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Abstract
We present a numerical procedure for elastic and nonlinear analysis (including fracture situations) of solid materials and
structures using the discrete element method. It can be applied to strongly cohesive frictional materials such as concrete and
rocks. The method consists on defining nonlocal constitutive equations at the contact interfaces between discrete particles
using the information provided by the stress tensor over the neighbor particles. The method can be used with different yield
surfaces, and in the paper, it is applied to the analysis of fracture of concrete samples. Good comparison with experimental
results is obtained.
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1 Introduction

The discrete element method (DEM) has proven to be a
very useful numerical tool for the computation of granular
flows [1–3] (the hereafter termed noncohesive DEM) with
or without coupling with fluids [4,5] or structures [6]. These
computations can include cohesive forces between particles
[7] tomodelmoisture, glue or other added features to the stan-
dard noncohesiveDEM.Other research lines have focused on
the DEM as a method to compute the mechanics of strongly
cohesive materials, like rocks, concrete or cement [8–10].
The approach in these cases is usually termed as ‘bonded’ or
‘cohesive’ DEM. Here, the DEM can be understood as a dis-
cretization method for the continuum. The bonded DEM has
also been combined with the finite element method (FEM)
in order to save computation time [11].

The ability of the DEM to reproduce multicracking phe-
nomena in cohesive materials is probably one of the main
reasons why the DEM is chosen when fracture mechanics
is an important ingredient of the solution. However, a deep
analysis of the works published usually reveals a lack of
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accuracy of the DEM results in the elastic regime, together
with the need for calibrating the DEM parameters for each
application. It is quite surprising that the Poisson’s ratio and
the shear modulus are seldom validated. It is, however, com-
monly accepted [12] that the Poisson’s ratio has a strong
dependency on the mesh arrangement and the kt/kn ratio
[13], where kn and kt are the normal and tangential spring
stiffnesses, respectively, in the spring dashpot model that
yields the forces at the contact interface between two spheres.

The difficulty of the bonded DEM to get accurate results
when trying to capture simultaneously the Young’s modulus
(E), the Poisson’s ratio (ν) and the related shear modulus
(G) derives from the fact that the bonded DEM works as
a system of trusses instead of a true continuum. Usually, a
good calibration of the microparameters (kn and kt ) leads to
a decent capture of one or two of the elastic macroparameters
(E , ν and G) for a given mesh arrangement and usually for a
certain, limited, range of values [13].Due to these limitations,
the spring dashpot model has proven not to be good enough
to capture the elastic behavior of a continuumwith the DEM.

In a recent paper [14], we proposed a way to enrich the
spring dashpot model in such a way that the elastic prop-
erties of a continuum can be accurately captured with the
DEM. The improved bonded DEM approach is based on the
definition of a nonlocal constitutive model at each contact
interface in which the force–displacement relationship at an
interface of a spherical particle depends on the forces at all
the interfaces shared by the particle. The good properties of
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the new nonlocal bonded DEM procedure for predicting the
elastic behavior of elastic continuamodeled as a collection of
regular and irregular distributions of spherical particles were
shown. Indeed, the nonlocal bonded DEM procedure can be
extended for modeling breakage and separation of particles
in order to reproduce the nonlinear behavior of a continuum,
leading to fracture and failure. In thiswork, we propose a new
criterion for breaking the bonds between spherical particles
based on the stress tensor at the contact interface. The stress
tensor is very commonly used to trigger cracks in continuum
mechanics, like in analytic solutions or in the FEM, but has
not yet been used in DEM.

The arrangement of the paper is as follows. The nonlocal
constitutive equations between forces and displacements at
a contact interface are presented first. Also we describe how
the stress tensor at the contact interface can be computed.
The method for predicting the onset of fracture at a con-
tact interface is then described. The last section of the paper
presents the application of the new nonlocal bonded DEM
technique to the analysis of uniaxial compression strength
(UCS), a Brazilian tensile strength (BTS) test and a shear
tests in concrete samples. Numerical results are compared
with experimental data for the same tests with good agree-
ment.

