�T

�t
=

Qtotal

CpM
,

T1527) connect to node 1. Since the temperature of nodes 
2, 3, 4, 5, 6 and 7 may be different from that of node 1, 
heat conduction may occur in these tetrahedral elements. 
We take the tetrahedral element T1236 as an example. If 
the temperature field in a tetrahedral element obeys a lin-
ear distribution, the temperature gradient in the tetrahedral 
element is constant and thus can be expressed as [58]:

According to Gaussian divergence theorem, Eq. (16) 
can be written as [58]:

where V  is the volume of the tetrahedral element, n(l)
i

 is the 
outward normal unit vector of the triangular face opposite 
to node l of the tetrahedral element and S(l) is the area of the 
triangular face opposite to node l.

Substituting Eqs. (17) into (14), the heat flow along the 
x, y and z directions is obtained.

Thus, the heat flow QT1236 into node 1 from the tetra-
hedral element T1236 per unit time can be calculated by:

Similarly, the heat flow into node 1 from the other tet-
rahedral elements that directly connect to node 1 can also 

(16)
�T

�xi
=

1

V ∫
A

�T

�xi
dV .

(17)
�T

�xi
=

1

V ∫
s

TnidS = −
1

3V

4∑
l=1

Tln
(l)

i
S(l),

(18)QT1236 = −
qin

(1)

i
S(1)

3
.

5

2

7

1

6

3

4

Fig. 6  Heat conduction calculation in FDEM-TM3D (The figure is 
only used to illustrate the heat conduction model. The actual calcula-
tion does not require that the tetrahedral elements are organized in the 
form of Fig. 6, and the shape and number of tetrahedral elements that 
connect to the same node allow for change)
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be obtained. Thus, the total heat flow into node 1 per unit 
time can be expressed as:

After solving Eq. (15) with explicit finite difference method, 
the temperature of node 1 at the next time step is given by:

Similarly, the temperatures of other nodes at the next time 
step can also be obtained. Thus, the evolution of the tempera-
ture field in the solution domain can be obtained.

3.3  Convection boundary condition

As shown in Fig. 7, the top boundary is a convective boundary. 
The temperature of the rock at the top boundary is Tr and the 
environmental temperature is Te . The area of the top boundary 
is A , and the convective heat transfer coefficient between the 
rock and environment is h . The heat from the environment into 
the rock per unit time is given by:

Thus, the rock temperature at the convective boundary is 
finally updated by:

Since the explicit algorithm is adopted in the heat conduc-
tion calculation, the time step size needs to be smaller than the 
critical time step size to ensure the stability of the numerical 
calculation. The critical time step size is given by [58]:

where Lc is the characteristic length ( Lc = VT∕ST , VT is the 
volume of a tetrahedral element and ST is the surface area of 
the tetrahedral element, h is convection heat transfer coef-
ficient, � is the thermal diffusion coefficient (if kx = ky = kz , 
� = k∕�Cp ), and m is a constant, which is larger than unity.

3.4  Thermal coupling: thermal‑induced strain 
and stress

As already mentioned, changes in the temperature field 
will cause the rock to expand or contract. If the tempera-
ture change is ΔT  , the deformation due to the temperature 
change is given by:

(19)
Q

total
=Q

T1236
+ Q

T1346
+ Q

T1456
+ Q

T1526

+ Q
T1237

+ Q
T1347

+ Q
T1457

+ Q
T1527

.

(20)Tt+Δt
1

= Tt
1
+

Qtotal

CpM
Δt.

(21)Qe = h(Te − Tr)A.

(22)Tt+Δt
1

= Tt
1
+

Qtotal + Qe

CpM
Δt.

(23)Δtc =
1

m

[
�

L2
c

+
h

�CpLc

]−1
,

According to the linear elastic constitutive equation, the 
stress caused by temperature change can be obtained by:

where �ij is Kronecker delta ( �ij = 1 for i = j and 0 for i ≠ j), 
E is the elastic modulus, v is Poisson’s ratio and α is the 
thermal expansion coefficient.

