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Abstract
We present an open-source software RKPM2D for solving PDEs under the reproducing kernel particle method (RKPM)-
based meshfree computational framework. Compared to conventional mesh-based methods, RKPM provides many attractive
features, such as arbitrary order of continuity and discontinuity, relaxed tie between the quality of the discretization and the
quality of approximation, simple h-adaptive refinement, and ability to embed physics-based enrichment functions, among
others, which make RKPM promising for solving challenging engineering problems. The aim of the present software package
is to support reproducible research and serve as an efficient test platform for further development of meshfree methods.
The RKPM2D software consists of a set of data structures and subroutines for discretizing two-dimensional domains,
nodal representative domain creation by Voronoi diagram partitioning, boundary condition specification, reproducing ker-
nel shape function generation, domain integrations with stabilization, a complete meshfree solver, and visualization tools
for post-processing. In this paper, a brief overview that covers the key theoretical aspects of RKPM is given, such as
the reproducing kernel approximation, weak form using Nitsche’s method for boundary condition enforcement, various
domain integration schemes (Gauss quadrature and stabilized nodal integration methods), as well as the fully discrete
equations. In addition, the computer implementation aspects employed in RKPM2D are discussed in detail. Benchmark
problems solved by RKPM2D are presented to demonstrate the convergence, efficiency, and robustness of the RKPM
implementation.

Keywords Meshfree method · Reproducing kernel particle method · Nodal integration · Open-source software · RKPM2D

1 Introduction

In recent years, the reproducing kernel particle method
(RKPM) [1–3] has been recognized as an effective numeri-
cal method for solving partial differential equations (PDEs).
Compared to conventional mesh-based numerical methods
such as the finite element method (FEM), the reproduc-
ing kernel (RK) approximation in RKPM is constructed
based on a set of scattered points without any mesh con-
nectivity, and thus, the strong tie between the quality of
the discretization and the quality of approximation in con-
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ventional mesh-based methods is relaxed. This “meshfree”
feature makes RKPM well-suited for solving large defor-
mation and multiphysics problems where FEM suffers from
mesh distortion or mesh entanglement [1, 4, 5]. In addi-
tion, RKPM provides controllable orders of continuity and
completeness, independent from one another, which enables
effective solutions of PDEs involving high-order smoothness
or discontinuities, and accordingly, implementation of h- and
p-adaptive refinement becomes straightforward [6–10]. Fur-
thermore, the wavelet-like multi-resolution properties can be
obtained in the RK approximation, making it suitable for
multi-resolution and multi-scale modeling [6–8]. Recently,
accelerated and convergent RKPM formulations have been
developed with the employment of variationally consistent
and stabilized nodal integration techniques [11, 12]. With
above-mentioned advantages, RKPM has been successfully
applied to a number of challenging engineering problems,
including thin shell structural mechanics [13, 14], manufac-
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turing processes [15–17], image-based biomechanics [18],
geomechanics and natural disasters [19, 20], fracture/damage
mechanics [21–23], shock dynamics [24–26] and pene-
tration/fragmentation phenomena [27–29], to name a few.
Interested readers can refer to [2, 30] for a comprehensive
review of RKPM and its applications.

While the overall programing structure of meshfree
Galerkin methods using Gauss integration have been dis-
cussed in [31, 32], and efficient neighbor searching algo-
rithms and associated data structures for meshfree methods
have been developed in [33–36], a public domain RKPM-
based source code is in high demand. In this paper,we present
an RKPM-based open-source computational software called
RKPM2D [37] that can effectively solve PDEs in a 2D
domainwith an arbitrary geometry.Nitsche’smethod [38, 39]
is adopted for imposition of essential boundary conditions
in the meshfree Galerkin equations. For domain integration,
the variationally consistent and stabilized nodal integration
methods [11, 40], Modified Stabilized Conforming Nodal
Integration (MSCNI) [41], and Naturally Stabilized Nodal
Integration (NSNI) [12] are implemented in RKPM2D in
addition to the conventional Gauss quadrature scheme. The
program consists of a set of data structures and subroutines
for two-dimensional domain discretization, nodal represen-
tative domain creation by Voronoi diagram partitioning,
reproducing kernel shape function generation, a meshfree
Galerkin equation solver, and visualization tools for post-
processing. For demonstration purposes, linear elastostatics
is chosen as themodel problem, and extensions of the RKPM
open-source software for solving other types of PDEs are
straightforward. The RKPM2D code is implemented under
a MATLAB environment [42] with pre-process, solver, and
post-process functions fully integrated.

This paper is organized as follows. A brief review of
the basic equations of RKPM for linear elasticity is given
in Sect. 2, where various domain integration techniques
such as Gauss integration, direct nodal integration, and sta-
bilized nodal integration are introduced. In Sect. 3, the
computer implementation aspects are presented, including
neighbor search processes, RK shape function construction,
and domain integration procedures. Benchmark problems
are presented in Sect. 4 to demonstrate the capabilities of
RKPM2D. Conclusions are then given in Sect. 5.

2 Overview of the reproducing kernel
particle method

2.1 Reproducing kernel approximation

In RKPM, the numerical approximation is constructed based
upon a set of scattered points or nodes [43]. The domain Ω

is discretized by a set of nodes {x1, x2, . . . xNP} as shown in

Fig. 1 Illustrationof a 2DRKdiscretization: support coverage andnodal
shape function with circular kernel

Fig. 1, where x I is the position vector of node I and NP is the
total number of nodes. The RK approximation of a function
u is expressed as

u(x) ≈ uh(x) �
∑

I∈Gx

ΨI (x)uI (1)

where x is the spatial coordinates, uI is the associated nodal
coefficient to be determined, and ΨI (x) is the reproducing
kernel (RK) shape function of node I expressed as:

ΨI (x) � HT(0)M−1(x)H(x − x I )Φa(x − x I ) (2)

where the basis vector H(x − x I ) is defined as

HT (x − x I )

� [1, x1 − x1I , x2 − x2I , x3 − x3I , (x1 − x1I )
2 , . . . , (x3 − x3I )

n]

(3)

and M(x) is the so-called moment matrix:

M(x) �
∑

I∈Gx

H(x − x I )HT(x − x I )Φa(x − x I ) (4)

The set Gx � {I |Φa(x − x I ) �� 0} shown in Eqs. (1) and
(4) contains the nodal indexes of point x’s neighbors, andΦa

(x − x I ) is the kernel function centered at x I with compact
support size aI defined as

aI � c̃h I (5)
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Fig. 2 Kernel function and correspondingRK shape functionwith linear basis and normalized support size c̃ � 1.5: a tent kernel and b corresponding
RK shape function. c cubic B-spline kernel and d corresponding RK shape function

In the above equation, c̃ is the normalized support size,
and hI is the nodal spacing associated with nodal point x I

defined as:

hI � max(||x J − x I ||), ∀x J ∈ BI (6)

in which the set BI contains the four nodes that are closest to
point x I for 2D problems. The kernel function controls the
smoothness of the approximation as shown in Fig. 2, where
the C0 tent kernel function is compared with the following
C2 cubic B-spline kernel function:

Φa(x − x I ) �

⎧
⎪⎪⎨

⎪⎪⎩

2/3 − 4z2I + 4z3I for 0 ≤ zI ≤ 1/2,

4/3 − 4zI + 4z2I − 4/3z3I for 1/2 ≤ zI ≤ 1,

0 for zI > 1,

(7)

in which zI is defined as zI � x−x I
aI

. In addition, shape
functions with different normalized support sizes are plotted
in Fig. 3, which clearly illustrates that the locality of the
approximation is controlled by the kernel support size.

By construction, the RK shape functions satisfy the fol-
lowing nth order reproducing conditions:

∑

I∈Gx

ΨI (x)xi1I x
j
2I x

k
3I � xi1x

j
2 x

k
3 , 0 ≤ i + j + k ≤ n (8)

where n is the specified order of completeness, which deter-
mines the order of consistency in the solution of PDEs.When
linear basis is employed, both the zero-th and first-order
reproducing conditions are satisfied for uniform and arbi-
trary point distribution as shown in Fig. 4.
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Fig. 3 a Cubic B-spline kernel and b corresponding RK shape function (right) with linear basis and normalized support size c̃ � 1.5, 2.5, and 3.5

Fig. 4 Errors in the zero-th- and first-order reproducing conditions for the RK shape function with linear basis and normalized support size c̃ � 1.5,
where a uniform point distribution are used in a and b and an arbitrary point distribution is used in c and d
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2.2 Galerkin formulation

Consider the following linear elasticity problem:

σi j, j + bi � 0 onΩ

σi j n j � ti on ∂Ωt

ui � gi on ∂Ωg

(9)

where ui is the displacement, σi j � Ci jklεkl is the Cauchy
stress, Ci jkl is the elasticity tensor, εi j � (ui, j + u j,i

)
/2 is

the strain,n j is the surface normal on ∂Ω ,bi is the body force,
and ti and gi denote the prescribed traction and displacement
on ∂Ωt and ∂Ωg , respectively. Using Nitsche’s method [44]
for the enforcement of essential boundary conditions, the
weak form of Eq. (9) can be written as follows
∫

Ω

δεi jCi jklεkldΩ

�
∫

Ω

δuibidΩ +
∫

∂Ωt

δui tidΓ +
∫

∂Ωg

δuiλidΓ

+
∫

∂Ωg

δλi (ui − gi )dΓ + β

∫

∂Ωg

δui (ui − gi )dΓ (10)

where λi is the Lagrangemultiplier, and in Nitsche’smethod,
it is taken as the surface traction for elasticity problems, i.e.,
λi � σi j n j , and β � βnorE/h̄ with βnor the normalized
penalty parameter, E theYoung’smodulus, and h̄ the average
of nodal spacing. Considering the following RK approxima-
tion for u and δu:

uh �
∑

I∈Gx

ΨI (x)uI , δuh �
∑

I∈Gx

ΨI (x)δuI , (11)

Equation (10) yields the following matrix equation:

∑

J

K I JuJ − F I � 0, ∀I (12)

where

K I J � K c
I J + Kβ

I J −
(
K g

I J + K g
I J

T
)

(13)

F I � Fb
I + Ft

I + Fβ
I J − Fg

I (14)

in which each matrix and vector for two-dimensional elas-
ticity are expressed as

K c
I J �

∫

Ω

BT
I (x)CB J (x)dΩ (15)

Kβ
I J � β

∫

∂Ωg

Ψ T
I (x)SΨ J (x)dΓ (16)

K g
I J �

∫

∂Ωg

BT
I (x)CηSΨ J (x)dΓ (17)

Fb
I �
∫

Ω

Ψ T
I (x)b(x)dΩ (18)

Ft
I �
∫

∂Ωt

Ψ T
I (x)t(x)dΓ (19)

Fβ
I J � β

∫

∂Ωg

Ψ T
I (x)SgdΓ (20)

Fg
I �
∫

∂Ωg

BT
I (x)CηSgdΓ (21)

B I (x) �
⎡

⎣
ΨI ,1(x) 0

0
ΨI ,2(x)

ΨI ,2(x)

ΨI ,1(x)

⎤

⎦, Ψ I (x) �
[

ΨI (x) 0
0 ΨI (x)

]
,

(22)

η �
⎡

⎣
n1 0
0
n2

n2
n1

⎤

⎦, S �
[
s1 0
0 s2

]
, b �

[
b1
b2

]
,

t �
[
t1
t2

]
, g �

[
g1
g2

]
. (23)

where ni is the component of the surface unit normal on the
essential boundary and si � 0 or 1 serves as a switch for
imposing each component of the boundary displacement.

2.3 Domain integration

Domain integration plays an important role in accuracy, sta-
bility, and convergence of meshfree methods. Unlike FEM
which utilizes the element topology for integration, quadra-
ture domains for meshfree methods can be chosen either as
background cells that are independent from the point loca-
tions, or associated with the nodal representative domains.
The former scheme is commonly adopted in conjunction
with the Gauss quadrature scheme, and the latter is used for
nodal integration schemes; both have been implemented in
RKPM2D as discussed in this section.

2.3.1 Gauss integration

When Gauss quadrature is adopted, quadrature points are
generated based upon background cells [45, 46] as shown
in Fig. 5, where only the quadrature points inside the phys-
ical domain are considered for domain integration. Gauss
points for contour integrals are generated along the natural
and essential boundaries, also shown in Fig. 5.

