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Abstract
Flow drill screw (FDS) joining is a modern mechanical fastening technique for connecting metal parts in lightweight car 
structures. Finite element simulation of FDS joining probably is one of the biggest challenges for CAE engineers in automo-
tive applications. This is mainly because finite element methods inevitably encounter utmost numerical difficulties associ-
ated with meshing issues in modeling the extensive plastic deformation and material failure taking place during the thread 
forming operation in the FDS driving process. This paper presents a FDS thread forming simulation using a new particle 
method based on authors’ recent work (Pan et al. in Comput Mech, 2019. https​://doi.org/10.1007/s0046​6-019-01673​-8). Dif-
ferent from other particle stabilization methods which are obtained by modification of the variational equation using either 
residual or non-residual stabilization terms, the present method introduces a novel velocity smoothing algorithm to achieve 
the stabilization effect. It is shown that the semi-discrete equation based on the smoothed velocity field is consistently fulfill-
ing the conservation of linear and angular momentum. Since the new method does not require stabilization terms, it avoids 
the fundamental difficulty inherent in the stabilization stress computation, thus computationally more efficient. Finally, the 
stabilized formulation is supplemented with the adaptive anisotropic Lagrangian kernel and bond-based failure criterion to 
extend the application in severe deformation and material failure analysis. Three numerical benchmarks including one FDS 
thread forming simulation are utilized to demonstrate the effectiveness of the new approach.
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1  Introduction

A car structure generally consists of hundreds of fabricated 
metal panels and frames joined together, using a combina-
tion of various joining techniques such as spot welding, 
riveting, clinching, hinging and screwing. Those joints are 
often considered the weakest points as regards to structural 
strength. Therefore, it is very important to understand the 
manufacturing process of joints and their mechanical behav-
ior in a car design phase. In the vehicle’s virtual development 
process, extensive computer simulations are conducted using 
commercial finite element codes such as LS-DYNA® and 

Abaqus to study the performance of joints before a body-in-
white structure is ready for production. Thus, it is critical 
for automotive industry to use the advanced computer aided 
engineering (CAE) software that enables for various joints 
modeling and failure prediction in car structure and safety 
design.

In the meantime, there is an increasing use of light-
weight and high-performance materials like aluminum and 
galvanized or pre-painted steel in energy saving vehicles. 
As resistance spot welding of those materials is difficult or 
even impossible, automotive industry is striving toward new 
joining techniques such as flow drill screw (FDS) [1] and 
self-piercing rivet (SPR) [2] connections. These new join-
ing methods often exhibit very complicated forming pro-
cess which is difficult to model by Lagrangian finite element 
methods. For example, modeling the extreme thread form-
ing procedure in the FDS driving process involves extensive 
plastic deformation and material separation simulations so 
traditional finite element methods would therefore be very 
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challenging. Specifically, the C0-continuity assumption in 
most finite element methods is unable to describe the kin-
ematic discontinuity of displacement fields for material 
separation simulation [3]. While the element deletion tech-
nique can be applied to reduce excessive straining and mesh 
tangling problems caused by the C0-continuity assumption in 
the material separation simulation, it gives another instance 
of numerical instability associated with the loss of conserva-
tion properties in mass and linear momentum. Furthermore, 
due to material erosion, the desired deformed shape such as 
the threaded boss might not be formed at all. As a conse-
quence, the numerical result could become very problematic 
and parameter sensitive in the FDS driving simulation.

Although the Eulerian finite element method can be eas-
ily applied to solid mechanics applications to overcome the 
mesh distortion problem, the Eulerian representation of 
material flow presents other numerical difficulties in track-
ing the material points and free surfaces in the FDS driv-
ing simulation. Unlike the Eulerian finite element method, 
the arbitrary Lagrangian–Eulerian (ALE) method advances 
the computational mesh inside the domain arbitrarily 
while keeps the mesh on the boundary moving along with 
material flow. Despite this advantage offered by the ALE 
method to handle the free surface problem, its drawback is 
the manifestation of numerical oscillations when the con-
vective effect is dominant in the governing equations. This 
numerical instability often arises when the velocity differ-
ence between mesh movement and material flow becomes 
pronounced. As a generalization of Eulerian approach, the 
ALE method also has troubles to model the formation of 
new surfaces in the course of material separation processes 
[4]. In consequence, extant finite element literatures [5, 6] 
for modeling FDS thread forming process and its failure 
characteristics are very limited. It is clear that current finite 
element modeling strategy for FDS thread forming simula-
tion is not sufficient as it could greatly impede the overall 
prediction of load-bearing structures in the vehicle’s virtual 
development process.

Alternatively, Lagrangian particle or meshfree methods 
[7] have grown in popularity as a practical numerical tool in 
industrial design and applications. Despite the generic name 
“meshfree”, not all meshfree methods are truly meshless. 
Some meshfree methods, particularly those based on the 
Galerkin method, actually require an auxiliary cell structure 
called “integration cells” or “background meshes” for the 
domain integration of weak forms. Although those methods 
generally are more accurate and stable than truly particle 
methods, it is difficult for them to deal with the cell distor-
tion issue present in severe deformation and material separa-
tion applications. Indeed, Lagrangian particle methods based 
on background meshes pose significant challenges from 
both mathematical formulation and programming aspects 
in dealing with severe deformation problems. Therefore, it 

is important to develop a stable and accurate particle method 
that obviates the inherent limitation of cell-based meshfree 
methods for FDS thread forming simulations. However, it 
is widely known that most Lagrangian particle methods 
are susceptible to several numerical deficiencies in solid 
mechanics applications. While issues of approximation 
consistency [8–10], essential boundary conditions [11–13], 
spurious energy modes [14, 15] and tension instability [11, 
16, 17] have been gradually resolved for particle methods, 
the numerical issues in severe deformation and material 
separation applications remain to be addressed.