2 The stress tensor over discrete elements

The stress tensor, understoodhere as theCauchy stress tensor,
has beenwidely used in the context of theDEM. It is typically
used to plot the value of the stresses in certain regions of
the domain when dealing with granular materials [15]. For
example, it is common to model soils with the DEM and
to plot the stresses within the soil as a valuable engineering
result.

The averaged stress tensor over the volume of a central
spherical particle, (hereafter termed particle 0) (Fig. 1), can
be calculated as

σ 0 = 1

V0

nc∑

i=1

li ⊗ Fi (1)

In Eq. (1), index 0 denotes the central particle where
stresses are computed, V0 is the volume of the spherical par-
ticle, nc is the number of contacts of the particles with its
neighbors, l i is the vector connecting the center of the sphere
to the i th contact point and Fi is the force vector at the i th
contact point. The contact points can account for a certain
gap between adjacent particles, as explained in [8].

Apart from granular noncohesive materials, the DEM has
been used to model strongly cohesive materials like concrete
or rocks [8] by means of the standard bonded DEM, which
can withstand tractions at a contact interface. The packing

Fig. 1 i th contact point between a central sphere (0) and an adjacent
sphere (I)

of spheres is expected to work as an equivalent continuum,
and the stress tensor at the center of each particle can be
calculated with Eq. (1) as well.

The idea of using the stress tensor at a particle to enrich
the information used to compute the forces between bonded
particles emulating a continuumwasfirst presentedCeligueta
et al. [14]. The normal force at a contact point is computed
in terms of the nodal overlap and the stresses at the contact
point as

Fz′i = kniδz′i + Aiν(σx ′i + σy′i ) (2)

where Fz′i is the force between the two particles in the nor-
mal direction z′ (defined by the vector that joins the particle
centers as shown in Fig. 2), Ai is the contact area at the i th
contact interface between the two particles (particle 0 and
particle I , see Fig. 1), δz′i is the overlap between the par-
ticles, ν is the Poisson’s ratio and kni is a normal stiffness
parameter associated with each pair of particles given by

kni = Ai E

L0i
(3)

where L0i is the distance between the centers of the particles
at the stress-free position and E is the Young’s modulus of
the continuum material [14].

In Eq. (2), σx ′i and σy′i are the axial stresses at the contact
point in the twoorthogonal directions to the normal one. They
can be obtained by rotating the coordinate system for the
stress tensor at the i th contact point, σ i , as follows (Eq. (4)):

σ ′
i = RT

i σ i Ri (4)

where Ri is the rotationmatrix between the Cartesian and the
local axes of contact i and σ ′

i is the stress tensor expressed
in the local coordinate system at that contact [14].

The stress tensor at the i th contact point is computed by
averaging the values of the stress tensors of the contacting
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Fig. 2 Local axes at contact point between two spheres

spheres sharing the i th contact part (sphere 0 and sphere I)
via Eq. (5). This gives

σ i = σ 0 + σI

2
(5)

Note that Eq. (2) is a nonlocal constitutive expression that
relates the normal force to the values of the stress at the
particles adjacent to the central sphere.

The tangential forces at the i th contact point are similarly
computed in a nonlocal form as

Fx ′
i
= ktiδx ′i + AiG

(
τz′x ′,i
G

− δx ′i
Li

)

step

Fy′
i
= ktiδy′i + AiG

(
τz′y′,i
G

− δy′i
Li

)

step

(6)

where τz′x ′,i and τz′y′,i are the tangential components of the
local stress tensor at the i th contact point, σ ′

i (Eq. (4)).
Subindex step in Eq. (6) denotes the time step at which
the different terms are approximated. For explicit dynamic
solution schemes, step refers to the previous time step. For
implicit schemes, step refers to the current time step and the
term is updated iteratively. Note that both τz′x ′,i and τz′y′,i
depend on the stress tensor for each particle (computed by
Eq. (1)). Therefore, their value has to be used from either
the previous time step or the previous iteration. Otherwise,
the forces would never be updated according to the relative
displacements. The subindex step in Eq. (6) avoids the sub-

stitution of AiG
(

δx ′i
Li

)

step
by ktiδx ′i , which would cancel

terms and make the expression independent from the relative
displacements between the particles.