The domain and boundary integrations in (15)–(21) are
computed as follows:
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Fig. 5 Meshfree points and background Gauss quadrature points in arbitrary two-dimensional domain Ω

∫

Ω

P(x)dΩ ≈
NG∑

N�1

P(xN )WN (24)

∫

∂Ωg

Q(x)dΓ ≈
NGg∑

N�1

Q
(
x̂N
)
ŴN (25)

where P(x) and Q(x) denote integrands in the domain and
boundary integrals in (15)–(21); xN , WN , and NG are the
domain Gauss points, weights, and the number of domain
Gauss points, respectively, and x̂N , ŴN , and NGg are essen-
tial boundary Gauss points, weights, and the number of
essential boundaryGauss points, respectively. The same inte-
gration rules are used for the natural boundary integration.
Since RK shape functions are rational functions and their
supports overlap with each other, the misalignment of Gauss
integration cells and shape function supports lead to large
quadrature errors unless high-order integration schemes are
adopted, as shown in [11, 45].Nonetheless,Gauss integration
is chosen as a reference quadrature scheme herein.

2.3.2 First-order variational consistent nodal integration
with gradient smoothing

The simplest nodal integration method is direct nodal inte-
gration (DNI), where shape functions and their derivatives
are evaluated directly at nodes.

The domain and boundary integrations in (15)–(21) are
computed as follows:

∫

Ω

P(x)dΩ ≈
NP∑

N�1

P(xN )AN (26)

∫

∂Ωg

Q(x)dΓ ≈
NPg∑

N�1

Q
(
x̂N
)
LN (27)

where xN , AN , and NP are the RK node locations, nodal
representative domain areas, and the number of RK nodes,
respectively, and x̂N , LN , and NPg are essential boundary
RK nodes, length of the nodal representative domain, and the
number of RK nodes on the essential boundary, respectively.
The same integration rules are used for the natural boundary
integration.

DNI is notorious for spurious zero-energymodes and non-
convergent numerical solutions. To ensure linear variational
consistency, i.e., the ability of numerical methods to pass the
linear patch test, Chen et al. [40] showed that the quadra-
ture rules need to meet the following first-order integration
constraint for the shape function gradient:

∧∫

Ω

ΨI ,idΩ �
∧∫

∂Ω

ΨI nidΓ (28)

In (28), ∧ over the integral symbols denotes numerical
integration. For nodal integration as the quadrature rule for
the domain integration on the left hand side of Eq. (28), Chen
et al. [40] introduced the following nodally smoothed gradi-
ent Ψ̃I ,i at the nodal point xN :

Ψ̃I ,i (xN ) � 1

AN

∫

ΩN

ΨI ,i (x)dΩ � 1

AN

∫

∂ΩN

ΨI (x)ni (x)dΓ

(29)

whereAN denotes the area of the nodal representative domain
ΩN associated with node N, and ni denotes the i-th com-
ponent of the outward unit normal vector to the smoothing
domain boundary as shown in Fig. 6. It was shown in [1] that
integrating Eq. (28) with nodal integrationwith the smoothed
gradient of shape function in Eq. (29), the first-order integra-
tion constraint in Eq. (28) is exactly satisfied as long as the
same boundary integral quadrature rules are used for the right
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Fig. 6 Voronoi cell diagram in two-dimensional domain Ω

hand side of both Eqs. (28) and (29). As discussed in [11], in
order to maintain linear consistency of the smoothed gradi-
ent of a linearly consistent shape function, a simple one-point
Gauss integration rule can be used for the contour integral in
Eq. (29):

Ψ̃I ,i (xN ) ≈ 1

AN

∑

K∈SN
ΨI (x̃

K
N )ni (x̃

K
N )LK (30)

where SN �
{
K |x̃KN ∈ ∂ΩN

}
contains all center points of

each boundary segment associated with node xN , and the
integration weight LK is the length of the K th segment of
the smoothing cell boundary. By employing smoothed shape
function gradients, the stiffness matrix and the force vectors
are re-formulated as follows:

K c
I J �

∫

Ω

BT
I (x)CB J (x)dΩ ≈

NP∑

N�1

B̃
T
I (xN )C B̃ J (xN )AN

(31)

K g
I J �

∫

∂Ωg

BT
I (x)CηSΨ J (x)dΓ ≈

NPg∑

N�1

B̃
T
I (xN )CηSΨ J (xN )LN

(32)

Fg
I �
∫

∂Ωg

BT
I (x)CηSgdΓ ≈

NPg∑

N�1

B̃
T
I (xN )CηSgLN (33)

where B̃ I (xN ) is defined as

B̃ I (xN ) �
⎡

⎣
Ψ̃I ,1(xN ) 0

0
Ψ̃I ,2(xN )

Ψ̃I ,2(xN )

Ψ̃I ,1(xN )

⎤

⎦ (34)

Remark For the smoothed gradients in Eq. (29), conforming
nodal representative domains as shown inFig. 6 are employed
here by following the SCNI approach [40]. On the other
hand, non-conforming nodal representative domains can also

Fig. 7 Illustration of nodal integration cells of the modified stabilized
nodal integration

be employed, which leads to the so-called stabilized non-
conforming nodal integration (SNNI) approach [41]. While
SNNIviolates thefirst-order integration constraint (Eq. (28)),
it can be corrected by the variational consistent integration
(VCI) [11] to recover the optimal rates of convergence. VCI
can also be used to achieve higher rates of convergence in
RKPM with higher-order bases in the RK approximation.

2.3.3 Stabilized nodal integration schemes

Spurious oscillatory modes can be triggered in nodal integra-
tion methods. Therefore, additional stabilization techniques
are needed to eliminate these low-energy modes, which will
be described in this subsection.

The first stabilization technique employed here for elim-
inating spurious low-energy modes is called modified stabi-
lized nodal integration [41, 47], where a least-squares type
stabilization term is introduced into the stiffness matrix:

K c
I J �

NP∑

N�1

⎛

⎜⎝B̃
T
I (xN )C B̃ J (xN )AN︸ ︷︷ ︸

SCN I

+ cstab

NS∑

S�1

(
B̃
T
I (xN ) − B̃

T
I (x̂

S
N )
)
C
(
B̃
T
J (xN ) − B̃

T
J (x̂

S
N )
)
AS
N

︸ ︷︷ ︸
Stabilization

⎞

⎟⎟⎟⎟⎠

(35)

where NS denotes the number of sub-cells associated with
each nodal integration cell (as shown in Fig. 7), x̂SN denotes
the centroid of the Sth sub-cell, B̃ J (x̂

S
N ) is the smoothed

gradient evaluated by Eqs. (30) and (34) for the Sth sub-cell,
and AS

N denotes the area of the Sth sub-cell of the N th nodal
cell. Here, 0 ≤ cstab ≤ 1 is a stabilization parameter, which
is chosen to be cstab � 1 based on the study of Puso et al. [47]
for elasticity. If the direct gradient B I (xN ) and B I (x̂

S
N ) are
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used for nodal integration and stabilization terms in Eq. (35),
the stiffness matrix is formulated as:

K c
I J �

NP∑

N�1

⎛

⎜⎝BT
I (xN )CB J (xN )AN︸ ︷︷ ︸

DN I

+ cstab

NS∑

S�1

(
BT

I (xN ) − BT
I (x̂

S
N )
)
C
(
BT

J (xN ) − BT
J (x̂

S
N )
)
AS
N

︸ ︷︷ ︸
Stabilization

⎞

⎟⎟⎟⎟⎠

(36)

which is a modified stabilization for the DNI method. For
comparison purposes, in the rest of this paper we will refer
the modified formulations (35) based on SCNI as Modified
SCNI (MSCNI), and (36) based on DNI as modified DNI
(MDNI), respectively. The least-squares-type stabilization
term in (35) enhances the coercivity of the discrete formu-
lation and suppresses spurious low-energy modes in nodal
integrations, but meanwhile, a number of additional shape
function evaluations are required.

Naturally stabilized nodal integration The other stabilized
integration technique employed here is the naturally stabi-
lized nodal integration (NSNI) proposed in [12], where an
implicit gradient expansion of the strain field is introduced
as:

ε
(
uh(x)

)
≈ ε
(
uh(xN )

)
+

d∑

i�1

(xi − xI i )ε
(
ûh,i (xN )

)
(37)

where ûh,i (xN ) �∑NP
I�1 Ψ ∇

I i (xN )uI is the implicit gradient
of the displacement with Ψ ∇

I i the implicit gradient of the RK
shape function [22]:

Ψ ∇
I i � HT

i M
−1(x)H(x − x I )Φa(x − x I ) (38)

where H � [1, x1 − xI1, x2 − xI2
]T

and the vector H i

takes on the following values for linear basis:

H1 � [0, −1, 0
]T

H2 � [0, 0, −1
]T

(39)

Introducing the gradient expansion terms (37) into the
variational equations, the stiffness matrix is obtained as

K c
I J �

NP∑

N�1

⎛

⎜⎝B̃
T
I (xN )C B̃ J (xN )AN︸ ︷︷ ︸

SCN I

+ B∇
I1

T
(xN )CB∇

J1(xN )M1(xN ) + B∇
I2

T
(xN )CB∇

J2(xN )M2(xN )
︸ ︷︷ ︸

Stabilization

⎞

⎟⎠

(40)

and B∇
I1(xN ) and B∇

I2(xN ) are defined as follows:

B∇
I1(xN ) �

⎡

⎣
Ψ ∇
I1,1(xN ) 0

0 Ψ ∇
I1,2(xN )

Ψ ∇
I1,2(xN ) Ψ ∇

I1,1(xN )

⎤

⎦,

B∇
I2(xN ) �

⎡

⎣
Ψ ∇
I2,1(xN ) 0

0 Ψ ∇
I2,2(xN )

Ψ ∇
I2,2(xN ) Ψ ∇

I2,1(xN )

⎤

⎦ (41)

Here, the derivatives of the RK implicit gradients Ψ ∇
I i, j

in Eq. (41) are obtained by the direct differentiation of the
first-order implicit gradientΨ ∇

I i in Eq. (38) with respect to x j
[12]. Alternatively, one can also approximateΨ ∇

I i, j by taking

the smoothed derivative of Ψ ∇
I i in Eq. (29). In the present

RKPM2D implementation, we adopt the former approach
in computing Ψ ∇

I i, j by the direct differentiation of Ψ ∇
I i at

nodal points by following [12]. The terms M1(xN ), M2(xN )

in Eq. (41) are the second moments of inertia in each nodal
integration domain:

M1(xN ) �
∫

ΩN

(x1 − xN1)
2dΩ,M2(xN ) �

∫

ΩN

(x2 − xN2)
2dΩ

(42)

From Eqs. (40)–(42), no subdivision of integration cells
is required in the stabilization. Similar to the discussion in
the previous section, this stabilization technique can also
be employed in conjunction with DNI by replacing the
smoothed gradients in Eq. (40) with direct gradients:

K c
I J �

NP∑

N�1

⎛

⎜⎝BT
I (xN )CB J (xN )AN︸ ︷︷ ︸

DN I

+ B∇T

I1 (xN )CB∇
J1(xN )M1(xN ) + B∇T

I2 (xN )CB∇
J2(xN )M2(xN )

︸ ︷︷ ︸
Stabilization

⎞

⎟⎠

(43)

Accordingly, the DNI- and SCNI-based naturally stabi-
lized formulations in Eq. (43) and in Eq. (40) are denoted as
NSDNI and NSCNI, respectively, which will be examined
and compared in detail in Sect. 4.

3 Computer implementation aspects

In this section, the basic data structures and main func-
tions of RKPM2D will be explained, which cover domain
discretization, RK shape functions and gradients, domain
integration, assembly of stiffness matrices and force vectors,
and visualization of the numerical results. Also, the key dif-
ferences between RKPM and FEM programs are discussed.
The source codes (.m files) of RKPM2D are publicly avail-
able online [37].
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3.1 Overall program structure

The general flowchart of RKPM2D is given in Fig. 8. Unlike
in the FEM procedures where the element type is tied with
mesh/nodes generation, the order of basis and smoothness
is independent of the domain discretization in RKPM, while
the general program functionalities (such as matrix assembly
and solver) of a meshfree Galerkin method are similar to that
of FEM.

As shown in Fig. 8, the numerical procedures for the
model problemdescribed in Eqs. (9)–(22) consist of input file
generation, domain discretization, quadrature rule definition,
shape function construction, matrix assembly, solver, and
post-processing. The corresponding main subroutine names
of RKPM2D are also shown in Fig. 8.