Then, the thermal stress is applied to the tetrahedral ele-
ment as the volume load. The equivalent nodal force of the 
thermal stress is given by:

where l is the local number of the node in the tetrahedral 
element (l = 1,2,3,4), n(l)

j
 is the outward normal unit vector 

of the triangular face opposite to node l of the tetrahedral 
element and S(l) is the area of the triangular face opposite to 
node l.

It should be noted that the thermal stress obtained by 
Eq. (25) does not necessarily exist in the solid but only in a 
load that drives the solid deformation. For example, in the 
case of an isotropic homogeneous solid that is uniformly 
heated and the boundary is unconstrained, there will be no 
thermal stress in the solid.

3.5  The calculation procedure

According to Sects. 3.1 and 3.2, the calculation procedure 
of the 3D thermomechanical coupling model is as follows: 
Firstly, the temperature field distribution of the problem 
domain is obtained by heat conduction calculation; then, the 
thermal stress in all tetrahedral elements is obtained accord-
ing to the change of temperature field; finally, the thermal 
stress is applied to tetrahedral elements and the mechanical 
calculation is performed. Thus, one time step in thermo-
mechanical coupling analysis is completed. The calculation 
procedure is shown in Fig. 8.

(24)Δ�xx = Δ�yy = Δ�zz = �ΔT .

(25)Δ�ij = −�ij
E

1 − 2v
�ΔT ,

(26)� (l) = −
1

3
�ij

E

1 − 2v
�ΔTn

(l)

j
S(l),

Rock

Te

Tr

A

Fig. 7  Convection boundary diagram
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Heat conduction

Update nodal velocity and coordinates
according to Newton’s second law

Nodal force induced by temperature 
changes

Nodal force caused by deformation of 
tetrahedral element

Contact detection and nodal force 
caused by contact force

Move to the next time step

Nodal force caused by joint element 
and determining whether a joint 

element break

Fig. 8  Calculation procedure in FDEM-TM3D model
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Fig. 9  Comparison between numerical and analytical solutions of the 
temperature distribution in the strip at different times

Fig. 10  Temperature distribution in the strip at different times

Fig. 11  Model mesh
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4  Example

4.1  Heat conduction

For a long strip with an initial temperature Ti = 0 °C, a sud-
den, constant, uniform surface heat flux is applied on the 
left boundary of the strip. The temperature of the strip at the 
left boundary is Ta = 200 °C. The calculation parameters are 
as follows: the thermal conductivity of the strip k = 4.2 W/
(m °C), density � = 2500 kg/m3, specific heat Cp = 880 J/
(kg °C), and heat transfer coefficient h = 1.0 W/(m2 °C).

This is a transient heat conduction problem with an ana-
lytical solution that is given [59] 

where x is the distance from the left boundary, t is time, erfc 
is the complementary error function and � is the thermal 
diffusion rate 

(
� =

k

�Cp

)
.

Using the thermomechanical coupling model in this 
paper, we solve this problem. The mesh size used for the 
calculation is 0.4 m with 541 tetrahedral elements and 1250 
joint elements. The time step size is 10 s. The temperature 
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Fig. 12  Temperature distribution in the cylinder at the thermally sta-
ble state
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Fig. 13  Stress distribution in the cylinder at the thermally stable state

Fig. 14  Arrangement of monitoring points on the inner and outer 
boundaries of the disc

Table 1  Parameters for three examples

Parameters Value

Rock
 Bulk density, ρ (kg/m3) 2300
 Young’s modulus, E (GPa) 20
 Poisson’s ratio, v 0.2

Joint element
 Tensile strength, ft (MPa) 10
 Internal cohesion, c (MPa) 20
 Friction angle of intact material, ϕ (°) 30
 Friction angle of fractures, ϕ (°) 30
 Mode I fracture energy release rate, GI (J/m2) 2.0
 Mode II fracture energy release rate, GII (J/m2) 10
 Normal contact penalty, pn (GPa) 2000
 Tangential contact penalty, pt (GPa/m) 2000
 Fracture penalty, pf (GPa) 2000
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Fig. 15  Thermal cracking mor-
phology when Ta < Tb
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Fig. 16  Distribution of maximum principal stress in the process of thermal cracking when Ta < Tb (Pa, positive denotes tensile stress)
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distribution in the strip is shown in Figs. 9 and 10. The 
numerical solution agrees well with the analytical solution, 
which verifies the thermomechanical coupling model when 
simulating the heat conduction process.