The smoothed particle Galerkin (SPG) method devel-
oped by Wu et al. [3, 4, 18, 19] is one of the new stabilized 
Lagrangian particle methods aims to bypass the need of 
background mesh for the ductile material failure simulation. 
The early development of SPG method [3, 4, 18, 19] intro-
duces first-order strain gradients by means of velocity (or 
displacement) smoothing to achieve the stabilization effect. 
This SPG stabilization formulation requires two distinct but 
coinciding integration points [19] per particle for integrating 
the weak form. Based on Chen’s implicit gradient expan-
sion [20] and Liu’s strain gradient stabilization technique 
[21], Hillman and Chen [22] proposed another stabilized 
Lagrangian particle method for high-speed impact applica-
tions. Similar strain gradient stabilization technique was also 
considered by Wu et al. [23] to study the friction drilling 
application. Those particle methods share a common feature 
in augmenting the standard quadratic energy functional by 
several stabilization terms containing first-order strain gra-
dients to stabilize the results in severe deformation simula-
tion. Because the stabilization in those particle methods is 
accomplished without the use of momentum equation resid-
ual, they belong to the non-residual stabilization methods. 
In order to integrate those non-residual stabilization terms, 
multiple integration points that are matching at each particle 
are needed. Although those particle methods can sufficiently 
control spurious energy modes in nonlinear analysis, they 
are not computationally efficient. Additionally, since strain 
gradient stabilization techniques used in those non-residual 
stabilization methods were initially derived based on the lin-
ear elasticity assumption [3], the evaluation of stabilization 
stress in nonlinear material models is therefore not straight-
forward. Following the stabilization work of Belytschko and 
Bindeman [24] in nonlinear finite element methods, a modi-
fied shear modulus [3, 4, 19, 22, 23] is usually specified to 
replace the elastic modulus in those non-residual stabiliza-
tion terms for the stress update.

In order to improve the computational efficiency as well 
as to avoid the fundamental complication in the stabilization 
stress calculation, a new particle stabilization method [25] 
was recently proposed by the same authors of this manu-
script. In this new stabilization method, a special velocity 
smoothing algorithm was introduced to replace the direct 
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velocity smoothing in the original SPG stabilization method 
[3, 4, 18, 19]. This leads to a new stabilization formulation 
without using residual or non-residual stabilization terms. In 
other words, the new method only requires one integration 
point per particle. As a result, the specification of modified 
shear modulus and the evaluation of stabilization stress can 
be completely avoided, thus cutting the computational cost. 
As the new method based on the smoothed velocity field is 
consistently fulfilling the conservation of linear and angular 
momentum, we call it the momentum-consistent smoothed 
particle Galerkin (MC-SPG) method in this paper.

The object of this study is to apply the MC-SPG formu-
lation to study the extreme thread forming procedure that 
involves large deformation and material separation in the 
FDS driving process. The reminder of the paper is organized 
as follows: The velocity smoothing algorithm in MC-SPG 
formulations is described in Sect. 2. In Sect. 3, additional 
numerical treatments to simulate the severe deformation and 
material separation problems are provided. Several numeri-
cal benchmarks including one thread forming simulation are 
given in Sect. 4. Conclusions are drawn in Sect. 5.

2 � The velocity smoothing algorithm 
and MC‑SPG formulations

Let’s first recall the weak form of the dynamic equation of 
motion as follows:

with initial conditions

where � is the current mass density, � is the Cauchy stress, b 
is the body force density measured in current configuration 
and h is the prescribed traction on the current boundary ��h . 
uh is the approximation of the displacement field u , and üh 
is the corresponding acceleration. For a particle distribution 
denoted by an index set ZI =

{
XI

}NP

I=1
 , approximating the 

displacement field u at time t using the first-order meshfree 
approximations [11, 12, 26] gives

where NP is the total number of particles in the discretiza-
tion. �a

I
(X), I = 1,… , NP can be regarded as the Lagran-

gian shape functions for displacement field uh where the 
superscript “a” denotes the support size of particle I. u̇I is 
the velocity at particle I. The introduction of Eq. (4) into 

(1)
∫
�

�üh ⋅ �uhd� + ∫
�

𝝈 ⋅ ∇�uhd� − ∫
�

b ⋅ �uhd� − ∫
��h

h ⋅ �uh = 0

(2)uh(X, 0) = u0(X)

(3)u̇h(X, 0) = u̇0(X)

(4)uh(X, t) =
∑
I∈ZI

�a
I
(X)uI(X, t)=

∑
I∈ZI

�a
I
(X)uI

Eq. (1) using the direct nodal integration (DNI) scheme 
gives the following standard semi-discrete equation to be 
solved numerically in Lagrangian particle methods.

where Mlump is the lumped mass matrix in diagonal form. 
The construction of mass matrix and the mass lumping 
scheme follows our previous works in [3, 4, 23]. Ü is a vector 
containing all particle accelerations, and Fext is the standard 
external force vector. Fint is the regular internal force term 
given by

where BI is the standard displacement gradient matrix, 
�
(
XJ

)
=
[
�xx �yy �zz �yz �xz �xy

]T
XJ

 is the component-wise 
stress vector of particle J and VJ is volume of particle J.