3.2 Input file generation

To illustrate the functionality of each main subroutine shown
in Fig. 8, let us consider a linear elasticity problem (Eq. (9))
with a manufactured solution of

uexact �
[
0.1 + 0.1x1 + 0.2x2
0.05 + 0.15x1 + 0.1x2

]
(44)

which can be considered as a linear patch test and is defined
here over the 2D circular domain Ω ⊂ R

2 shown in Fig. 9.
The traction t , body force b, and displacement g are pre-

scribed based on the exact solution uexact in Eq. (44):

t � ηTCεexact, ∀x ∈ ∂Ωt (45)

g � uexact, ∀x ∈ ∂Ωg (46)

b �
[

σ exact
11,1 + σ exact

12,2
σ exact
21,1 + σ exact

22,2

]
, ∀x ∈ Ω (47)

where εexact and σ exact are exact strain and stress defined as:

εexact �
⎡

⎣
εexact11
εexact22
2εexact12

⎤

⎦ �
⎡

⎣
uexact1,1
uexact2,2

uexact1,2 + uexact2,1

⎤

⎦ �
⎡

⎣
0.1
0.1
0.35

⎤

⎦ (48)

σ exact � Cεexact, η �
⎡

⎣
n1 0
0
n2

n2
n1

⎤

⎦ (49)

where η is the matrix of outward unit normal vector of the
boundary,C is thematrix of elastic tensorwithYoung’smod-
ulus E � 2.1 × 1011 and Poisson ’s ratio ν � 0.3. The

Fig. 8 Flowchart of the RKPM procedure
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Fig. 9 Domain discretization for model problem in 2D circular domain
Ω

traction t is imposed on ∂Ωt : (x1, x2) ∈ ∂Ω, x2 > 0.5,
essential boundary conditions g are enforced on ∂Ωg :
(x1, x2) ∈ ∂Ω, x2 ≤ 0.5, and the body force is b � 0 in

this case. Accordingly, the input file for this problem is cre-
ated by the function getInput with three data structures:
RK, Quadrature, and Model, which define the RK shape
functions, quadrature rules, numerical parameters (such as
penalty parameters, elastic modulus, and Poisson ratio),
respectively. A sample input file for the above-mentioned
linear patch test is given in Listing 1, where RK contains the
following fields:

• KernelFunction: kernel functions with different lev-
els of continuity.

• KernelGeometry: the nodal support shape where
“CIR” and “REC” represent circular and rectangular sup-
ports, respectively.

• NormalizedSupportSize: normalized support size
c̃.

• Order: the order of basis (constant, linear, or quadratic).

function [RK,Quadrature,Model] = getInput()
%% INPUT FILE
% Sample Input File for Patch Test 
%% (1) Material
% Linear Elasticity
% Lame Parameters for Young's modulus and Poisson ratio
Model.E = 2.1E11; Model.nu = 0.3;
Model.Condition = 'PlaneStress'; % PlaneStress, or PlaneStrain
Model.ElasticTensor = 
getElasticTensor(Model.E,Model.nu,Model.Condition);
Model.DOFu = 2;                  % two dimensional problem
%% (2) Geometry
theta = [0:pi/18:2*pi-pi/18]'; r = ones(size(theta));
[x1_vertices,x2_vertices] = pol2cart(theta,r);
% ensure the boundary segments to be counter clockwise
[x1_vertices, x2_vertices] = poly2ccw(x1_vertices, x2_vertices);
Model.xVertices = [x1_vertices, x2_vertices];
Model.DomainArea = polyarea(x1_vertices,x2_vertices);
%% (3) Boundary condition
% If an edge is not specified, natural BC with zero traction is 
imposed.
Model.CriteriaEBC = @(x1,x2) find(x2<=0.5); % user input
Model.CriteriaNBC = @(x1,x2) find(x2>0.5); % user input
% beta parameter for Nitches Method
Model.Beta_Nor = 1E2;
% For verification purpose, provide the exact displacement solution
syms x1 x2 % use x1 and x2 as x- & y- coordinates exact solution
Model.ExactSolution.u_exact =[0.1 + 0.1*x1 + 0.2*x2;

0.05 + 0.15*x1 + 0.1*x2;];
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[Model.ExactSolution.S,...
Model.ExactSolution.g,...
Model.ExactSolution.t,...
Model.ExactSolution.b] = getBoundaryConditions(Model);
Model.ExactSolution.Exist = 1;

%% (4) Discretization Method,
% (...A) MATLAB built-in FE mesh generator: Default
Model.Discretization.Method = 'A'; 
Model.Discretization.Hmax = 0.1; % max nodal distance
%% (5) RK shape function parameter
RK.KernelFunction = 'SPLIN3';       % SPLIN3
RK.KernelGeometry = 'CIR';          % CIR, REC
RK.NormalizedSupportSize = 2.01;    % suggested order n + 1;
RK.Order = 'Linear';                % Constant, Linear, Quadratic
%% (6) Quadrature rule
Quadrature.Integration = 'SCNI';       % GAUSS, SCNI, DNI
Quadrature.Stabilization = 'N';        % M, N, WO
Quadrature.Option_BCintegration = 'NODAL'; % NODAL OR GAUSS
Quadrature.nGaussPoints = 6; % #Gauss Points per cell
Quadrature.nGaussCells = 10; % #GaussCells on the short side of domain
end

Listing 1. Input files of the linear patch test.

Note that the RK shape functions are computed at the
beginning of the simulation based on the information in the
structure RK. The variable names for kernel functions with
different levels of continuity are listed in Table 1, and the cor-
respondingmathematical expressions of each kernel function
are given in Appendix A

In Listing 1, Quadrature contains the following fields:

• Integration: basic quadrature rules, where “DNI,”
“SCNI,” and “GAUSS” options are provided.

• Stabilization: types of stabilization for nodal inte-
gration, where symbol “N” represents naturally stabilized
nodal integration and symbol “M” represents modified
nodal integration as described in Sect. 2.3.3.

• Option_BCintegration: quadrature rules for
boundary integrals, including “NODAL” and “GAUSS”
options.

Table 1 The abbreviation of the kernel functions used in the code

Name Continuity Represented kernel function

HVSIDE C−1 Heaviside

SPLIN1 C0 Linear B-spline (tent)

SPLIN2 C1 Quadratic B-spline

SPLIN3 C2 Cubic B-spline

SPLIN4 C3 Quartic B-spline

SPLIN5 C4 Quintic B-spline

• nGaussPoints: the number of Gauss points Ng ∈ N in
each background integration cell. For example, Ng � 6
denotes 6 × 6 Gauss points in each cell

• nGaussCells: the parameter determines the number of
background integration cells along x1 or x2 direction of
the problem domain, depending on the problem domain
dimension.

Note that the nGaussPoints and nGaussCells are
used only for Gauss integration. In addition, Model con-
tains the following fields:

• E, nu: Young’s modulus E , Poisson ratio ν.
• DOFu: the number of nodal degrees of freedom, DOFu =
2 for 2D elasticity.

• BetaNormalized: normalized penalty parameter.
• xVertices: physical coordinates of integration cells.
• CriteriaEBC: function handle to define the essential
boundaries.

• CriteriaNBC: function handle to define the natural
boundaries.

To implement the traction t , body force b, displacement g
based on the exact solution uexact in Eqs. (45)–(49), and
the switch matrix S, the symbolic computation in MAT-
LAB is employed to obtain the expression of t , b, g, and
S. As shown in Listing 2, for any given exact displace-
ment field uexact(x) in the symbolic form, t , b, g, and S
based on Eqs. (45)–(49) are obtained from the function
Pre_GenerateBoundaryConditions with uexact as
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an input variable, as shown in Listing 3. Then, these vari-
ables are saved as function handles under the structure
Model.ExactSolution by matlabFunction com-
mand (note: a function handle is a data type in MATLAB
to store an association with a function). Alternatively, if the
exact solution uexact is not specified, then one can define trac-
tion t , body force b, displacement g, and switch matrix S in

individual functions, as shown in Listing 4. The structure
Model.ExactSolution contains the following fields:

• t: return the traction t .
• b: return the body force vector b.
• g: return the imposed displacement g.
• S: return the switch matrix S.

% give the exact solution of the displacement
syms x1 x2 % please use x1 and x2 as coordinates
Model.ExactSolution.u_exact =[0.1 + 0.1*x1 + 0.2*x2; 
                              0.05 + 0.15*x1 + 0.1*x2;]; 
% give the expression of function handle of Switch S, essential  
% boundary conditions g, traction t, and body force b
if isfield(Model,'ExactSolution') % if given analytical displacement
    [Model.ExactSolution.S,Model.ExactSolution.g,...
     Model.ExactSolution.t,Model.ExactSolution.b] = ...
    getBoundaryConditions(Model); 
else % if S, g, t, b are defined in functions
    Model.ExactSolution.S = @getSebc; % function getSebc
    Model.ExactSolution.g = @getGebc; % function getGebc
    Model.ExactSolution.t = @getTraction; % function getTraction
    Model.ExactSolution.b = @getBodyForce; % function getBodyForce
end

Listing 2. Command lines of defining boundary conditions by providing an analytical 
expression of displacement or defining imposed traction , body force , 

displacement , and switch matrix . 

function [function_S,function_g,function_traction,function_b] = 
getBoundaryConditions(Model)
syms x1 x2 n1 n2
% function handle for essential boundary condition g
u = Model.ExactSolution.u_exact; 
C = Model.ElasticTensor;
function_g = matlabFunction(u);
% function handle for stress
epsilon_x1 = diff(u(1),x1);
epsilon_x2 = diff(u(2),x2);
epsilon_x12 = (diff(u(1),x2)+diff(u(2),x1));
stress = C*[epsilon_x1;epsilon_x2;epsilon_x12];
% function handle for traction t
eta = [n1 0 n2; 0 n2 n1;];
traction = eta*stress;
function_traction = matlabFunction(traction,'Vars',[x1 x2 n1 n2]);
% function handle for body force b
b = [divergence([stress(1),stress(3)],[x1,x2]);
     divergence([stress(3),stress(2)],[x1,x2]);];
function_b = matlabFunction(b,'Vars',[x1 x2]);
% function handle for switch S
function_S = matlabFunction(sym(diag([1 1])),'Vars',[x1 x2]); 
end

Listing 3. Command lines of the function that generates the exact traction , body force , 
imposed displacement , and switch matrix  through MATLAB symbolic operation. 
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function [ t ] = getTraction(x1,x2,n1,n2)
% Input: x1,x2: Cartesian coordinate
% Output: t: a 2 by 1 vector for the traction
E = 2.1E11; nu = 0.3;
Condition = 'PlainStress'; % PlaneStress, or PlaneStrain
C = getElasticTensor(E,nu,Condition);
Strain_exact = [0.1; 0.1; 0.35];     
stress = (C*Strain_exact);
eta = [n1 0 n2; 0 n2 n1;];
t = eta*stress;
end 

function [ SEBC ] = getSebc(x1,x2)
% Input:  x1,x2: coordinates in 1,2
% Output: SEBC: a 2 by 2 matrix for the switch matrix on EBC
SEBC = diag([1 1]); 
End 

function [ gEBC ] = getGebc(x1,x2)
% Input:   x1,x2: Cartesian coordinate
% Output:  gEBC: a 2 by 1 vector of prescribed displacement on EBC
gEBC =[0.1 + 0.1*x1 + 0.2*x2;
       0.05 + 0.15*x1 + 0.1*x2];
End 

function [ b ] = getBodyForce(x1,x2)
% Input:  x1,x2: Cartesian coordinate
% Output: b: a 2 by 1 vector for the body force
b = [0; 0;];
end

Listing 4. Functions that define imposed traction , body force , displacement , and 
switch matrix . 

3.3 Domain discretization

After the definition of basic model input parameters (RK,
Quadrature, Model), the function Pre_Generate
Discretization(Model) is called for domain dis-
cretization. Pre_GenerateDiscretization will
return the structure Discretization which consists of
the following fields:

• xI_Boundary: coordinates of the boundary RK nodes
• xI_Interior: coordinates of the interior RK nodes
• nP: the total number of discretized RK nodes, NP.

As shown in the command lines in Listing 5, the
MATLAB built-in functions geometryFromEdges and
generateMesh are employed to decompose the domain
into conforming sub-domains (that can be considered as an
FEMmesh), and the resulting vertices are directly employed
as meshfree nodes.
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% create PDE model object for MATLAB default mesh generator
% for more information, please refer to 
%https://www.mathworks.com/help/pde/ug/pde.pdemodel. 
%geometryfromedges.html?s_tid=doc_ta
model = createpde;
% read in the domain vertices from Model of getInput
x1_vertices = Model.xVertices(:,1);
x2_vertices = Model.xVertices(:,2);
% Create polygon based on edge of the vertices
R1 = [3,length(x1_vertices),x1_vertices',x2_vertices']';
% gm is the geometry based on vertices, 
% sf is a set formula created to define if there is any subtraction 
% between geometry, eg sf = R1-C1 where C1 may be a circle  
gm = [R1]; sf = 'R1';
% create geometry
ns = char('R1'); ns = ns';
% Decompose constructive geometry into minimal regions 
g = decsg(gm,sf,ns);
% create geometry for Model object 
geoModel = geometryFromEdges(model,g);
% generate FE mesh for Model by MATLAB
FEmesh = generateMesh(model);
% Use FE mesh nodes as RK nodes.
RKnodes = FEmesh.Nodes';  

Listing 5. Command lines of domain discretization. 