We highlight that both the normal and tangential forces
make use of the averaged stress tensor σ i at each contact
point. This increases the stencil of neighboring spheres con-
sidered for computing the forces at each contact point.

Details of the computation of the stress tensor at each par-
ticle from the normal and tangential forces, the computation
of the contact areas, the necessary adjustment of the porosity
of the packing and the correction of the volume and mass of
the particles can be found in [14].

In [14], several other adjustments are proposed aiming
at avoiding calibration of the contact parameters. However,
those suggestions fall out of the scope of this work, the
purpose of which is to extend the applicability of nonlocal
bonded DEM to the postelastic regime.

3 Using the stress tensor to compute the
crack initiation

Yield surfaces in continuummechanics are designed tomodel
the behavior of a specific group of materials. For example,
the Rankine yield surface [16] is intended for concrete or
other materials whose failure is mainly tension-driven, as
these materials present a much higher strength in compres-
sion than in tension. As a different example, the von Mises
yield surface is typically used for metals, giving importance
to the deviatoric stresses as initiators of the nonlinearity.

Even if these yield surfaces are used to trigger a brittle
fracture, this does not mean that the macroscopic response
of the sample subject to stresses presents a brittle behavior.
Actually, the postelastic behavior depends on the shape of
the sample and the load type. Thus, for the same material
properties, we can see a totally brittle response in a bending
test and a smoother nonlinear graph in a UCS test.

The traditional way to detect the initiation of postelastic
behavior in a continuum is the verification of a certain yield
condition expressed in terms of the stress tensor written as
f (σi j ) ≥ 0 [17].
The novel idea presented in this paper is to use the stress

tensor at a bond (computed by Eq. (5)) and a yield surface to
trigger a crack at the contact interface between two spheres
in the bonded DEM.

The way to assess whether a stress tensor verifies or not
the yield conditions changes with each specific constitutive
model. Some examples are given in Sects. 5 and 6 of thiswork
using Rankine and Mohr–Coulomb yield surfaces. Indeed,
many other examples can be found in the literature of plas-
ticity, damage and fracture mechanics.

The proposed crack initiation criterion is independent
from the specific orientation of the bond, as the stress tensor
represents all the orientations in a single matrix.

With this methodology, the concept of using the stress
tensor for the elastic regime presented in [14] is extended to
the postelastic branch, as a criterion for breaking the bond.

The next section shows the behavior of concrete samples
discretized by means of the bonded DEM subject to loads,
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whose bond breakage is ruled by the Rankine and Mohr–
Coulomb yield surfaces [18].

The chosen yield surfaces have been introduced in DEM-
pack code developed by the authors [19] and tested with
several samples under different loads. The code has been
implemented within the open-source Kratos Multiphysics
framework [20]. The data preparation and visualization of
results in this paper were carried out with the GiD pre- and
postprocessor software [21].

4 Description of the experimental tests

Three different experimental tests on several concrete sam-
ples were carried out at the laboratory of the Universitat
Politècnica de Catalunya (UPC) [22]. All samples were sub-
ject to an increasing load until failure. The limit stress at
which the samples analyzed for each test brokewasmeasured
and averaged. The material tested was identified as a 50MPa
concrete, with a measured Young’s modulus (E) of 40 GPa
(coefficient of variation of 2.5%). The Poisson’s ratio was
not measured. The same tests were modeled with the non-
local bonded DEM using the Rankine and Mohr–Coulomb
yield surfaces, and the DEM results were compared with the
experimental values. Young’s modulus of E = 40 GPa and a
Poisson’s ratio value of ν = 0.2 were used in all the nonlocal
DEM computations. The three tests are described next.