It is known that the solution of Eq. (5) exhibits spurious 
energy modes in the displacement field. It is also intuitively 
evident that the oscillation solution can possibly be stabi-
lized by a smoothing algorithm. These observations prompt 
applications of velocity smoothing in Lagrangian particle 
methods as a way to eliminate the spurious energy modes. 
In the original SPG method [3, 4, 19], this idea is justified 
by an introduction of a direct velocity smoothing algorithm 
for the particle velocity u̇I as described by

where ̂̇uJ is the unsmoothed (oscillating) velocity at particle 
J and �a

J

(
XI

)
 is the smoothing function which is same as that 

in Eq. (4). It is obvious that a blunt use of Eq. (7) to stabilize 
the solution in Eq. (5) by means of a post-processing pro-
cedure may cause a loss of conservation properties for lin-
ear and angular momentum. For this reason, a non-residual 
stabilization term was derived using Eq. (7) to reach the 
stabilization effect in the original SPG method [3, 4, 19]. 
This leads to the following new system of equations to solve 
in the original SPG method

where

B̃I is the displacement gradient matrix which contains the 
first-order strain gradient (see [3, 4, 19]) for computation 
of the stabilization force Fstab . The stabilization stress �̃ in 
small strain analysis is formulated using a material response 
tensor (elasto-plastic tangent modulus) C� as given by [3, 
4, 19]

(5)MlumpÜ = Fext − Fint

(6)Fint
I

=
∑
J∈ZI

BT
I

(
XJ

)
�
(
XJ

)
VJ

(7)u̇I =
∑
J∈ZI

𝜙a
J

(
XI

)
̂̇uJ

(8)MlumpÜ = Fext − Fint − Fstab

(9)Fstab
I

=
∑
J∈ZI

B̃
T

I

(
XJ

)
�̃
(
XJ

)
VJ

(10)�̃ = C𝜎 ∶
(
∇�(û) ⋅ �b

)
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where �b is the coefficient matrix [3, 4, 19] for stabilization. 
It should be noted that the coefficient matrix does not con-
tain artificial stabilization control parameter in the original 
SPG method. The stabilization term Fstab in Eq. (8) con-
tains the first-order strain gradient [3, 4, 19] which can be 
considered as suitable gradient jump conditions to stabilize 
the oscillating solution. Actually, the idea of adding a term 
penalizing the jump of the gradient to stabilize the solution 
is not new in the computational fluid dynamics (CFD) com-
munity. Pioneering approaches to adopt this idea in solid 
mechanics applications have been demonstrated by Beissel 
and Belytschko [27] and Onate et al. [28] for the elasticity 
analysis.

In practice, however, Eq. (10) cannot be directly applied 
to material nonlinearity analysis. This is because the numeri-
cal evaluation of stabilized stress vector using Eq.  (10) 
involves the elasto-plastic tangent modulus and is compu-
tationally unfeasible in the explicit dynamics analysis. For 
this reason, a modified shear modulus G̃ is often utilized to 
replace the elasto-plastic tangent modulus according to the 
suggestion of Belytschko and Bindeman [24] in the finite 
element stabilization method, which is given by

where Δ�ij and Δeij are the components of the deviatoric part 
of the stress and strain increments, respectively.

In contrast to the reconstruction of high-order derivatives 
in previous gradient stabilization methods, the second type 
of stabilization methods is the reformulation of the diver-
gence form of governing equations as a first-order system. 
This, of course, leads to more unknowns and larger prob-
lems to solve. Representative CFD approaches in this type 
of stabilization methods for solid mechanics applications 
include Taylor–Galerkin stabilization algorithm [29], Jame-
son–Schmidt–Turkel algorithm [30] and streamline upwind 
Petrov–Galerkin algorithm [31]. The major disadvantage 
of these CFD stabilization algorithms is the contradictory 
demands on an artificial stabilization control parameter 
placed by the accuracy requirement. It is worth mentioning 
that improper selection of the stabilization control parameter 
may lead to the loss of stability properties particularly in 
the nonlinear material analysis. Moreover, because most of 
those stabilization methods are formulated in a total Lagran-
gian framework, their extension to severe deformation and 
material separation analysis still needs to be developed.

(11)2G̃ =

√
HΔ𝜏

HΔe

(12)HΔ� =
1

2

3∑
i=1

3∑
j=1

Δ�ijΔ�ij, HΔe =
1

2

3∑
i=1

3∑
i=1

ΔeijΔeij

Although the original SPG method [3, 4, 19] eliminates 
the need of artificial stabilization control parameter, the 
computation of stabilization stress for material nonlinear-
ity problems is not straightforward and its performance in 
severe deformation and material failure analysis remains to 
be investigated. Furthermore, because the stabilization term 
in Eq. (8) needs to be integrated independently to achieve 
the stabilization effect, the method also demands additional 
computational cost. To resolve those issues in the SPG 
method, a third type of particle stabilization method, the 
MC-SPG method [25], was developed. As its name indi-
cates, the particle velocity u̇I in the MC-SPG method is 
smoothed via a special algorithm associated with the linear 
momentum, and this is defined in the following

where PI is the smoothed linear momentum of particle I and 
will be defined in Eq. (19) and

and �a
I

(
XJ

)
 can be viewed as a modified smoothing function 

in contrast to the smoothing function �a
J

(
XI

)
 in Eq. (7) in the 

original SPG method [3, 4, 19]. Equation (13) also defines a 
standard linear mapping between two particle systems U̇ and 
̂̇
U . Let �h ∶ L2 ↦ L2 be a discrete operator for the velocity 
smoothing, we have

or in matrix form

Equation (15) describes the computation of a global L2 pro-
jection. Subsequently, Eq. (16) gives

which theoretically should be used for the velocity update. 
The two particle systems U̇ and ̂̇U are collections of parti-
cle values u̇I and ̂̇uI , respectively. It is clear that Eq. (17) 
involves a global matrix inversion which is computationally 
expansive when the modified smoothing function �a