Alternatively, users of RKPM2D can also define the
meshfree nodes manually or importing an FEM mesh
from CAD/FEM software instead of using the MAT-
LAB built-in meshing function. Such a subroutine,
sub_ReadNeutralInputFiles, is given in Listing 6
which reads in nodal coordinates from a PATRAN neutral
file.

function [xI] = sub_ReadNeutralInputFiles(NeutralFileName)
% Read-in the CAD/FEA neutral file in Patran neutral format
% e.g., NeutralFileName = 'FE_Neutral.dat';
%
filename = fullfile(NeutralFileName); % open the full neutral file
T = readtable(filename); % read in table format in MATLAB
C = table2cell(T); % convert table format to cell format
% Convert cell format to double precision to obtain coordinates
nLine = length(C); % number of lines in neutral file
C_double = cellfun(@str2num,C,'UniformOutput',false);
% Read discretization information
LineOfC = C_double{2};
NNODE = LineOfC(5); % number of nodes
NELEM = LineOfC(6); % number of elements
xI = zeros(NNODE,2); % nodal coordinates initialization
disp(['From ',filename,' file: #node is ',num2str(NNODE),', #element 
is ',num2str(NELEM)])
% Read the file 
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iL = 2; idx_node = 1;
while (iL <= nLine) % read line by line from the input files

LineMatrix = C_double{iL};
if ~isempty(LineMatrix) % no empty line is read
IDCARD = LineMatrix(1); 
%% IDCARD = 01 is the coordinates list; Read coordinates
if (IDCARD == 1) && length(LineMatrix) == 9
iL = iL + 1;  % read next line 
xI(idx_node,1:2) = C_double{iL}(1:2);
idx_node = idx_node + 1; % next node
iL = iL + 1;  % next line  
end
end % end if ~isempty
iL = iL + 1; % next line

end % end of reading each line
end % end of the function

Listing 6. Command lines of reading nodal coordinates from a Patran neutral file.

3.4 Quadrature point generation

The quadrature points are generated in the function
Pre_GenerateQuadraturePointswhich support the
following two domain integration schemes:

• Nodal integration, where the Voronoi cells are defined.
• Gauss integration, where the background integration cells
are defined.

Standard Gauss integration cell and the corresponding coor-
dinates and weights of Gauss points are employed for
Gauss integration. As for nodal integration, the quadra-
ture points and weights are based on Voronoi cells. The
construction of Voronoi diagram is achieved by employ-
ing the function getVoronoiDiagram, which is mod-
ified from the open-source code sub_VoronoiLimit
[48]. By calling getVoronoiDiagram, the structure
VoronoiDiagramwhich contains the followingfieldswill
be returned:

• VerticeCoordinates: all vertices’ coordinates of
Voronoi cells.

• VoronoiCell: indexes of vertices within each Voronoi
cell.

The VoronoiDiagram structure defines the quadra-
ture rules required for nodal integration as described in
Eqs. (26) and (27). By looping over the Voronoi cells,
the following two classes are added by Pre_Generate
QuadraturePoints into the structure Quadrature
which defines the quadrature rules to compute the RK shape
functions for domain and boundary integration:

• Domain: class that defines the variables required for
domain integration.

• nQuad: the total number of quadrature points.
• xQuad: the coordinates of quadrature points.
• Weight: quadrature weights for domain integral.

• BC: class that defines the variables required for boundary
integration.

• nQuad_onBoundary: the number of quadrature
points on the boundary.

• xQuad_onBoundary: coordinates of quadrature
points on the boundary.

• Weight_onBoundary: quadrature weights for con-
tour integral.

• Normal_onBoundary: outward unit normal vectors
at quadrature points along the boundary.

3.5 RK shape function generation

In FE programing, double loops are required to evaluate the
stiffness matrix and force vector, including one loop over
all elements and another loop over all quadrature points
within each element. In RKPM, only one loop over all
quadrature points is required if a nodal integration method
is used. As shown in Fig. 10, at each quadrature point, the
RK shape functions and their derivatives ΨI (xN ),ΨI ,1(xN ),
andΨI ,2(xN ) [and/or smooth and implicit gradients given in
Eqs. (29) and (38)] are evaluated in the physical domain. In
contrast, FEM shape functions and derivatives constructed
in the parametric domain and require an isoparametric
mapping process which may introduce large errors when the
elements are severely distorted.
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Fig. 10 Flowchart of the algorithm in a RK and b FE shape function generation

Another difference in computing RK and FE shape func-
tions is the determination of nodal neighbors. FEM relies on
the use of an element mesh to define the shape functions,
and thus, the neighbors for a given evaluation point are sim-
ply the nodes defining the element. In contrast, in RKPM
the shape functions are defined directly at nodes without
the element connectivity. Consequently, a neighbor search
is necessary to determine the neighbors of a given evalua-
tion point in RKPM. The neighbor search algorithm could
be CPU intensive, especially for 3D simulations, so efficient
spatial search algorithms such as KD-Tree [49], DESS [50],
among others [33–36] have been employed. In this study,
the efficient search algorithms KDTreeSearcher [51] and
rangesearch function under KDTreeSearcher are
employed. The command line for constructing the neighbor
list is:

[NeighborList] = rangesearch(xI,x,SupportSize,'Distance','euclidean');

Here the inputs of rangesearch are explained as fol-
lows

• xI: coordinates of RK nodes x I .
• x: coordinates of evaluation points x.
• SupportSize: the support size aI .

Evaluation of RK shape functions with respect to
RK nodes x I at an evaluation point x is performed in
getRKShapeFunction, for which the program structure
is illustrated in Algorithm 1 to Algorithm 4. Note that, in
the evaluation of the derivatives of kernel functions in Algo-
rithm3, the derivative of the distance zI ,i � (xi−xi I )(

zI a2I
) becomes

singular when the evaluation point x approaches node x I

(i.e., zI � ||x − x I || ≈ 0). This is avoided by setting zI �
0,∇zI � 0 if ||x − x I || < eps, where eps is the default pos-
itive machine precision number in MATLAB, which works
well for symmetric and smooth kernels. Alternatively, we
can set zI ,1 � (x1−x1I )(

zI a2I +eps
) , to keep the denominator of zI ,1

positive (as with zI ,2). The latter approach is implemented
in RKPM2D.
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Algorithm 1: RK shape functions   evaluation 
1. 
2. % , order & kernel support size
3. ; ; 
4.       Neighbor List: 
5. %  Initialize the moment matrix 
6. for do
7. %  Eq. (3) 
8. %  Eq. (7) 
9. %  Eq. (4), sum moment matrix 

10. end for
11. %  Eq. (2) 
12. ;

13. 

14. 
15. end function 

Algorithm 2: Basis vector computation  
1. 
2. 1 ; 2

3. 1 ; 2

4. 
5. for do
6. for do
7. 
8. 
9. 
10. 
11. 
12. end for
13.       end for 
14. end function
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Algorithm 3: Kernel function evaluation (Cubic B-spline with circular support) 
1. 
2. %  different types of kernels can be implemented in a similar manner 

3. 
‖ ‖

4. if then

5. 
6. elseif then

7. 

8.       else
9. 
10.       end if
11.  

12. 
13. end function

Algorithm 4: Moment matrix computation 
1. 
2. 
3. 
4. 
5. end function

The evaluations of direct derivatives ΨI ,1(xN ) and ΨI ,2

(xN ) for DNI and GI at quadrature points xN are straight-
forward as the direct derivatives can be computed by
Algorithm 1 to Algorithm 4. In SCNI, the direct deriva-
tives are replaced with smoothed derivatives Ψ̃I ,1(xN ) and
Ψ̃I ,2(xN ), for which the smoothing procedure is given in
Algorithm 5. VoronoiCell{I }(K ) denotes a cell structure
for Voronoi cells to define the K th index of cell vertices
for the I th Voronoi cell, and Vertices is a vector that
defines the Cartesian coordinates of Voronoi cell vertices.

The smoothing process in Algorithm 5 is computed by the
function getSmoothedDerivative as given in Listing
7. For given inputs of a smoothing cell vertices’ coordi-
nates {xv}NV1 (denoted as “xV” in Listing 7) and nodal
coordinates x I (denoted as “xI” in Listing 7), the func-
tion getSmoothedDerivative gives the corresponding
smoothed derivatives Ψ̃I ,1(xN ), Ψ̃I ,2(xN ) and the smoothing
domain area AN .
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Algorithm 5: SCNI smoothed derivative  
1. for do %  Loop over quadrature points (nodal points) 
2. ∶ % Number of cell edge for Voronoi cell 
3. ∶ % Voronoi vertices coordinates
4. ← %  Calculate domain area of Voronoi cell 
5. ← Discretization % RK nodal points 
6. %  initialization for shape function evaluated at smoothing point 
7.       for do %  Loop over cell edges of Voronoi cell 
8. find Voronoi cell edge quadrature points  from 
9.             find Voronoi cell edge normal  from 
10.             find Voronoi cell edge length  from 
11. 
12. 
13.       end for 

14. % Smoothed derivative, Eq. (29)

15. end for

function [SHPDX1_smoothed,SHPDX2_smoothed,Area_Cell] = 
getSmoothedDerivative(RK,xI,xV)
% Input : xI, RK nodes; xV, vertices of the cell;
% Output: Smoothed Derivative SHPDX1/2 and cell area
% smoothing point sequence for SCNI cell
nP = length(xI); % number of node  
nV = length(xV); % number of vertices  
% obtain the area of each voronoi cell
Area_Cell = polyarea(xV(:,1),xV(:,2))+eps;
% initiate shape function at the smoothed points
SHP_Smoothed_local = sparse(2,nP);
for k = 0:nV-1 % loop over each edge for each cell

% find the two ends of the edge
if k == 0 

Vertex1 = xV(end,:);
else

Vertex1 = xV(k,:);
end
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Vertex2 = xV(k+1,:);
% Cell edge length Lk_Cell and normal Nk_Cell
Lk_Cell = norm(Vertex2-Vertex1,2);
xv21 = Vertex2 - Vertex1;
xv21_Normal = xv21*[cos(pi/2) -sin(pi/2); sin(pi/2) cos(pi/2)];
% calculate the unit normal, eps is machine precision
Nk_Cell = xv21_Normal/(norm(xv21_Normal,2)+eps);
if norm(Lk_Cell,2) < eps || norm(Nk_Cell,2) < eps

Lk_Cell = eps; Nk_Cell = [eps eps];
end
% Smoothing Points of each segment
xtilde_CellEdge = (Vertex1 + Vertex2)/2;  
% RK shape function evaluation at smoothing point
[SHP_xtilde] = ...
getRKShapeFunction(RK,xI,xtilde_CellEdge(1:2),[1,0,0]);
SHP_Smoothed_local = SHP_Smoothed_local + ...
(Nk_Cell'*SHP_xtilde)*Lk_Cell;

end % end of each cell boundary
% evaluate the smoothed derivative
SHPDX1_smoothed = (1/Area_Cell)*SHP_Smoothed_local(1,:);
SHPDX2_smoothed = (1/Area_Cell)*SHP_Smoothed_local(2,:);            
end

Listing 7. Command lines for smoothing procedure in each cell.

The computed shape functions and their derivatives are
stored in the structure Quadrature as:

• SHP: matrix of size nQuad × nP that stores the shape
functions ΨI (xN ) of all nodes.

• nQuad: number of quadrature points for domain integra-
tion, the value � NG for Gauss integration and � NP for
nodal integration

• SHPDX1: matrix of size nQuad×nP that stores the shape
function derivatives ΨI ,1(xN ) or Ψ̃I ,1(xN ) of all nodes.

• SHPDX2: matrix of size nQuad×nP that stores the shape
function derivatives ΨI ,2(xN ) or Ψ̃I ,2(xN ) of all nodes.

The shape functions can be evaluated at the boundary in
a similar manner as described in Algorithm 5.