4.1 Test 1: uniaxial compressive strength (UCS)

A concrete cylindrical specimen of 100mm diameter and
200mm length was loaded in uniaxial compression along its
symmetry axis (Fig. 3).

Figure 4 shows a number of broken specimens after the
tests.

The average limit stress reached by the sample was 55
MPa.

For the numerical computation with the nonlocal bonded
DEM, a randompacking of 12,000 sphereswas used tomodel
the cylinder. Two plates compressed the sample at a relative
velocity of 0.05m/s, and the force on the upper platewasmea-
sured, divided by the cross section of the sample and plotted
as stress vs. strain of the sample. The loading velocity used in
the computation does not correspond to the loading velocity
of the experiments. It was chosen as fast as possible, making
sure that no elastic waves were generated. The coefficient of
restitution was set to 0.0 in all runs for all tests.

4.2 Test 2: Brazilian tensile strength (BTS) test

A cylindrical specimen of 100mm diameter and 200mm
length was loaded in a biaxial stress state, generated by a

Fig. 3 UCS test scheme [23]

Fig. 4 Specimens after the UCS test

Fig. 5 BTS test scheme [24]

diametral compression that generates a perpendicular, diame-
tral traction (Fig. 5).

Figure 6 shows a number of broken specimens after the
tests.

The average limit stress reached by the samplewas 4MPa.
For the numerical computation with the DEM, a random

packing of 9,000 spheres was used to model the cylinder.
Two plates compressed the sample and the force on the upper
plate was used to evaluate the stress at the center of the sam-
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Fig. 6 Specimens after the BTS test

Fig. 7 Shear strength test scheme

ple (Eq. (7)) as it was done for the experimental tests. The
stress was plotted vs. the elapsed time. The relative velocity
of the plates was 0.1 m/s. Again, this does not necessarily
correspond to the experimental loading velocity.

σ = f

πRL
(7)

In Eq. (7), f is the measured force, R is the radius of the
sample and L is the length of the sample (thickness of the
slice).

4.3 Test 3: shear strength test

Cylindrical specimens of 150mmdiameter and 80mmheight
were used. The samples had two parallel flat ends and two

inversed tubular coaxial borings set at a diameter of 45mm
and a width of 4mm. The depth of the borings was 10mm,
leaving an effective shear section height of 60mm (see Fig. 7
for clarification).

The inner cylinder was pushed downward by a piston
while the outer cylinder was supported by a holed plate.

Figure 8 shows a number of broken specimens after the
tests.

It can be observed that several types of cracks were cre-
ated, some around the inner cylinder of circumferential type,
some in the outer part of radial type.

For the numerical computation with the DEM, a random
packing of 161,000 spheres was used to model the cylinder.
The upper plate, pushing the inner part of the sample, moved
downward at a constant velocity of 0.1 m/s. The force on the
upper plate was measured and plotted vs. the elapsed time.

5 DEM results with the Rankine yield surface

5.1 Yield surface definition

The Rankine yield surface is defined as

σ1 = σR (8)

where σ1 is the maximum principal stress and σR is a limit
value, which can be obtained experimentally as the pure ten-
sion limit stress. We assume σ1 ≥ σ2 ≥ σ3, where σ2 and
σ3 are the second and third principal stresses, respectively.
Tractions are taken as positive. The behavior of the material
is considered elastic as long as σ1 ≤ σR . If σ1 ≥ σR at any
bond, the bond breaks. Figure 9 depicts the Rankine yield
surface in the space of principal stresses.

5.2 Calibration of parameters

For theRankine yield surface, two important parameters need
to be calibrated: the maximum value for a principal stress,
σR , and Coulomb’s frictions parameter, μ. The procedure
followed to calibrate those values was the following:

Fig. 8 Specimens after the
shear test

123



548 Computational Particle Mechanics (2020) 7:543–553

Fig. 9 Rankine yield surface in the space of principal stresses

1. Step 1Run Test 1 (UCS) iteratively changing the value of
σR , but keeping fixed the value of μ (first computations
can be run with μ = 0.2). Coulomb’s friction has little
effect on the limit stress that the sample can withstand.