I

(
XJ

)
 is 

updated through time during the large deformation analysis. 
In what follows we will replace Eq. (17) by the following 
approximation for the velocity update.

(13)

u̇
I
= u̇

�
X
I

�
∶ =

P
I

m
I

=

∑
J∈Z

I

m̂
J
𝜙a

I

�
X
J

�
̂̇u
J∑

J∈Z
I

m̂
J
𝜙a

I

�
X
J

� =
�
J∈Z

I

�
m̂

J
𝜙a

I

�
X
J

�
∑

K∈Z
I

m̂
K
𝜙a

I

�
X
K

�
�
̂̇u
J

=
�
J∈Z

I

𝜓a

I

�
X
J

�
̂̇u
J
, X

I
∈ Z

I

(14)𝜓a
I

�
XJ

�
=

m̂J𝜙
a
I

�
XJ

�
∑

K∈ZI
m̂K𝜙

a
I

�
XK

�

(15)U̇
(
XI

)
= 𝛩h

(
̂̇
U
(
XI

))
XI ∈ ZI

(16)U̇ = T
̂̇
U, TIJ = 𝛹 a

I

(
XJ

)
I

(17)
̂̇
U = T−1U̇, ̂̇uI =

∑
J∈ZI

T−T
IJ
U̇J

(18)
̂̇uI ≈

∑
J∈ZI

𝜙a
J

(
XI

)
u̇J
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It is important to note that utilization of this modification in 
the velocity updating procedure will still yield the conser-
vation of linear and angular momentum results as will be 
shown later.

Finally, the smoothed linear momentum PI and smoothed 
mass MI of particle I in Eq. (13) are defined by

where m̂J in Eqs. (19) and (20) is the unsmoothed lumped 
mass of particle J. The value of m̂J is computed directly 
using the direct nodal or Gauss integration schemes at t = 0 
as described in [23] and does not change with time.

It is essential that Eq. (13) and Eqs. (19)–(20) employ a 
“gather” type [32] of smoothing function �I

(
XJ

)
 instead of 

the “scatter” type of smoothing function �J

(
XI

)
 as shown 

in the original SPG method [see, Eq. (7)]. In general case, 
�J

(
XI

)
 and �I

(
XJ

)
 are not equal. The employment of gather 

type of smoothing function yields the following equality 
which is critical to the preservation of linear and angular 
momentum in the MC-SPG method.

Equation (21) indicates that the global mass is preserved 
under the gather type of mass smoothing. It also can be 
verified that the scatter type of mass smoothing algorithm 
does not necessarily ensure the conservation of global mass. 
Now let’s recall the momentum of particle I before velocity 
smoothing to be

Using Eqs. (13), (18)–(22), it is straightforward to prove 
that the global linear momentum P is conserved, that is

Subsequently, it is also not difficulty to show (see [25] for 
proof) that the following global conservation of angular 
moment is valid

When the central difference integration scheme is used for 
the temporal discretization, Eq. (13) becomes

(19)PI ∶=
∑
J∈ZI

m̂J𝜙
a
I

(
XJ

)
̂̇uJ

(20)mI ∶=
∑
J∈ZI

m̂J𝜙
a
I

(
XJ

)

(21)

∑
I∈ZI

mI =
∑
I∈ZI

∑
J∈ZI

m̂J𝜙
a
I

(
XJ

)
=

∑
J∈ZI

m̂J

(∑
I∈ZI

𝜙a
I

(
XJ

))
=

∑
J∈ZI

m̂J

(22)P̂I = m̂I
̂̇uI

(23)P =
∑
I∈ZI

PI =
∑
I∈ZI

P̂I = P̂

(24)
∑
I∈ZI

x
(
XI

)
× mI u̇I =

∑
I∈ZI

x
(
XI

)
× m̂I

̂̇uI

(25)u̇
n+1∕2

I
=

∑
J∈ZI

𝜓a
I

(
XJ

)
̂̇u
n+1∕2

J

Using Eq. (25), the particle density can be updated by

where Δtn+1∕2 = tn+1 − tn . With the updated particle density 
in Eq. (26), the new particle volume can also be obtained by

Consequently, the particle displacements can be updated 
using Eq. (25) by

The particle strain rate �̇I = ∇s
(
u̇
I

)
 also can be computed 

accordingly. The concept of gather type of velocity smooth-
ing in the MC-SPG method is illustrated in Fig. 1.