3.6 Stabilizationmethods

The stabilization terms associated with M- and N-
type stabilization methods are computed under the func-

tion Pre_GenerateShapeFunction where RK shape
functions and direct/smoothed gradients are also evalu-
ated. For the M-type stabilization method discussed in
Sect. 2.3.3.1, the nodal representative domain is divided
into sub-cells by using the MATLAB built-in function
delaunayTriangulation, which divides the polygon
Voronoi domain into several triangular sub-cells. The proce-
dures for generating the sub-cells and associated evaluation
points for the additional stabilization terms are shown in
Listing 8. By looping over each sub-cell, the shape function
gradients with associated integrationweights (i.e., the area of
each sub-cell) are computed. At each sub-cell, the function
getSmoothedDerivative in Listing 7 is employed to
evaluate the smoothed gradient to construct theM-type stabi-
lization terms in [Eq. (35)]. An alternative way is to evaluate
direct shape function gradient [Eq. (36)] by Algorithm 1 to
Algorithm 4 at the centroid of each sub-cell for the M-type
stabilization,which is adopted in Sect. 4 forDNI-basedmeth-
ods.
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% M-type Stabilization by subdivision of integration cell
xVerices_MSCNI = unique([xV; xQuad(idx_nQuad,:)],'rows');
% use delauny triangle as subcell
DT_MSCNI = delaunayTriangulation(xVerices_MSCNI(:,1),...
                                 xVerices_MSCNI(:,2)); 
[N_subcell,~] = size(xNs_MSCNI);
for s = 1 : N_subcell % loop over the sub cell  
% vertices coordinates of the sub cell 
xV_SubCell = DT_MSCNI.Points(DT_MSCNI.ConnectivityList(s,:),:); 
% evaluate area of the sub cell
AREA_Is{idx_nQuad}(s,1) = polyarea(xV_SubCell(:,1),xV_SubCell(:,2));
end

Listing 8. Command lines for sub-division of gradient smoothing cells for the M-type 
stabilization. 

Once all stabilization terms are computed, they
are stored under the structure Quadrature.Mtype
Stabilization with the following fields:

• nS: number of sub-cells NS for the N -th Voronoi cell.
• SHPDX1_Is: cell structure contains matrix of size nS ×
nP that stores the shape function derivatives ΨI ,1

(
x̂SN
)
or

Ψ̃I ,1

(
x̂SN
)
in the N -th Voronoi cell

• SHPDX2_Is: cell structure contains matrix of size nS ×
nP that stores the shape function derivatives ΨI ,2

(
x̂SN
)
or

Ψ̃I ,2

(
x̂SN
)
in the N -th Voronoi cell

• AREA_Is: cell structure that stores area of the sth sub-cell
associated with the N -th Voronoi cell

Unlike the M-type stabilization method, the subdivision
of the Voronoi diagrams is not required in the N-type stabi-
lization method discussed in Sect. 2.3.3.2. The second-order
shape function derivatives are achieved by taking direct
derivatives of the first-order implicit gradients, which can be
easily achieved by replacing the HT

0 in Algorithm 1 with HT
1

and HT
2 shown in Eq. (39). The corresponding output ΨI ,1

(x) and ΨI ,2(x) would become Ψ ∇
I1,1 and Ψ ∇

I1,2 when HT
1

is used (or Ψ ∇
I2,1 and Ψ ∇

I2,2 when HT
2 is used). The second

moments of inertia M1(xN ), M2(xN ) in each nodal integra-
tion domain are computed straightforwardly by the formula
in [52] from the Voronoi vertices’ coordinates as shown in
Listing 9.

% NSNI stabilization for calculating moment inertia
for idx_nQuad = 1:nQuad % loop over quadrature points 
% xQuad(idx_nQuad,:) is quadrature points (nodal points) 
% Evaluation of second order gradient of shape function 
IG = 1; % where 'IG' is the switch to turn on/off implicit gradient 
[~,~,~,SHPDX1X1(idx_nQuad,:),SHPDX2X2(idx_nQuad,:),SHPDX1X2(idx_nQuad,:
)] = getRKShapeFunction(RK,xI,xQuad(idx_nQuad,:),IG);
% normalized the vertices coordinates by mean coordinates
Vertices1 = xV - ones(nV,1)*mean(xV); 
Vertices2 = circshift(xV - ones(nV,1)*mean(xV),[-1 0]); 
% using formula to calculate inertia for cell by vertices
M1N(idx_nQuad) = 
(1/12)*abs(sum((Vertices1(:,2).^2+Vertices1(:,2).*Vertices2(:,2)+Vertic
es2(:,2).^2).*(Vertices1(:,1).*Vertices2(:,2) - 
Vertices2(:,1).*Vertices1(:,2)))); 
M2N(idx_nQuad) = 
(1/12)*abs(sum((Vertices1(:,1).^2+Vertices1(:,1).*Vertices2(:,1)+Vertic
es2(:,1).^2).*(Vertices1(:,1).*Vertices2(:,2) - 
Vertices2(:,1).*Vertices1(:,2)))); 
% Parallel axis theorem for shift it back to global coordinates
dx1 = sqrt((xQuad(idx_nQuad,1)-mean(xV(:,1))).^2);
dx2 = sqrt((xQuad(idx_nQuad,2)-mean(xV(:,2))).^2);
M1N(idx_nQuad) = M1N(idx_nQuad) + Area_VoronoiCell(idx_nQuad)*dx1^2;
M2N(idx_nQuad) = M2N(idx_nQuad) + Area_VoronoiCell(idx_nQuad)*dx2^2; 
end

Listing 9. Command lines for evaluating , ,  in N-type 
stabilization for each node. 
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Once all stabilization terms are computed, they
are stored under the structure Quadrature.Ntype
Stabilization with the following fields:

• SHPDX1X1: matrix of size nP × nP that stores the shape
function second derivatives Ψ ∇

I1,1 of all nodes.• SHPDX1X2: matrix of size nP × nP that stores the shape
function second derivatives Ψ ∇

I1,2 of all nodes.• SHPDX2X2: matrix of size nP × nP that stores the shape
function second derivatives Ψ ∇

I2,2 of all nodes.• M: second moments of inertia M1(xN ), M2(xN ) in each
nodal integration domain.

3.7 Matrix evaluation and assembly

Once RK shape functions are computed, the function
MatrixAssmebly is called to evaluate and assemble the
stiffness matrix and force vector.

The 2×2matrix K c
I J in Eq. (15) denotes a block of entries

corresponding to nodes I and J , which can be evaluated at a
quadrature point as follows:

Algorithm 6: Pseudo code to evaluate  at a quadrature point 
1. , , ,

2. %  given quadrature point  with weight  and gradient ,

3. %  calculate 2  sub-block matrix 
4. %  sub-matrix in Eq. (15) evaluated at 
5. end function 

To obtain the 2NP×2NP matrix K c, one can assemble the
sub-block K c

I J into the total matrix K c based on the nodal
indexes I and J , as described in Algorithm 7

Algorithm 7: Pseudo code to assemble 
1. %  initialization of matrix 
2. % contains all the information for numerical integration 
3.  

4 for  do %  is the number of quadrature points 
5. , %  obtain quadrature point coordinate and weight 
6.      for ∈  do   % : List of nodes that cover 
7.           for ∈  do 
8. , %  obtain gradients ,

9. , , ,

10. ← Assemble 

11.           end for 
12.      end for 
13. end for 

The above algorithm can be conveniently implemented in
C/C++/FORTRAN in a highly efficient manner. However, it
becomes time-consumingwhen the involved “for” loops over
quadrature points and neighbor nodal lists are executed in the
MATLAB environment. To enhance the computational effi-
ciency of RKPM2D, we explore the capability of MATLAB
in sparse matrix multiplication and assembly and directly
compute the total matrix K c:

K c �
∫

Ω

BT(x)CB(x)dΩ (50)

where B(x) is defined as

B(x) � [B1(x), B2(x), . . . , BNP(x)], (51)

The domain integration of Eq. (50) can be done by either
Gauss integration in Eq. (24) or nodal integration in Eq. (26).
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In a similar manner, we can directly compute the total body
force vector Fb, the total traction vector Ft, and theNitsche’s
terms Kβ, K g, Fβ, Fg , where an array Ψ (x) that stores all
the shape functions is defined:

Ψ (xN ) � [Ψ 1(x),Ψ 2(x), . . . ,Ψ NP(x)] (52)

Once all these matrices and vectors are obtained, the total
stiffness matrix K and total force vector F can be calculated
as follows

K � K c + Kβ −
(
K g + K gT

)
(53)

F � Fb + Ft + Fβ − Fg (54)

The procedure described by Eqs. (50)–(54) is adopted in
the implementation ofRKPM2D, and the associated program
structure of MatrixAssmebly is given in Algorithm 8.

Algorithm 8: Stiffness matrix and force vector assembly 
1. 
2. %  initialization of stiffness matrix and force vector
3. , , ;  , , , ;

4. ; %  elastic tensor and penalty parameter 
5. %  assemble the stiffness matrix and body force vector 
6. . nQuad %  # of quadrature points 
7. for do
8. ,

9. %  tangent stiffness by Eq. (24)/(26)/(31) 
10. 
11. % : additional stabilization in Eq. (35)/(36), (40)/(43) 
12. %  obtain body force 
13. %  body force by Eq. (24)/(26)
14.       end for 
15. %  boundary integration for natural and essential boundary conditions 
16. 
17. for do 
18. ,

19. if then
20. %  obtain prescribed displacement
21. %  obtain switch matrix 
22. %  Eqns. (16) and (17) by (25)/(27)/(32)(33)  
23. 
24. 
25. 
26. 
27. elseif then
28. %  obtain surface traction
29. 
30. end if
31.       end for
32. ; ;

33. end function
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Accordingly, theMATLAB command lines for the assem-
bly of the stiffness matrix K c and body force vector Fb are
given in Listing 10.

DOFu = Model.DOFu; % load degrees of freedom
% B matrix and Psi matrix initiation
B = sparse(3,nP*DOFu) ; 
PSI = sparse(2,nP*DOFu) ;  
% Load shape function from Quadrature
SHP = Quadrature.SHP;
SHPDX1 = Quadrature.SHPDX1;
SHPDX2 = Quadrature.SHPDX2;
for idx_quad = 1:nQuad % loop over quadrature points 
 B(:,:) = 0; PSI(:,:) = 0;
 % Load B and Psi matrix with shape function and their derivative
 B(1,1:2:end) = SHPDX1(idx_nQuad,:);
 B(2,2:2:end) = SHPDX2(idx_nQuad,:);
 B(3,1:2:end) = SHPDX2(idx_nQuad,:);
 B(3,2:2:end) = SHPDX1(idx_nQuad,:); 
 PSI(1,1:2:end) = SHP(idx_nQuad,:);  
 PSI(2,2:2:end) = SHP(idx_nQuad,:); 
 % Stiffness matrix assembly
 K_c = K_c + (B')*(C)*B*(Weight(idx_nQuad,1));
 % Obtain the body force at quadrature point’s coordinates
 b = f_b(xQuad(idx_nQuad,1),xQuad(idx_nQuad,2));
 % Body force vector assembly
 F_b = F_b + (PSI')*b*(Weight(idx_nQuad,1));  
end

Listing 10. Command lines for the stiffness matrix  and body force vector 
assembly. 

Note that the MATLAB built-in sparse matrix data
structure [53] is adopted, so only nonzero components of

shape functions and shape function gradients are com-
puted and stored, which significantly reduces the memory
requirements. In Listing 11, the command lines for the

assembly of the traction force Ft and the Nitsche’s terms,
Kβ, K g, Fβ, Fg are given.

nP = Quadrature.nP; % number of nodal points
DOFu = Model.DOFu; % degrees of freedom of u
% Load Model, Young’s modulus
E = Model.E; 
% Load function handle for evaluating S,g,t
f_S = Model.ExactSolution.S;
f_g = Model.ExactSolution.g;
f_t = Model.ExactSolution.t;
% Beta Parameter for Nitsche's Method
beta = Model.Beta_Nor*E/sqrt((Model.DomainArea/nP)); % Penalty Number
% Load information required for boundary integration
nQuad_BC = Quadrature.BC.nQuad_onBoundary;
xQuad_BC = Quadrature.BC.xQuad_onBoundary;
Weight_BC = Quadrature.BC.Weight_onBoundary;
Normal_BC = Quadrature.BC.Normal_onBoundary;
SHP_onBC = Quadrature.BC.SHP_BC;
SHPDX1_onBC = Quadrature.BC.SHPDX1_BC;
SHPDX2_onBC = Quadrature.BC.SHPDX2_BC;
for idx_nQuad = 1:nQuad_BC % for loop of quadrature points at boundary  
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switch Quadrature.BC.EBCtype{idx_nQuad}
case {'NBC'}
% surface traction
t = f_t(xQuad_BC(idx_nQuad,1),xQuad_BC(idx_nQuad,2),n1,n2);
F_t = F_t + PSI'*t*Weight_BC(idx_nQuad);
case {'EBC'}
% Surface normal Eta
ETA = [n1 0 n2; 0 n2 n1]';
% Load B Matrix
B(:,:) = 0; 
B(1,1:2:end) = SHPDX1_onBC(idx_nQuad,:);
B(2,2:2:end) = SHPDX2_onBC(idx_nQuad,:);
B(3,1:2:end) = SHPDX2_onBC(idx_nQuad,:);
B(3,2:2:end) = SHPDX1_onBC(idx_nQuad,:);
% Essential boundary condition g
g = f_g(xQuad_BC(idx_nQuad,1),xQuad_BC(idx_nQuad,2));
% Switch s
S = f_S(xQuad_BC(idx_nQuad,1),xQuad_BC(idx_nQuad,2));
% Nitche's term
K_g = K_g + (PSI'*S'*ETA*C*B)*Weight_BC(idx_nQuad);
F_g = F_g + (B'*C*ETA*S*g)*Weight_BC(idx_nQuad);
K_beta = K_beta + beta*(PSI'*S*PSI)*Weight_BC(idx_nQuad);
F_beta = F_beta + beta*(PSI'*S*g)*Weight_BC(idx_nQuad);

end % end swtich different boundary conditions
end % end for loop of quadrature points at boundary

Listing 11. Command lines of assembly of the traction force and Nitsche’s terms.