4.2  Thermal stress distribution

A cylinder with an inner diameter a = 20 mm and outer 
diameter b = 150 mm is shown in Fig. 11 (mesh generated 
by Gmsh [60]). The mesh size is 0.008 m with 17,915 tetra-
hedral elements and 38,423 joint elements. The initial tem-
perature of the cylinder is 25 °C. Then, the temperature at 
the inner boundary of the cylinder is fixed at Ta = 100 °C, 
while the temperature of the outer boundary is fixed at 
Tb = 25 °C. For mechanical constraints of the cylinder, the 
top and bottom faces of this cylinder are fixed in the normal 
direction. The temperature and thermal stress distribution in 

the cylinder under a thermally stable state are determined by 
the 3D thermomechanical coupling model.

The analytical solution of the problem is given by [61]:

where �r is the radial stress, �� is the tangential stress, E is 
the elastic modulus, v is Poisson’s ratio, � is the thermal 

(28)T =
ln(b∕r)

ln(b∕a)
Ta +

ln(a∕r)

ln(a∕b)
Tb,

(29)�r = −
E�(Ta − Tb)

2(1 − v)

[
ln(b∕r)

ln(b∕a)
−

(b∕r)2 − 1

(b∕a)2 − 1

]
,

(30)�� = −
E�(Ta − Tb)

2(1 − v)

[
ln(b∕r) − 1

ln(b∕a)
+

(b∕r)2 + 1

(b∕a)2 − 1

]
,

Fig. 16  (continued)



893Computational Particle Mechanics (2020) 7:881–901 

1 3

expansion coefficient, a is the inner diameter of the cylinder, 
b is the outer diameter, r is the distance of a point to the 
center of the cylinder, and Ta , Tb are the temperatures at the 
inner and outer boundaries, respectively.

The thermal conductivity k is 4.2 W/m °C, specific 
heat Cp is 880.0 J/kg °C, thermal expansion coefficient 
is 1.0 × 10−5/°C, elastic modulus E is 20 GPa, Poisson’s 
ratio v is 0.2, and density ρ is 2500 kg/m3. The time step 
size used for the calculation is 8.902862 × 10−10 s, and the 
damping coefficient is 8.367472 × 105 Nm.

The temperature and stress distribution calculated by 
this model are shown in Figs. 12 and 13. It can be seen 
that the numerical solution agrees well with the analytical 
solution, which verifies the model in terms of dealing with 
thermal stress calculation problem.

4.3  Thermal cracking examples

The cylinder shown in Fig. 11 is still used in this section. 
The initial temperature of the model is set as 25 °C in this 
section. Consider the following two boundary conditions: (1) 
the temperature at the inner boundary Ta remains unchanged 
(25 °C), while the temperature Tb at the outer boundary 
increases with time step (i.e., Ta < Tb). The rate of tempera-
ture increase is 0.01 °C per time step, and the temperature 
at the outer boundary remains unchanged after increasing 
to 500 °C. (2) The temperature Tb at the outer boundary 
remains unchanged (25 °C), while the temperature Ta at the 
inner boundary increases with time step (i.e., Ta > Tb). The 
rate of temperature increase is 0.01 °C per time step, and the 
temperature at the inner boundary remains unchanged after 
increasing to 500 °C. We set up a series of monitor points 
on the inner and outer boundaries of the disk to analyze the 
stress distributions on the inner and outer boundaries before 
and after the crack generation, as shown in Fig. 14.