Now it is necessary to update the unsmoothed particle 
velocity in Eq. (25) during the time stepping. Let’s first com-
pute the increment of unsmoothed particle velocity using the 
modified unsmoothed particle velocity in Eq. (18) and the 
(smoothed) acceleration from Eq. (5) to yield

where Δt
n
= tn+1∕2 − tn−1∕2 . The update of unsmoothed par-

ticle velocity is accomplished by

(26)𝜌n+1
I

= 𝜌n
I

(
1 − Δtn+1∕2∇ ⋅ u̇

n+1∕2

I

)

(27)Vn+1
I

= m̂I
/
𝜌n+1
I

(28)un+1
I

= un
I
+ Δt

n+1∕2
u̇
n+1∕2

I

(29)Δ ̂̇u
n

I
≈ Δtn

∑
J∈ZI

�a
J

(
XI

)
ün
J

(30)

̂̇u
n+1∕2

I
= ̂̇u

n−1∕2

I
+ Δ ̂̇u

n

J

= ̂̇u
n−1∕2

I
+ Δtn

∑
J∈ZI

T−T
IJ

(
XI

)
Ü

n

J

≈ ̂̇u
n−1∕2

I
+ Δtn

∑
J∈ZI

�a
J

(
XI

)
ün
J

( ) ( )( )1/2 1/2ˆ nn
I h I

++ = Θ& &U X U X

1/2 ,n
I Im+&u

I
J
1/2ˆ ˆ,n

J Jm+&u

a
Iψ

Fig. 1   Illustration of a gather type of velocity smoothing in the MC-
SPG method
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Using Eqs. (19), (20) and (30), the global linear momentum 
becomes

which verifies that the present velocity smoothing algorithm 
is consistently preserving the global linear momentum in the 
explicit time integration scheme. The preservation of global 
angular momentum also can be shown analogously (see [25] 
for proof). This smoothed velocity update algorithm is illus-
trated in Fig. 2.

It is obvious that the stabilization scheme in the MC-
SPG method does not involve first or higher order strain 
gradient terms as needed in the residual and non-residual 

(31)

P̂
n+1∕2

=
∑
I∈ZI

P̂
n+1∕2

I
=
∑
I∈ZI

m̂I
̂̇u
n+1∕2

I

=
∑
I∈ZI

m̂I
̂̇u
n−1∕2

I
+ Δtn

∑
I∈ZI

∑
J∈ZI

m̂I𝜙
a
J

(
XI

)
ün
J

= Pn−1∕2 + Δtn
∑
J∈ZI

(∑
I∈ZI

m̂I𝜙
a
J

(
XI

))
ün
J

= Pn−1∕2+Δtn
∑
J∈ZI

mJü
n

J

= Pn−1∕2 + Δpn

= Pn+1∕2

type of stabilization methods [3, 4, 19]. Because of that, the 
MC-SPG method only requires a single integration point at 
each particle, and therefore, the method is computationally 
more efficient than the original SPG method. As the stress 
updating procedure can be performed regularly at each par-
ticle using the standard material constitutive law, no special 
specification of elastic modulus for stabilization stress cal-
culation is needed like that in the non-residual type of sta-
bilization methods. The major difference between the SPG 
and MC-SPG methods is summarized in Table 1.

3 � The numerical treatments for severe 
deformation and material separation 
analysis

In this section, the stabilization formulation described in 
the previous section is revised to cover the application in 
simulating the extensive plastic deformation and material 
separation problems during the severe FDS thread forming 
process. This is done by introducing two additional numeri-
cal features, the adaptive anisotropic Lagrangian kernel and 
the bond-based failure criterion originally proposed in the 
SPG method [3, 4, 19], to the MC-SPG method.

3.1 � The adaptive anisotropic Lagrangian kernel 
for severe deformation analysis

It is recalled that Lagrangian shape functions, 
�a
I
(X), I = 1,… , NP , constructed in Eq. (4) utilize Lagran-

gian kernels to remove the tension instability [11] in the 
nonlinear structural analysis. However, particle methods 
based on Lagrangian shape functions experience the exces-
sive straining problem when the strict use of Lagrangian 
kernel is no longer applicable. Specifically, the excessive 
straining during the severe plastic deformation simulation 
in the FDS thread forming process inevitably causes the 
numerical breakdown when the deformation gradient com-
puted at the particle ceases to become invertible. It presents 
the same issue of mesh distortion problems in the finite ele-
ment method.

In order to handle the excessive straining problem in the 
MC-SPG method, an adaptive anisotropic Lagrangian kernel 
is considered [3, 4, 19]. Using the chain rule, the calculation 
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I
+&uI

J n
J&&u

a
Jφ

( )1/2 1/2ˆ ˆ
I

n n a n
I I n J I J

J Z
t Xφ+ −

∈

= + ∆ ∑& & &&u u u

Fig. 2   Illustration of scatter type of velocity update in MC-SPG 
method

Table 1   The difference between 
the SPG and MC-SPG methods

SPG method MC-SPG method

Velocity smoothing u̇
I
=

∑
J∈Z

I

𝜙a

J

�
X
I

�
̂̇u
J

u̇
I
=

∑
J∈Z

I

𝜓a

I

�
X
J

�
̂̇u
J

Final discrete equation M
lump

Ü = F
ext − F

int − F
stab

M
lump

Ü = F
ext − F

int

Stabilization stress Yes No
Integration points/particle Two One
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for the deformation gradient at the particle can be rewritten 
as

where 
⌢

F

n+m(
⌢

x
)
 is the decomposed deformation gradient, 

from t = tn to tn+m, computed based on the new reference 
configuration and is given by