% normal at quadrature points 
n1 = Normal_BC(idx_nQuad,1);
n2 = Normal_BC(idx_nQuad,2);
% PSI matrix at quadrature points 
PSI(:,:) = 0;
PSI(1,1:2:end) = SHP_onBC(idx_nQuad,:); 
PSI(2,2:2:end) = SHP_onBC(idx_nQuad,:);
% switch to different boundary conditions

As seen from Algorithm 8, Listing 10 and Listing 11, the
function MatrixAssembly only involves shape functions
and quadrature rules under the data structure Quadrature,
whereas the material parameters and evaluation of traction
t , body force b, essential boundary conditions g, and switch
S are obtained under the data structure Model. After the
assembly, the resultant systemof linear equations is obtained:

Ku � F (55)

which can be solved by either direct methods such as LU
factorization, Gauss elimination, or non-stationary iterative
methods such as PCG, GMRES, and BICGSTAB [54].Many
of these solvers are available in the public domain and can be
readily integrated into RKPM2D. Here, the MATLAB built-
in function mldivide is adopted, which takes advantage of
matrix symmetries and automatically assign an appropriate
matrix solver.

Remark Marginal changes in the inputs from Quadrature
and Model and slightmodifications in Listing 10 andListing
11 can be performed to convert the code to solve a different
type of equation. For demonstration, an example of modify-
ing the routine in Algorithm 8 to solve a diffusion equation
is given in Appendix B.

3.8 Post-processing

The final step of the program is to compute and visualize
the computed displacement, strain and stress fields with the
use of the routine PostProcess. The following fields are
computed and returned:

• uhI: matrix of size NP× 2 that defines the displacements
at RK nodes uh(x I ).

• Strain: double vector of size NP × 3 that defines the
strain at RK nodes ε(x I ) � [ε11(x I ), ε22(x I ), 2ε12(x I )].
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• Stress: double vector of size NP × 3 that defines the
stress atRKnodesσ (x I ) � [σ11(x I ), σ22(x I ), 2σ12(x I )].

For simplicity, the continuous fields of displacement,
strain, and stress are plotted based on Delaunay triangula-
tion of the whole domain by using the MATALB built-in
functions delaunayTriangulation and trisurf as
shown in Listing 12.

% Using delaunay Triangulation to post processing the scattered data 
% Index_BC is the index number of node on the boundary
tri = delaunayTriangulation(xI(:,1),xI(:,2) ,...
                   [Discretization.Index_BC',...
                    circshift(Discretization.Index_BC',[-1 0])]);
% plot u1 displacement
figure, trisurf(tri(tri.isInterior(),:), xI(:,1),xI(:,2),uhI(:,1));

Listing 12. Parts of the subroutine for Delaunay triangulation

4 Numerical examples

In this section, benchmark numerical examples are ana-
lyzed to examine the performance of the open-source code
RKPM2D. The reproducing kernel approximation with lin-
ear basis and cubic B-spline kernel is adopted, for which
circular support with a normalized support size c̃ � 2.0 is
employed. The normalized penalty parameter for Nitsche’s
method is chosen to be βnor � 100. In the examples, the
following domain integrationmethods are analyzed and com-
pared:

1. GI: Gauss integration in Eqs. (24)–(25), where different
integration orders are considered.

2. DNI: direct nodal integration in Eqs. (26)–(27)
3. MDNI: modified DNI formulation in Eq. (36)
4. NDNI: naturally stabilized DNI formulation in Eq. (43)
5. SCNI: stabilized conforming nodal integration in

Eqs. (31)–(33)
6. MSCNI: modified SCNI formulation in Eq. (35)
7. NSCNI: naturally stabilized SCNI in Eq. (40)

To access the accuracy of different numerical schemes,
the following normalized displacement and energy norms
are employed:

||u − uh ||L2�

√√√√
∫
Ω

[(
uh(x) − uexact(x)

)T(uh(x) − uexact(x)
)]
dΩ

∫
Ω

[
uexact(x)Tuexact(x)

]
dΩ

,

(56)

||u − uh ||E�

√√√√
∫
Ω

[(
εh(x) − εexact(x)

)T(
σ h(x) − σ exact(x)

)]
dΩ

∫
Ω

[
εexact(x)Tσ exact(x)

]
dΩ

(57)

inwhich the superscript “h” and “exact” denote the numerical
and exact solutions, respectively.

For domain integration involved in Eqs. (56) and (57), a
high-order Gauss integration is employed

||u − uh ||L2≈
√√√√
∑NGg

N�1

(
uhN − uexactN

)T(
uhN − uexactN

)
WN

∑NGg
N�1 u

exact
N

T uexactN WN

,

(58)

||u − uh ||E≈
√√√√
∑NGg

N�1

(
εhN − εexactN

)T(
σ h
N − σ exact

N

)
WN

∑NGg
N�1 εexactN

T
σ exact
N WN

(59)

where uhN � uh(xN ), uexactN � uexact(xN ), NGg is the total
number of Gauss points, andWN is the weight for the Gauss
points. The number of integration cells for error evaluation
is set equal to the total number of nodes, and 10× 10 Gauss
points per integration cell is used, so the total number of
quadrature points for error norm calculation is NGg � 100×
NP in Eqs. (58) and (59). The convergence rate for each
formulation is calculated by averaging the rates at different
refinement levels.

4.1 Patch test

In the first example, the linear patch test is analyzed to ver-
ify the accuracy of RKPM2D using linear basis in the RK
approximation. The elasticity equation in (9) is considered
with the exact solution defined as a linear polynomial func-
tion:

uexact �
[
0.1 + 0.1x1 + 0.2x2
0.05 + 0.15x1 + 0.1x2

]
(60)

Accordingly, the traction t � ηTCεexact is imposed on
∂Ωt : (x1, x2) ∈ ∂Ω, x2 > 0.5, where η is the collection
of outward unit normal vector of the boundary surface, C
is the matrix of elastic moduli with Young’s modulus E �
2.1 × 1011 and Poisson’s ratio ν � 0.3, εexact is the exact
strain with εexact � [0.1, 0.1, 0.35]T; g � uexact is enforced
on ∂Ωg : (x1, x2) ∈ ∂Ω, x2 ≤ 0.5, and the body force is
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Fig. 11 a Geometry 1, b geometry 2, c geometry 3, and d geometry 4 considered in the patch test

set to b � 0. Four geometries are considered, and their nodal
discretizations are shown in Fig. 11.

When Gauss integration (GI) is employed, uniform back-
ground integration cells with 1 × 1, 2 × 2, 4 × 4, or 6 × 6
Gauss points per cell is considered. The displacement and
energy error norms (Eqs. (58) and (59)) using GI, DNI, and
SCNI are given in Tables 2 and 3, respectively. As can be
seen, while low-order GI diverges, high-order GI (6×6 inte-
gration points per cell) can achieve the L2 errors around 10−4

but is computationally expensive, as will be shown later. For
nodal integrations, DNI leads to very large errors, whereas
SCNI exactly passes the patch test for all geometries.

Next, the solution accuracy with model discretization
refinement under both uniform and non-uniform discretiza-
tions is examined. As shown in Fig. 12, non-uniform dis-
cretizations are generated by introducing random numbers
between ±0.5h into the uniform discretizations, where h is
the nodal distance in the uniform discretizations of a unit

square. For GI, 4 × 4, 9 × 9, 14 × 14, and 19 × 19 back-
ground integration cells are constructed based on uniform
discretizations with 5 × 5, 10 × 10, 15 × 15, and 20 × 20
nodes, respectively. As shown in Tables 4, 5, 6, and 7, SCNI-
based methods pass the patch test independent of the type
of discretizations, whereas DNI-based methods and GI yield
large errors. For instance, the displacement error norm is
around 10−3 in DNI and 10−6 in GI 6 × 6 under uniform
discretizations in Table 4, and under non-uniform discretiza-
tions in Table 6 the error norms increase up to 10−2 and
around 10−5 ∼ 10−6 in DNI and GI 6 × 6, respectively.
Also, as shown in Table 5, the energy norm in uniform dis-
cretizations is around 10−2 in DNI and 10−5 in GI 6 × 6
and the error further increases in the non-uniform cases as
shown in Table 7. On the other hand, the error norms in SCNI
are always less than 10−12. Furthermore, for nodal integra-
tions with additional stabilizations (N-type and M-type), all
SCNI-based formulations (MSCNI and NSCNI) pass the lin-
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Table 2 L2 error norm
||u − uh ||L2 in linear patch tests Quadrature scheme Geometry 1 Geometry 2 Geometry 3 Geometry 4

GI (1 × 1) 1.2E− 01 1.1E+02 1.4E+02 5.1E+04

GI (2 × 2) 2.4E−03 9.5E−02 2.5E−02 2.5E−02

GI (4 × 4) 1.4E−04 4.2E−02 4.0E−03 5.2E−03

GI (6 × 6) 2.6E−05 2.4E−02 3.7E−03 1.6E−03

DNI 4.3E−02 2.8E−02 1.5E−02 2.0E−01

MDNI 1.2E−02 1.1E−01 1.2E−01 2.0E−02

NDNI 7.2E−03 1.5E−02 9.7E−03 1.8E−02

SCNI 1.2E−14 4.4E−14 2.9E−15 7.1E−15

MSCNI 2.6E−15 2.1E−14 3.1E−15 2.5E−15

NSCNI 3.2E−15 1.1E−14 3.4E−15 2.8E−15

Table 3 Energy error norm
||u − uh ||E in linear patch tests Quadrature scheme Geometry 1 Geometry 2 Geometry 3 Geometry 4

GI (1 × 1) 3.8E+00 3.1E+03 5.8E+02 4.5E+05

GI (2 × 2) 2.6E−02 3.3E−01 6.01E−01 1.4E−01

GI (4 × 4) 1.6E−03 1.1E−01 4.0E−02 5.4E−02

GI (6 × 6) 3.0E−04 1.1E−01 3.5E−02 1.0E−02

DNI 2.1E−01 1.5E−01 1.4E−01 2.8E−01

MDNI 7.2E−02 3.2E−01 3.8E−01 7.0E−02

NDNI 4.5E−02 6.4E−02 8.8E−02 4.4E−02

SCNI 1.1E−13 2.8E−13 8.1E−15 2.3E−14

MSCNI 1.8E−14 6.2E−14 9.5E−15 8.6E−15

NSCNI 1.0E−13 1.1E−13 1.3E−14 1.9E−14

Fig. 12 Uniform and non-uniform discretizations of a square domain with a 5×5, b 10×10, c 15×15, and d 20×20 nodes, where the non-uniform
discretizations from e to h consist of randomized nodal distributions that correspond to the uniform nodal distributions from a to d, respectively
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Table 4 L2 error norm
||u − uh ||L2 in linear patch tests
(uniform discretization)

Quadrature scheme Refinement level

5 × 5 10 × 10 15 × 15 20 × 20

GI (1 × 1) 8.9E−02 6.3E−02 3.4E−02 2.1E−02

GI (2 × 2) 1.1E−03 3.6E−04 1.9E−04 1.2E−04

GI (4 × 4) 2.3E−05 1.2E−05 5.9E−06 3.6E−06

GI (6 × 6) 1.2E−05 7.6E−06 4.3E−06 2.8E−06

DNI 1.7E−02 4.9E−03 2.3E−03 1.6E−03

MDNI 1.3E−02 3.1E−03 1.5E−03 9.5E−04

NDNI 2.0E−01 7.2E−02 3.7E−02 2.4E−02

SCNI 5.0E−15 5.0E−15 6.0E−15 5.7E−15

MSCNI 5.3E−15 3.1E−15 3.1E−15 6.5E−15

NSCNI 6.5E−15 3.8E−15 2.6E−15 4.7E−15

Table 5 Energy error norm
||u − uh ||E in linear patch tests
(uniform discretization)