2. Step 2 Run Test 2 (BTS) to check that the value of σR

yields good results and adjust the value slightly to match
the experimental value.

3. Step 3RunTest 3 (Shear) iteratively changing the value of
μ, but keeping fixed the value of σR obtained after Steps
1 and 2. Once the best possible value for μ is found, go
to Step 1 and start the process again.

It was found that following these steps twice was enough to
find a set of parameters which were useful to work with a
given material.

Fig. 11 Test 1 (UCS) with Rankine yield surface. Stress–strain curve.
The horizontal lines indicate the band of experimental results

5.3 Computational results

For all the computations, the input value of the Young’s mod-
ulus was 40 MPa, and the Poisson’s ratio was taken as 0.20.

After the calibration process, the limit tensile stress for
the nonlocal DEM computations was chosen as σR = 6
MPa and the friction coefficient was chosen as μ = 0.1,
both between spheres and between spheres and walls. These
material parameters were used for the DEM analysis of the
three tests described in Sect. 4.

The packing of spheres used for Test 1 (UCS) contained
12K spheres, and their size is detailed in the graph in Fig. 10.
The results of the stress–strain graph for Test 1 (UCS) are
shown in Fig. 11. In all cases, the horizontal lines mark the
upper and lower values of the limit stress obtained experi-
mentally. TheYoung’smodulus which can be observed in the
graph is 38MPa, close to the input parameter (40MPa). Note
that no calibration was needed to obtain this similarity in the
elastic property, as proven in [14]. Good agreement with the
limit stress computed with the DEM is obtained. The broken
sample is shown in Fig. 12.

Fig. 10 Test 1 (UCS) sphere
size distribution (in meters)
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Fig. 12 Test 1 (UCS) with Rankine yield surface. Middle plane of a
broken sample at the failure load

The packing of spheres used for Test 2 (BTS test) con-
tained 9K spheres, and their size is detailed in the graph in
Fig. 13. The results of the stress–time graph for Test 2 are
shown in Fig. 14. Good agreement with the experimental
results is again obtained. The broken sample is shown in
Fig. 15.

The packing of spheres used for Test 3 (Shear test) con-
tained 161K spheres, and their size is detailed in the graph
in Fig. 16. The notches present in this geometry required
spheres much smaller than in the other tests. The results of
the force–time graph for Test 3 are shown in Fig. 17. The
limit force obtained differs in 10%with the lower value of the
experimental result. The broken sample is shown in Fig. 18.

6 Mohr–Coulomb yield surface

6.1 Yield surface definition

The Mohr–Coulomb yield surface is defined as

Fig. 13 Test 2 (BTS) sphere
size distribution (in meters)

Fig. 14 Test 2 (BTS) with
Rankine yield surface.
Stress–time curve. The
horizontal lines indicate the
band of experimental results
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Fig. 15 Test 2 (BTS) with Rankine yield surface. Broken sample after
the computation. Lateral displacements are plotted to visualize the
cracks

σ1 − σ3

2
= −σ1 + σ3

2
sin(φ) + c cos(φ) (9)

where σ1 is the maximum principal stress, σ3 is the min-
imum principal stress, c is the Mohr–Coulomb ’cohesion’
stress parameter and φ is the Mohr–Coulomb internal fric-
tion parameter.