Here, ⌢x =
⌢

X +
⌢

u
(
X, tn+m

)
 is a position vector defined in 

the new reference configuration, i.e., 
⌢

X = x
(
X, tn

)
 . A local 

⌢

X

I-coordinate system in which the axes are parallel to the 
global Cartesian coordinates whose origin located at 

⌢

XI is 
defined for each particle I. In each new reference configura-
tion, an ellipsoidal nodal support is defined for the neighbor 
particle searching. The three-dimensional ellipsoidal cubic 
spline kernel function is defined in another local ⌢⌢

X

I-coordi-
nate system by

where �1 is a standard one-dimensional cubic spline kernel 
function, hn

1
 , hn

2
 and hn

3
 are the current semi-major axes of the 

ellipsoid. The sizes of semi-major axes can be considered 
the support sizes of the kernel and are updated according to 
the deformation [19]. 

⌢
⌢

X

I

J
 , 

⌢
⌢

Y

I

J
 and 

⌢
⌢

Z

I

J
 are the projections of 

relative position vector 
⌢

XJ −
⌢

XI on the local ⌢
⌢

X

I-coordinate 
system, respectively. The adaptive anisotropic Lagrangian 
kernel is updated constantly over a period of time. The 
spherical shape domain of cubic spline kernel function 
deforms and rotates according to the Lagrangian motion 
between each two adaptive Lagrangian kernel steps. We 
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⌢
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∑
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address the reader to Ref. [19] for a comprehensive descrip-
tion of the approach. For the computational efficiency in 
explicit time integration, the material derivatives of mesh-
free shape functions are always computed and stored at the 
new reference configuration and reused during the time 
stepping.

Since the operation of adaptive anisotropic Lagrangian 
kernel is performed at the particle and does not involve 
remeshing, the stress-recovery techniques or remapping pro-
cedures are not necessary. This unique property of present 
approach leads to a relatively simple mathematical formula-
tion for simulating the severe plastic deformation problem.

3.2 � The bond‑based failure criterion for material 
separation analysis

Excessive straining also appears in the FDS thread forming 
process when the material starts to fail at the thread forming 
stage. Precisely, the C1-continuity assumption in Lagrangian 
particle methods is inadequate to describe the kinematic dis-
continuity of displacement field in a continuous setting for 
the failure analysis [3]. This makes conventional Lagrangian 
particle methods very challenging in simulating the extreme 
thread forming during the FDS driving process.

To further avoid the excessive straining problem due 
to the assumption of continuous displacement field in the 
thread forming simulation, a bond-based failure criterion 
[3, 23] is incorporated with the present stabilization formu-
lation. The origins of this approach can be traced back to 
the bond failure in the bond-based peridynamics [33, 34] in 
which material failure is modeled through bond breakage. 
In Lagrangian particle methods, the bond is a representation 
of a connection between two particles. Given a length of the 
bond ‖‖XJ − XI

‖‖ for a particle pair consisting of particles I 
and J in the initial configuration, the stretch ratio eIJ of the 
bond is defined by

For the thread forming simulation, we restrict our atten-
tion to the material failure in metals. In this bond-based fail-
ure criterion, two neighbor particles are considered discon-
nected during the neighbor particle sorting whenever their 
averaged effective plastic strain and stretch ratio reach their 
respective critical values. Accordingly, the three-dimen-
sional ellipsoidal cubic spline kernel function in Eq. (29) 
for a pair of particles I and J can be modified as:

(35)eIJ =
‖‖xJ − xI

‖‖
‖‖XJ − XI

‖‖
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where 𝜀̄P
IJ
=

(
𝜀̄P
(

⌢

XI

)
+ 𝜀̄P

(
⌢

XJ

))
∕2 represents an aver-

aged effective plastic strain in the bond ‖‖XJ − XI
‖‖ and 𝜀̄P is 

the effective plastic strain. 𝜀̄P
crit

 is the critical effective plastic 
strain for bond failure, and ecrit denotes the critical stretch 
ratio. We consider ecrit ≥ 1.0 in our numerical analysis which 
implies that the bond failure does not occur under compres-
sion. This implication is valid for most metal failure 
process.

Because the effective plastic strain at each particle is 
monotonically increasing during the course of deformation, 
the kinematic disconnection in a particle pair is permanent 
and irreversible. This is a substantial characteristic for the 
present bond-based failure mechanism in metal failure analy-
ses since the non-physical material self-healing issues result-
ing from generic neighbor searching algorithm can also be 
completely excluded from the material failure simulation.

4 � Numerical examples

The present MC-SPG formulation was recently imple-
mented into the commercial software LS-DYNA® [35] by 
the authors. To demonstrate the accuracy and efficiency of 
the present method, three examples are studied in this sec-
tion using the LS-DYNA code. The first example is a small 
deformation wave propagation problem with comparison 
to the analytical solution. The second example is a large 
deformation Taylor bar impact simulation with comparison 
to the experimental data. The last example is used to dem-
onstrate the numerical ability in the extreme thread form-
ing simulation considering material failure and separation. 
Convergence study is conducted for all examples to inspect 
the stability of the present method in the nonlinear analysis.