Quadrature scheme Refinement level

5 × 5 10 × 10 15 × 15 20 × 20

GI (1 × 1) 2.2E+00 4.1E+00 3.9E+00 3.2E+00

GI (2 × 2) 6.2E−03 5.9E−03 4.8E−03 4.2E−03

GI (4 × 4) 1.9E−04 1.3E−04 9.0E−05 7.2E−05

GI (6 × 6) 9.7E−05 7.5E−05 6.2E−05 5.3E−05

DNI 1.7E−01 1.1E−01 7.1E−02 6.8E−02

MDNI 1.1E−01 5.8E−02 4.1E−02 3.3E−02

NDNI 7.3E−01 3.8E−01 2.9E−01 2.5E−01

SCNI 4.2E−14 8.2E−14 1.1E−13 1.8E−13

MSCNI 3.2E−14 6.9E−14 6.7E−14 1.4E−13

NSCNI 2.0E−14 6.5E−14 6.8E−14 1.5E−13

Table 6 L2 error norm
||u − uh ||L2 in linear patch tests
(non-uniform discretization)

Quadrature scheme Refinement level

5 × 5 10 × 10 15 × 15 20 × 20

GI (1 × 1) 1.3E−01 1.6E−01 3.2E−02 1.2E−02

GI (2 × 2) 1.3E−03 1.1E−03 1.3E−03 9.5E−04

GI (4 × 4) 7.9E−05 5.4E−05 3.0E−05 2.1E−05

GI (6 × 6) 1.4E−05 9.9E−06 5.7E−06 4.1E−06

DNI 2.6E−02 1.9E−02 3.9E−02 3.1E−02

MDNI 1.7E−02 1.0E−02 1.5E−02 1.2E−02

NDNI 9.1E−02 3.2E−02 4.6E−02 2.9E−02

SCNI 9.3E−15 5.2E−15 1.0E−14 6.3E−15

MSCNI 9.7E−15 2.8E−15 5.1E−15 4.7E−15

NSCNI 8.7E−15 3.1E−15 6.7E−15 4.1E−15

ear patch test, while all DNI-based formulations fail even
with the employment of additional stabilization techniques
due to the violation of variational consistency conditions.
To restore the variational consistency for DNI-based meth-
ods, the VCI approach [11] can be used, but is considered
out of the scope of this paper since conforming smoothing

(SCNI-based methods) can be employed to satisfy the con-
ditions.

4.2 Cantilever beam problem

A cantilever beam problem shown in Fig. 13 is considered
next. The exact displacement solution to this problem is:
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Table 7 Energy error norm
||u − uh ||E in linear patch tests
(non-uniform discretization)

Quadrature scheme Refinement level

5 × 5 10 × 10 15 × 15 20 × 20

GI (1 × 1) 2.8E+00 9.1E+00 1.9E+00 1.2E+00

GI (2 × 2) 1.4E−02 2.4E−02 4.0E−02 3.9E−02

GI (4 × 4) 9.3E−04 1.6E−03 1.3E−03 1.1E−03

GI (6 × 6) 1.4E−04 2.5E−04 2.6E−04 2.4E−04

DNI 2.6E−01 3.0E−01 5.2E−01 5.2E−01

MDNI 1.5E−01 1.4E−01 1.9E−01 1.6E−01

NDNI 4.5E−01 2.6E−01 2.9E−01 2.6E−01

SCNI 8.5E−14 1.3E−13 3.1E−13 3.6E−13

MSCNI 5.2E−14 4.9E−14 1.2E−13 1.4E−13

NSCNI 2.5E−14 4.8E−14 7.1E−14 1.1E−13

Fig. 13 Problem setting of a
cantilever beam under a shear
force

uexact1 � Px2
6E I

[
(6L − 3x2)x1 + (2 + ν)

(
x22 − W 2

4

)]
,

uexact2 � −P

6E I

[
3νx22 (L − x1) + (4 + 5ν)

W 2x1
4

+ (3L − x1)x
2
1

]

(61)

in which the Young’s modulus E � 1 and Poisson ratio
ν � 0.3 is selected, and the geometry is shown in Fig. 13.
The exact displacement solution is prescribed on the left wall
as the essential boundary condition, i.e., g � uexact, and the
corresponding traction is imposed on the right-side surface
as the natural boundary condition.

Uniform and non-uniform nodal discretizations of the
beam are shown in Fig. 14. For GI, equally spaced 12 × 3,
24 × 6, 36 × 9, and 48 × 12 background Gauss integration
cells are adopted, which correspond to four different levels of
refinement. The convergence of DNI and SCNI is compared
in Fig. 15, which shows that MSCNI and NSCNI have the
optimal convergence rate compared to SCNI- and other DNI-
based methods. In the cases of non-uniform discretizations,
the DNI-based schemes yield poor convergence.

The stabilized nodal integrations MSCNI and NSCNI are
compared with various orders of Gauss integration as shown
in Fig. 16. It can be seen that only high-order Gauss integra-
tion, GI 4 × 4 and GI 6 × 6, converges under uniform and
non-uniform nodal distributions in both the L2 norm and
energy norm. For the stabilized nodal integration methods,
MSCNI is found to be less accurate in displacement error
norm but is as accurate as GI 6 × 6 in the energy norm.
On the other hand, NSCNI shows the same level of accu-
racy in both displacement and energy norms as GI 6 × 6
under non-uniform nodal distributions. Figure 17 shows the
stress distribution of DNI, NSCNI, and MSCNI under non-
uniform discretizations. As can be seen, DNI leads to severe
oscillations, while NSCNI andMSCNI demonstrate accurate
solutions compared to the exact solution.

In Fig. 18, the efficiency of nodal integration methods is
compared to that of various orders of Gauss integration. For
both uniform and non-uniform cases, the computational cost
of the nodal integration method is similar to that of GI 2×2.
Among the nodal integration methods, NSCNI is found to
achieve the same accuracy as the high-order GI with much
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Fig. 14 Uniform and non-uniform discretizations for the accuracy and
efficiency study in the cantilever beam problem. a 13 × 4, b 25 × 7,
c 37× 10, and d 49× 13 nodes, where the non-uniform discretizations

from e to h consist of randomized nodal distributions that correspond
to the uniform nodal distributions from a to d, respectively

lower computational cost, and in addition, NSCNI is more
effective thanSCNI andMSCNIwith both accuracy andCPU
time considered.

4.3 Plate with a hole problem under highly distorted
discretizations

The problem of a plate with a circular hole is considered to
assess the performance of RKPM2D under highly distorted
discretizations. The plate is subjected to far-field traction T1
in the x1 direction, and due to symmetry, only a quarter of the
plate is modeled as illustrated in Fig. 19, where the length
L � 4 and inner radius R � 1 are chosen. There is no
body force, i.e., b � 0, and the traction imposed on the finite
domain boundary is defined as t � n · σ exact, where n is
the surface normal on the boundary and σ exact is the exact
stress field given below as well as the exact displacement
field uexact:

uexact1 � T1r

8μ

(
r(κ + 1) cos θ

R
+
2R((1 + κ) cos θ + cos 3θ)

r
− 2R3 cos 3θ

r3

)

uexact2 � T1r

8μ

(
r(κ − 3) sin θ

R
+
2R((1 − κ) sin θ + sin 3θ)

r
− 2R3 sin 3θ

r3

)

(62)

σ exact
11 � T1 − T1R2

r2

(
3

2
(cos 2θ + cos 4θ)

)
+
3T1R4

2r4
(cos 4θ),

σ exact
22 � −T1R2

r2

(
1

2
(cos 2θ − cos 4θ)

)
− 3T1R4

2r4
(cos 4θ),

σ exact
12 � −T1R2

r2

(
1

2
(sin 2θ + sin 4θ)

)
+
3T1R4

2r4
(sin 4θ) (63)

where (r , θ ) denote polar coordinates, T1 � 10, μ � E
2(1+ν)

,

κ � 3−ν
1+ν

, in which Young’s modulus and Poisson ratio are
taken as E � 2.1 × 1011 and ν � 0.3, respectively.

To examine the influence of non-uniform discretizations
on the performance of RKPM, domain discretizations with
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Fig. 15 Accuracy of DNI- and SCNI-based nodal integration methods for the cantilever beam problem. The numbers in the legends denote the
convergence rates

highly distorted nodal distributions are generated using Shes-
takov’s algorithm [55]. In the discretization process, given
the coordinates x1∼4 of four corner nodes of a quadrilateral
domain, a new node is created with its position x determined
by Eq. (64):

(64)

x � αdβdx1 + (1 − αd)βdx2
+ (1 − αd) (1 − βd) x3 + αd (1 − βd) x4

where

αd � γd + (1 − 2γd)rand1

βd � γd + (1 − 2γd)rand2 (65)

In this algorithm, the following control parameters need
to be defined:

• nc ∈ N: a constant parameter that controls the discretiza-
tion refinement level;

• 0 < γd ≤ 0.5: a constant parameter that controls the dis-
cretization distortion level;

• rand1, rand2 ∈ [0, 1]: random numbers that randomly per-
turb the nodal positions.

After generating the new nodal point x by Eq. (64), the
quadrilateral domain can be divided into four quadrilateral
sub-domains, and within each sub-domain, the above proce-
dure can be repeatedly applied to create more nodal points
and sub-domains until the total number of nodes equals
(2nc + 1) × (2nc + 1), i.e., when the desired refinement level
controlled by nc is achieved.

Note that when the distortion parameter is chosen as
γd � 0.5, a uniform nodal discretization is obtained, whereas
decreasing γd will result in a more distorted nodal distribu-
tion, for which poorly shaped elements are yielded if FEM is
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Fig. 16 AccuracyofMSCNI,NSCNI, andGauss integration (GI) for the cantilever beamproblem.Thenumbers in the legends denote the convergence
rates

used. On the other hand, varying the random numbers rand1
and rand2 can lead to different nodal distributions, but the
associated distortion levels will remain the same as long as
the distortion parameter γd is unchanged.

In the present study, the plate domain is firstly divided into
two sub-domains as illustrated in red color in Fig. 20, and
each sub-domain is discretized with (2nc + 1) × (2nc + 1)
nodes using the above-mentioned Shestakov’s algorithm.
Nodes located on the domain boundaries are generated in
a similar fashion. Interested readers can refer to [55] for
more details of the Shestakov’s algorithm. Three levels of
discretization refinement are adopted with the refinement
parameter nc � 2, 3, 4, respectively. Further, at each refine-
ment level, 15 tests are performed with a different set of
random numbers [rand1, rand2 in Eq. (65)] for each test, as
illustrated in Fig. 20. It is noteworthy to mention that since a
constant distortion parameter γd � 0.1 is adopted, the distor-

tion levels of all 45 discretizations are considered identical
and highly distorted.

To study the convergence properties of RKPM, we define
the nodal spacing as h̃ � √

A/NP, where A is the area of the
whole domain and NP is the total number of nodes. In order
to evaluate the numerical accuracy, we compute the mean
values of L2 and energy norms for the 15 discretizations
employed at each refinement level and plot them in Fig. 21
for comparison of different numerical schemes. The results
show that DNI and high-order GI do not converge under the
highly distorted discretizations, where 2nc × 2nc uniformly
distributed background integration cells are adopted for the
GI scheme. On the other hand, all SCNI-based nodal integra-
tion schemes show satisfactory performance. In particular,
both NSCNI and MSCNI achieve optimal convergence and
good accuracy.
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Fig. 17 Stress fields of the cantilever beam problem under non-uniform discretization in the case of Fig. 14h

To assess the sensitivity of each numerical scheme on
randomly perturbed nodal positions, the following standard
deviations in numerical error norms are defined:

Standard deviation in L2 : SL2 �

√√√√
∑NT

i�1

(
eL2
i − ēL2

)2

NT − 1
,

(66)

Standard deviation in energy : SE �
√∑NT

i�1

(
eEi − ēE

)2

NT − 1
,

(67)

where NT � 15 denotes the total number of test cases at
each refinement level, eL2

i � u − uhL2
and eEi � u − uhE

denote the L2 and energy error norms for the i-th test, and
ēL2 and ēE are the mean values of the L2 and energy error

norms, respectively. Tables 8 and 9 give the calculated stan-
dard deviations in L2 and energy error norms, which show
that SCNI-based schemes yield similar deviations with the
high-order GI, whereas DNI-based methods result in very
large deviations. The results clearly indicate that DNI-based
methods are very sensitive to the nodal positions, whereas
SCNI-based methods are more robust and perform well even
when the highly distorted nodal discretizations are perturbed.