According to Eq. (30), the stress at the inner and outer 
boundaries of the cylinder can be given by the following:

According to Eqs. (31) and (32), if the temperature at 
the inner boundary is lower than that at the outer boundary 
(i.e., Ta < Tb), then 𝜎𝜃||r=a > 0 , 𝜎𝜃||r=b < 0 , the tensile stress 
is generated at the inner boundary and the compressive stress 
is generated at the outer boundary. However, the absolute 
value of ��||r=a is larger than ��||r=b . Therefore, when the 
stress at the inner boundary exceeds the tensile strength, 

(31)��
||r=a = −

E�(Ta − Tb)

2(1 − v)

[
2b2∕a2

b2∕a2 − 1
−

1

ln(b∕a)

]
,

(32)��
||r=b =

E�(Ta − Tb)

2(1 − v)

[
1

ln(b∕a)
−

2

b2∕a2 − 1

]
.

tensile failure occurs. Thus, for these temperature boundary 
conditions, cracks are firstly generated at the inner boundary.

Similarly, if the temperature at the inner boundary is 
higher than that at the outer boundary (i.e., Ta > Tb), then 
𝜎𝜃
||r=a < 0 and 𝜎𝜃||r=b > 0 , the compressive stress is gener-

ated at the inner boundary and tensile stress is generated at 
the outer boundary. Although the absolute value of ��||r=b is 
lower than ��||r=a , the tensile strength of the rock is usually 
much smaller than the compressive strength. Thus, when 
the tensile stress at the outer boundary exceeds the tensile 
strength, tensile failure occurs. In this situation, cracks are 
firstly generated at the outer boundary.

Additionally, the cracks in the first case are generated ear-
lier than that in the second case because in the first case we 
compare ��||r=a with the tensile strength, while in the second 
case we compare ��||r=b with the tensile strength. However, 
the absolute value of ��||r=a is larger than that of ��||r=b.

The above part is the theoretical analysis for the problem. 
Then, the problem is studied by using the thermomechani-
cal coupling model. The simulation results are compared 
with the theoretical analysis. The mechanical parameters 
are shown in Table 1. The simulation results are shown in 
Figs. 15, 16, 17, 18, 19 and 20, and the temperature distribu-
tion at different time steps is shown in Fig. 21.

As shown in Fig. 15, when the inner boundary temper-
ature Ta of the cylinder is kept constant, while the outer 
boundary temperature Tb increases with time step (Ta < Tb), 
the cracks are firstly generated at the inner boundary of the 
cylinder (as shown at time step 70,000 in Fig. 15), which 
is consistent with the theoretical analysis. As the time step 
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Fig. 17  Distribution of the maximum principal stress on the inner 
and outer boundaries of the disc before and after crack generation 
(Ta < Tb). (Color figure online)
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Fig. 18  Thermal cracking morphology when Ta > Tb
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increases, cracks gradually extend from the inner boundary 
to the outside and radial cracks are finally formed. Although 
the cracks do not extend straight to the outside and instead 
form some bifurcation and turning, the phenomenon of crack 
initiation from the inner boundary and propagation from the 
inner boundary to the outside is obvious. These results agree 
well with the results in Tang [62].

As shown in Fig. 16, the inner boundary of the cylinder 
is in a tension state (positive denotes tensile stress) before 
crack initiation (see Fig. 17, red line), while the outer bound-
ary is in a compressive stress state (see Fig. 17, green line—
with very low compressive stress at the outer boundary). 
For example, at time step 58,000 in Fig. 16, the zone at the 
inner boundary is in a tensile stress state, while the zone at 
the outer boundary is in a compressive stress state. If the ten-
sile stress at the inner boundary exceeds the tensile strength 

of the rock (see Fig. 17, red line—the maximum principal 
stress Smax at the inner boundary is higher than the ten-
sile strength ft = 10 MPa), cracks will generate at the inner 
boundary as shown at time step 60,000 in Fig. 16. Then, 
the tensile stress at the start point will be released, i.e., the 
tensile stress at the inner boundary decreases and may be 
lower than the tensile strength (see Fig. 17, blue line—the 
maximum principal stress Smax decreases and most of them 
are lower than the tensile strength ft = 10 MPa). After the 
tensile stress at the inner boundary is completely released, 
no new crack is generated in the inner boundary, as shown 
at time steps 70,000–80,000 in Fig. 16. The tensile stress 
concentration zones move outward with the cracks extend-
ing, which is shown at time steps 65,000–120,000 in Fig. 16.