4.1 � Elastic wave propagation problem

We will now test how well the present method can capture 
the wave propagation in a dynamic but small deformation 
event. To access stability, the convergence of a dimension-
less elastic wave propagation problem is considered in the 
following. The test problem can be stated as:

with boundary and initial conditions given as:

(36)𝜑a
I

�
⌢

XJ

�
=

⎧
⎪⎨⎪⎩

0, if
⌢

XJ ∉ sup p
�
𝜑a
I

�
or

�
𝜀̄P
IJ
> 𝜀̄P

crit
and eIJ > ecrit

�

𝜑1

�
⌢
⌢

X

I

J

hn
1

�
𝜑1

�
⌢
⌢

Y

I

J

hn
2

�
𝜑1

�
⌢
⌢

Z

I

J

hn
3

�
, otherwise

(37)𝜌ü = Eu,xx on ]0, L[ × ]0, T[

The analytical solution of the displacement and stress 
fields can be derived and given by:

with

To numerically solve the problem, a three-dimensional 
square rod is used which has a cross-section of 1.2 × 1.2, 
E = 100.0, ν = 0.0, ρ = 100.0 and L = 10.0. To analyze the 
convergence behavior of the proposed formulation, three 
discretizations are used with nodal distance of 0.2 (coarse), 
0.1 (medium) and 0.05 (fine), respectively.

Figures 3 and 4 show the axial displacement at the free 
end and the axial stress at the mid-length of the rod, respec-
tively. Both displacement and stress are seen to match ana-
lytical solution nicely. No apparent amplitude and phase 
errors are observed. Also, it is observed that the numerical 
solution converges to the analytical solution as discretiza-
tion is refined.

4.2 � Taylor bar impact problem

In this example, we report the stability performance of the 
present method in a large deformation problem. In this prob-
lem [36], a 6061-T6 aluminum alloy cylinder with diameter 
of 7.82 mm and length of 23.46 mm impacts perpendicularly 
to a rigid surface at an initial velocity of 373 m/s. In the test, 
the final cylinder length is deformed to about 16.46 mm. To 
study the converge performance of the proposed method, 
the cylinder is discretized into three models with nodal 
distance of approximately 0.49 mm (coarse, total 11,809 
nodes), 0.33 mm (medium, total 38,325 nodes) and 0.25 mm 

(38)

u(0, t) = 0, t ∈]0, T[
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(fine, total 86,621 nodes), respectively. The cross-sectional 
discretization is shown in Fig. 5 (for clarity, connectivity is 
shown, but not used in calculation at all). Johnson–Cook 
material law [37] is employed to model the plastic flow of 
the material while the parameters are taken from Ref. [38].

Figure 6 shows the displacement history at the free end. 
It is observed that the numerical solution is converged and 
close to the experimental result. In fact, the numerical solu-
tion does not show too much sensitivity to the discretization, 
which demonstrates the accuracy of the present method in 
large deformation analysis.

Figure 7 shows the plastic strain distribution at termi-
nation. The contour plots in three different discretization 
models are in good agreement with each other. Figure 8 
shows the final deformed shapes at the contact interface. 
A background mesh is attached to the deformation plot for 

the demonstration purpose. No spurious energy mode is 
observed in the present solution for all three models. Over 
all, qualitatively consistent results are obtained.

4.3 � FDS thread forming simulation

In this example, we will simulate the extreme thread forming 
in the FDS driving process. A complete FDS joining process 
is a 6-step manufacturing operation featured with large plas-
tic flow and thermal mechanical responses. Generally, the 
FDS joining process includes heating, penetration, extrusion 
forming, thread forming, screw-driving and tightening steps 
[39]. As the thermal response is not of interest in the current 
study, the heating step and thermal effect are ignored in the 
simulation. The tightening step is not considered either since 
only one layer of workpiece is used in this thread forming 
simulation, which is for the purpose of illustration rather 
than actually joining two or more pieces of workpiece. Our 
focus in this simulation is the extreme thread forming on the 
workpiece after the fastener penetrates and drives through 
the workpiece.

As shown in Fig. 9a, b, a nominal M5x20 fastener is used 
as the screw in this study. It rotates at ω0 = 5000 rpm and 
plunges at v0 = 2.0 m/s (Fig. 9c) during the penetration step 
and, thereafter, rotates at ω0 = 20,000 rpm and plunges at 
v0 = 0.2 m/s until the end of screw-driving step. The pitch 
distance of the fastener is 0.7 mm. The fastener is modeled 
by finite element formulation (Fig. 9d) with rigid material.

The workpiece is a 20-mm-diameter and 1.5-mm-thick 
6061-T6 aluminum alloy plate. The perimeter of the plate is 
clamped. To save some computational cost, only the central 
∅7.0 mm region, where most likely, large plastic flow, mate-
rial failure and separation will occur, is modeled by the pro-
posed MC-SPG formulation while the remaining majority is 
modeled by the traditional finite element method since fail-
ure is unlikely to occur in this region. The coupling between 
the MC-SPG and finite element is simply handled by com-
mon nodes and the feasibility of this coupling scheme was 
studied in [25]. To study the convergence behavior of the 
MC-SPG formulation, four discretizations are used, namely 
nodal distance (in the central region) 0.15 mm (total 21,131 
nodes and 36,000 elements), 0.125 mm (total 35,269 nodes 
and 63,360 elements), 0.10 mm (total 67,344 nodes and 
127,680 elements) and 0.075 mm (total 157,773 nodes and 
276,480 elements), respectively. The cross-sectional nodal 
distribution at the central region is demonstrated in Fig. 10.