6.2 Calibration of parameters

For the Rankine yield surface, three important parameters
need to be calibrated: Mohr–Coulomb strength parameters, c
and φ , and Coulomb’s frictions parameter,μ. The procedure
followed to calibrate those values was the following:

1. Step 1 Run Test 1 (UCS) iteratively changing the value
of c and φ, but keeping fixed the value of μ (first com-
putations can be run with μ = 0.2). Coulomb’s friction

Fig. 17 Test 3 (shear strength) with Rankine yield surface. Force–time
curve. The horizontal lines indicate the band of experimental results

Fig. 18 Test 3 (shear strength) with Rankine yield surface. Broken
sample after the computation

Fig. 16 Test 3 (shear test)
sphere size distribution (in
meters)
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Fig. 19 Test 1 (UCS) with Mohr–Coulomb yield surface. Stress–strain
curve. The horizontal lines indicate the band of experimental results

has little effect on the limit stress that the sample can
withstand.

2. Step 2 Run Test 2 (BTS) to check that the value of c
and φ yields good results and adjust the value slightly to
match the experimental value. Both parameters must be
adjusted by the user according to the sensitivity observed.

3. Step 3 Run Test 3 (Shear) iteratively changing the value
of μ, but keeping fixed the value of c and φ obtained
after Steps 1 and 2. Once the best possible value for μ is
found, go to Step 1 and start the process again.

It was found that following these steps twice was enough to
find a set of parameters which were useful to work with a
given material.

6.3 Computational results

The same packings of spheres used for the Rankine yield
surface were used for the Mohr–Coulomb yield surface.

The values of c and φ for all the numerical computations
were calibrated to 14.5 MPa and 60 degrees, respectively. A
friction coefficient of μ = 0.1 was chosen as for the compu-
tations using the Rankine yield surface (Sect. 5.3). Here, the
calibration of the two material parameters c and φ was more
difficult than the calibration of σR .

The results of the stress–strain graph forTest 1 (UCS), Test
2(BTS) and Test 3 (Shear Test) are depicted in Figs. 19, 21
and 23, respectively. The broken samples for each case are
shown in Figs. 20, 22 and 24.

Good agreement between the experimental values and
the nonlocal bonded DEM results for the limit stress (UCS
and BTS tests) and the limit force (Shear strength test) was
obtained in all cases.

7 Conclusions

The nonlocal bonded DEM presented in this work can be
effectively used to model the elastic range and the nonlinear
material behavior, at least until the solid starts collapsing,

Fig. 20 Test 1 (UCS)withMohr–Coulomb yield surface. External view
of the broken sample after the computation

Fig. 21 Test 2 (BTS) with Mohr–Coulomb yield surface. Stress–time
curve. The horizontal lines indicate the band of experimental results

Fig. 22 Test 2 (BTS) with Mohr–Coulomb yield surface. Broken sam-
ple after the computation
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Fig. 23 Test 3 (Shear strength) with Mohr–Coulomb yield surface.
Force–time curve. The horizontal lines indicate the band of experimen-
tal results

Fig. 24 Test 3 (Shear) withMohr–Coulomb yield surface. Broken sam-
ple after the computation

for a family of materials similar to the tested ones (concrete
samples). The behavior of the material after the collapse of
the sample is left for subsequent publications. The presented
approach is capable of accurately predicting the onset and
initial evolution of cracks. After that, the DEM is capable of
computing the displacements and rotations of any part of the
solid which might get detached due to the evolution of the
cracks.

The numerical examples presented in the paper have
shown that the nonlinear and failure behavior of concrete
samples in standard laboratory tests can be accurately pre-
dicted with the nonlocal bonded DEM using the Rankine or
the Mohr–Coulomb yield surfaces. The capabilities of the
nonlocal bonded DEM, however, extend beyond the yield
functions chosen in this work. Any yield surface modeling
material failure that can be fed with the stress tensor can
be used for nonlinear analysis of solids with the nonlocal
bonded DEM. This makes the nonlocal bonded DEM a pow-
erful numerical tool for nonlinear analysis of a broad range
of materials and structures.

The average number of bonds of each sphere (coordination
number) or the size of the particles used in the computations
might affect significantly the behavior of the solid once the

crack is initiated or well developed; however, this will be
studied in further publications.
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