As shown in Fig. 18, when the temperature Tb at the 
outer boundary is kept constant and the temperature Ta at 

Fig. 18  (continued)
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Fig. 19  Distribution of maximum principal stress in thermal cracking when Ta > Tb (Pa, positive denotes tensile stress). (Color figure online)
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Fig. 19  (continued)



898 Computational Particle Mechanics (2020) 7:881–901

1 3

the inner boundary increases with time (Ta > Tb), cracks are 
firstly generated at the outer boundary (see time step 80,000 
in Fig. 18). Those results are consistent with the theoretical 
analysis. As the time step increases, cracks propagate out-
ward from the inner boundary and radial cracks are finally 
formed. Although cracks do not extend straight to the out-
side and instead extend with some bifurcation and turning, 
the phenomenon of crack initiation from the outer boundary 
and propagation from the outer boundary to the inside is 
obvious. These results agree well with the results in Tang 
[62].

As shown in Fig. 19, the outer boundary of the cylin-
der is in a tension state before crack initiation (see Fig. 19, 
green line), while the inner boundary of the cylinder is 
in a compressive stress state (see Fig. 19, red line—with 
very large compressive stress). For example, at time step 
69,000 in Fig. 19, the zone at the outer boundary is in a 
tensile stress state, while the zone at the inner boundary 
is in a compressive stress state. If the tensile stress at the 
outer boundary exceeds the tensile strength of the rock (see 
Fig. 20, green line—the maximum principal stress Smax 
at the outer boundary is higher than the tensile strength 
ft = 10 MPa), cracks will generate at the outer boundary, as 
shown at time step 70,000 in Fig. 19. The tensile stress at 
the start point will be released, i.e., the tensile stress at the 
outer boundary decreases and may be lower than the tensile 
strength (see Fig. 20, black line—the maximum principal 
stress Smax decreases and some of them are lower than the 

tensile strength ft = 10 MPa). After the tensile stress in the 
outer boundary is completely released, no new crack is gen-
erated at the outer boundary, which is shown at time steps 
80,000–90,000 in Fig. 19. The tensile stress concentration 
zones move inward with the cracks extending, which is 
shown at time steps 80,000–140,000 in Fig. 19.

In addition, as shown in Figs. 16 and 19, crack initiation 
occurs at time step 60,000 when Ta < Tb, but when Ta > Tb, 
crack initiation occurs at time step 70,000, i.e., in the first 
case, cracks initiate earlier than in the second case, which is 
also consistent with the theoretical analysis.

In short, when Ta < Tb, cracks initiate from the inner 
boundary and extend to the outside. When Ta > Tb, cracks 
initiate from the outer boundary and extend to the inside. 
Finally, radial cracks are formed in both cases. These results 
agree well with the results in Tang [62], which verifies the 
model FDEM-TM3D in terms of dealing with the thermal 
cracking problem.

5  Conclusions

Thermal cracking plays a key role in a variety of geome-
chanical applications, including nuclear waste stor-
age, petroleum and geothermal development. Given the 
importance of this topic, the research work presented 
herein introduced a three-dimensional thermomechanical 
coupling model (FDEM-TM3D) to simulate the thermal 
cracking of rock. The thermomechanical coupling model 
can reproduce crack initiation and propagation, as well as 
the distributions of stress and temperature during thermal 
cracking. The model of this paper extends the application 
of FDEM so that it can be used to handle thermomechani-
cal coupling and thermal cracking problems. Combining 
this model with the coupled hydromechanical models [43, 
44] will enable the application of FDEM to solve rock 
fracturing problems under the effect of thermal–hydrologi-
cal–mechanical (THM) couplings. It should be noted that 
crack propagation path is affected by the mesh because 
crack extends along the element boundary. However, as 
the mesh density increases, the effect of the mesh on crack 
propagation will gradually decrease. Since the hydrome-
chanical model in this paper uses an explicit solution, it is 
time-consuming to solve large timescale problems. How-
ever, the explicit solution method is very easy to solve 
in parallel. With parallel computing technology, the cal-
culation speed of the model can be increased so that the 
problem with large timescale can be solved in the future.
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Fig. 20  Distribution of the maximum principal stress on the inner 
and outer boundaries of the disc before and after crack generation 
(Ta > Tb). (Color figure online)
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