Finally, the computational efficiency of high-order GI and
different nodal integrations is compared in Fig. 22, where
the mean values of error norms at each refinement level are
plotted. Compared to DNI-basedmethods and the high-order
GI, both MSCNI and NSCNI show superior performance,
and NSCNI achieves the best efficiency among all schemes
under the highly distorted nodal discretizations.
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Fig. 18 Computational efficiency of various orders Gauss integrations (GI), DNI-based methods, and SCNI-based methods for the cantilever beam
problem, where the same nodal discretizations as described in Fig. 14 are employed

Fig. 19 Problem settings for
plate with a hole under far-field
traction

5 Conclusion

We have developed an open-source software called
RKPM2D for meshfree analysis. The program is developed
based on the reproducing kernel particle method (RKPM)

and consists of a set of data structures and routines for dis-
cretizing two-dimensional domains, imposition of boundary
conditions, nodal representative domain creation by Voronoi
diagram partitioning, reproducing kernel shape function gen-
eration, domain integration using Gauss integration and vari-

123



428 Computational Particle Mechanics (2020) 7:393–433

Fig. 20 Highly distorted nodal
discretizations at three
refinement levels for the plate,
where 15 randomly perturbed
discretizations (from test 1 to
test 15) at each refinement level
are generated. (Color figure
online)

Fig. 21 Convergence under highly distorted discretizations for the plate problem, where the mean error norms of 15 randomly perturbed discretiza-
tions at each refinement level are plotted. The numbers in the legends denote the convergence rates

Table 8 Standard deviation SL2 of L2 error norms under highly dis-
torted discretizations

Quadrature scheme Refinement level

nc � 2 nc � 3 nc � 4

GI (6 × 6) 2.8E−03 2.1E−03 7.0E−04

DNI 1.7E+00 2.0E+00 4.1E+00

MDNI 7.0E−02 4.8E−02 2.7E−02

NDNI 2.3E+00 2.4E+00 6.5E−01

SCNI 9.5E−03 8.5E−02 7.5E−03

MSCNI 8.6E−03 8.2E−02 1.4E−03

NSCNI 6.5E−03 7.8E−03 5.2E−04

Table 9 Standard deviation SE of energy error norms under highly dis-
torted discretizations

Quadrature scheme Refinement level

nc � 2 nc � 3 nc � 4

GI (6 × 6) 3.8E−03 2.2E−03 7.6E−03

DNI 1.3E−01 2.6E−01 2.6E+00

MDNI 2.9E−02 6.3E−02 1.1E−02

NDNI 1.9E−01 1.7E−01 8.4E−02

SCNI 1.1E−02 7.7E−02 9.1E−03

MSCNI 1.1E−02 6.9E−02 5.5E−03

NSCNI 1.2E−02 6.6E−02 5.3E−03
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Fig. 22 Efficiency under highly distorted discretizations for the plate problem, where the mean error norms of 15 randomly perturbed discretizations
at each refinement level are plotted, where the same nodal discretizations as described in Fig. 20 are employed

ous stabilized nodal integration methods, meshfree Galerkin
matrix assembly and solver, and visualization tools for post-
processing. Benchmark problems are presented to verify the
convergence, efficiency, and robustness properties of the RK
approximation in conjunction with stabilized nodal integra-
tions implemented in RKPM2D, under both uniform and
highly non-uniform nodal distributions.

The open source code can serve as an entry point for
researchers who are interested in the computer implemen-
tation of RKPM, as well as other related meshfree methods,
and the code can also be adopted as a rapid prototyping and
testing tool for further development of advanced meshfree
algorithms. Although the linear elasticity problem is chosen
as the model problem, the flexibility of the code allows the
extension to solve different PDEs for various scientific and
engineering problems.

Acknowledgements The support from Sandia National Laboratories
under the Contract 1655264 to the University of California, San Diego,
is greatly appreciated.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Appendix A

In RKPM2D, six kernel functions with different levels of
continuity are implemented, as described in Table 1, and
the corresponding mathematical expressions of these kernel
functions are given as follows.

1. The Heaviside kernel function:

Φa(x − x I ) �
{
1
0

for
for

0 ≤ zI ≤ 1,
zI > 1

(68)

2. The linear B-spline (tent) kernel function:

Φa(x − x I ) �
{
1 − zI
0

for
for

0 ≤ zI ≤ 1,
zI > 1

(69)

3. The quadratic B-spline kernel function:

Φa(x − x I ) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 3z2I

3/2 − 3zI + 3/2z2I

0

for

for

for

0 ≤ zI ≤ 1/3,

1/3 ≤ zI ≤ 1,

zI > 1

(70)

4. The cubic B-spline kernel function:

Φa (x − x I )

�
⎧
⎨

⎩

2/3 − 4z2I + 4z3I
4/3 − 4zI + 4z2I − 4/3z3I
0

for
for
for

0 ≤ zI ≤ 1/2,
1/2 ≤ zI ≤ 1,
zI > 1

(71)

5. The quartic B-spline kernel function:

Φa(x − x I ) �
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − 150
23 z

2
I +

375
23 z

4
I for0 ≤ zI ≤ 1

5 ,

22
23 + 20

23 zI − 300
23 z

2
I +

500
23 z

3
I − 250

23 z
4
I for 15 ≤ zI ≤ 3

5 ,

125
46 − 250

23 zI +
375
23 z

2
I − 250

23 z
3
I +

125
46 z

4
I for

3
5 ≤ zI ≤ 1,

0 forzI > 1

(72)
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6. The quintic B-spline kernel function:

Φa(x − x I ) �
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − 90
11 z

2
I +

405
11 z4I − 405

11 z5I for 0 ≤ zI ≤ 1
3 ,

17
22 + 75

22 zI − 315
11 z2I +

674
11 z3I − 1215

22 z4I +
405
22 z5I for 1

3 ≤ zI ≤ 2
3 ,

81
22 − 405

22 zI +
405
11 z2I − 405

11 z3I +
405
22 z4I − 81

22 z
5
I for 2

3 ≤ zI ≤ 1,

0 for zI > 1

(73)

Appendix B

In this section, a diffusion problem is used as example to
illustrate how to modify RKPM2D for the solution of dif-
ferent types of PDEs. A diffusion equation is considered as
follows:

(
Di ju, j

)
,i + b � 0 onΩ

Di ju, j ni � t on ∂Ωt

u � g on ∂Ωg

(74)

where u is a scalar field, Di j is the diffusivity, b is the source
term, and t and g are the prescribed boundary flux and bound-
ary values of u on ∂Ωt and ∂Ωg , respectively. By introducing
the RK approximation in Eq. (11), (74) can be recast into the
following matrix equations for isotropic scalar diffusivity:

∑

J

KI J u J − FI � 0 (75)

where

KI J � Kd
I J + K β

I J −
(
Kg

I J + Kg
I J

T
)

(76)

FI � Fb
I + F t

I + Fβ
I J − Fg

I (77)

in which the matrices and vectors in nodal integration are
expressed as

Kd
I J �

∫

Ω

BT
I (x)DB J (x)dΩ ≈

NP∑

N�1

BT
I (xN )DB J (xN )AN

(78)

Fb
I �
∫

Ω

Ψ T
I (x)b(x)dΩ ≈

NP∑

N�1

Ψ T
I (xN )b(xN )AN (79)

F t
I �
∫

∂Ωt

Ψ T
I (x)t(x)dΓ ≈

NPt∑

N�1

Ψ T
I (xN )t(xN )LN (80)

(81)

K β
I J � β

∫

∂Ωg

Ψ T
I (x) SΨJ (x) dΓ

≈ β

NPg∑

N�1

Ψ T
I (xN ) SΨJ (xN ) LN

(82)

Kg
I J �

∫

∂Ωg

BT
I (x) DηSΨJ (x) dΓ

≈
NPg∑

N�1

BT
I (xN ) DηSΨJ (xN ) LN

Fβ
I J � β

∫

∂Ωg

Ψ T
I (x)SgdΓ ≈ β

NPg∑

N�1

Ψ T
I (xN )SgLN (83)

Fg
I �

∫

∂Ωg

BT
I (x)DηSgdΓ ≈

NPg∑

N�1

BT
I (xN )DηSgLN (84)

B I (xN ) �
[

ΨI ,1(xN )

ΨI ,2(xN )

]
, D �

[
d 0
0 d

]
, η �

[
n1
n2

]
, S � 1.

(85)

where D is the diffusivity tensor,d is the diffusion coefficient,
and η is a collection of components of the surface unit nor-
mal on the boundary, and S � 1 is set for the convenience
of keeping a unified coding structure in RKPM2D. Let us
consider a diffusion problem [Eq. (74)] with a manufactured
solution:

uexact � 0.1 + 0.1x1 + 0.2x2 (86)

in a circular domain Ω ⊂ R
2 shown in Fig. 9 from

Sect. 3.2. The flux t � 0.1n1 + 0.2n2 is imposed on ∂Ωt :
(x1, x2) ∈ ∂Ω, x2 > 0.5 where n1 and n2 are the nor-
mal vector components. g � uexact is enforced on ∂Ωg :
(x1, x2) ∈ ∂Ω, x2 ≤ 0.5, and the body source is b � 0.

The input file for this problem is generated in the function
getInput. Compared to Listing 1, the following changes
need to be made:

• Remove Model.nu and Model.Condition, as Pois-
son ratio and plane-stress/strain condition are not required
for diffusion problem.

• Replace Model.E with Model.d (i.e., change the defi-
nition of Young’smodulus E to be the diffusion coefficient
d).

• Replace Model.ElasticTensor with
Model.DiffusiveTensor (i.e., change the def-
inition of elastic tensor C to be the diffusive tensor
D).
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• Set Model.DiffusiveTensor =
diag([Model.d,Model.d])to define the diffu-

sive tensor D �
[
d 0
0 d

]
.

• Set Model.DOFu = 1 to change the nodal degrees of
freedom DOFu from 2 to 1.

• Set u_exact = 0.1 + 0.1*x1 + 0.2*x2 to define the
exact solution uexact.

In addition, we also need to modify the subroutine
getBoundaryConditions to generate the exact bound-
ary flux t � ηTD∇uexact, source term b � ∇ · (D∇uexact

)
,

essential boundary conditions g � uexact, and switch matrix
S � 1 based on a given expression of the exact solution uexact

in a symbolic form, as shown in Listing 13.

function [function_S,function_g,function_traction,function_b] = 
getBoundaryConditions(Model)
syms x1 x2 n1 n2
% function handle for essential boundary condition g
u = Model.ExactSolution.u_exact; 
D = Model.DiffusiveTensor;
function_g = matlabFunction(u);
% function handle for diff(u)
dudx1 = diff(u,x1);
dudx2 = diff(u,x2);
flux = D*[dudx1; dudx2;];
% function handle for surface flux (traction)
eta = [n1; n2;];
surf_flux = eta'*flux;
function_traction = matlabFunction(surf_flux,'Vars',[x1 x2 n1 n2]);
% function handle for source b
b = [diff(flux(1),x1)+ diff(flux(2),x2)];
function_b = matlabFunction(b,'Vars',[x1 x2]);
% function handle for switch S
function_S = matlabFunction(sym(1),'Vars',[x1 x2]); 
end

Listing 13. Command lines of function to generate exact heat flux , heat source , 
imposed scalar field , and switch matrix  for diffusion problems. 

Listing 13 shows command lines of function to generate
exact heat flux t , heat source b, imposed scalar field g, and
switch matrix S for diffusion problems.

Due to the change of dimensionality in the B andΨ matri-
ces compared to the elasticity problem, modifications are
made to MatrixAssmebly (Listing 10) as follows

• Set d = Model.d to define the diffusivity coefficient.
• Set D = Model.DiffusiveTensor to define the dif-
fusivity from input files.

• Replace Ewith d (i.e., replace theYoung’smodulusEwith
diffusion coefficient d).

• Replace C with D (i.e., replace elastic tensor C with diffu-
sive tensor D).

• Set B = sparse(2,nP*DOFu).
• Set PSI = sparse(1,nP*DOFu).
• Modify the allocation of the B and PSI from shape func-
tion SHP and derivative SHPDX1, SHPDX2 as:

– PSI = SHP(idx_nQuad,:);
– B(1,:) = SHPDX1(idx_nQuad,:);
– B(2,:) = SHPDX2(idx_nQuad,:);

• Set ETA = [n1; n2;]to define the surface normal η.

With the above-mentioned modifications, RKPM2D is
converted to a program for solving diffusion problems. By
comparing the original code for elasticity problems with the

modified code for diffusion problems, one can see that only
minimal code modifications are required. This capability of
easy code extension is a unique feature of RKPM2D [37].
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