The plate is constitutively modeled by Johnson–Cook 
material law, and the same parameters as the previous exam-
ple are used. The material failure and separation is handled 
by the bond failure mechanism described in Sect. 3.2. The 
critical effective plastic strain and stretch ratio for bond fail-
ure is 0.4 and 1.15, respectively. The interaction between 
the fastener and the metal plate is taken care by the classic 

Fig. 3   Elastic wave problem: displacement at free end

Fig. 4   Elastic wave problem: stress at mid-length
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pin-ball contact algorithm. Frictional contact with coeffi-
cient of friction 0.3 is considered.

Figure 11 shows the applied force (on the fastener) for 
the FDS driving process. The abscissa is the longitudinal 
distance that the fastener moved. The legend indicates the 
nodal distance in the MC-SPG discretization. It is observed 
that the difference between the MC-SPG solutions from dif-
ferent discretizations is marginal; therefore, we can conclude 
that the MC-SPG formulation converges in this simulation. 
In other words, we can also claim that the MC-SPG solu-
tion does not have high sensitivity to discretization, which is 
dramatically different from the traditional FEM with element 
erosion technique for failure analysis. It is also observed that 
the MC-SPG solution matches the original SPG solution 
in Fig. 11 for most of the forming stages. There is about 
15% difference at the screw-driving stage, which is still 
acceptable for this type of extreme deformation with mate-
rial failure problems. The higher SPG force response at the 
final screw-driving stage may be due to the modification of 

Fig. 5   Taylor impact: discretiza-
tions

Fig. 6   Taylor impact: longitudinal displacement
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shear modulus in the stabilized stress computation for the 
original SPG method. On the other hand, if the element ero-
sion technique is used in the finite element method to mimic 
the material failure phenomenon, the force is dramatically 
underestimated, which is unphysical. This is clearly dem-
onstrated in Fig. 11 (green curve, obtained by finite element 
with element erosion at effective plastic strain of 0.4).

While the accuracy of the MC-SPG formulation is close 
to the SPG formulation, its efficiency is higher. In this case, 
for the nodal distance 0.125 mm discretization, the CPU 
time for SPG formulation is about 2.4 times of that of the 
MC-SPG (refer to Table 2 for CPU time comparison). The 
force response shows that the compressive thrust builds up 
until the tip of the fastener penetrate through the plate. Then, 
as more and more bond failure occurs, the thrust cannot be 
build up any longer. Once extrusion forming starts, a direc-
tion reversed force is resulted due to material extruding up 
(along the thread on the fastener) and the compressive pulse 
can eventually turn into a tensile one. This is consistent with 
the physics described in [39]. In fact, if the FDS rotational 

and translational speeds are such that the plunge distance is 
exactly one pitch after each round of rotation, the applied 
force during the thread forming and screw-driving stages 
might just be zero because there is no material extrudes up 
or down along the fastener threads.

Figure 12 shows the new formed threads on the workpiece 
at termination for different discretizations obtained using 
the MC-SPG formulation. Cleaner and clearer threads are 
observed as the discretization is refined, which indicates that 
the critical physics of the FDS thread forming process is 
well simulated by the MC-SPG algorithm. This observation 
implies that to form clear threads, the discretization needs 
to be fine enough such that there are enough nodes in the 
pitch distance (0.15 mm—5 nodes, not clear; 0.125 mm—6 
nodes, not clear; 0.10 mm—8 nodes, clear; 0.075 mm—10 
nodes, best). This once again confirms that the MC-SPG 
formulation converges in this simulation. Had this process 
been analyzed by FEM with element erosion technique, no 
thread would be observed on the workpiece due to erosion 
upon failure, which is verified in Fig. 13b.

Fig. 7   Taylor impact: plastic 
strain at termination

Fig. 8   Taylor impact: deformed shapes at the bottom
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5 � Conclusions

Flow drill screw (FDS) joining is a new mechanical fasten-
ing technique widely used to connect metal parts in modern 
lightweight car structures. Numerical simulations of FDS 
joining that well represents the physical behavior are impor-
tant for the automotive industry. In particular, the ability to 
model extensive plastic deformation and material separation 
taking place in the extreme thread forming process is vital 
to the success of the FDS joining simulation. Thanks for the 
characteristics of discretization flexibilities and customized 
approximations, particle or meshfree methods have attracted 
significant attention from scientists and engineers in the last 
two decades to model challenging scientific and engineering 
problems. This paper presents a new particle method, the 
MC-SPG method, for simulating the extreme thread forming 
in the FDS driving process.

The starting point for the extreme thread forming simu-
lation using this new particle method is the stabilization of 
formulation by a novel velocity smoothing algorithm. We 
show that this velocity smoothing algorithm consistently ful-
fills the conservation of momentum. The stabilized formula-
tion is further supplemented with the adaptive anisotropic 
Lagrangian kernel and bond-based failure criterion to handle 
the severe deformation and material failure in the analysis. 
The present method differs from existing residual and non-
residual stabilization methods in several important aspects. 
Most notably, the method does not require additional sta-
bilization terms; thus, modifications of elastic modulus for 
stabilization stress and stabilization control parameters are 
not necessary. Furthermore, the present method is efficient 
and simple. Its implementation relies on velocity smooth-
ing operators whose action is evaluated at the particle level 
using standard meshfree approximations. As a result, an 

Fig. 9   Flow drill screw model: geometry and discretization
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existing meshfree code can be modified easily to handle the 
new stabilization procedure.

Numerical results illustrate the performance of the MC-
SPG method. Convergence studies in small, large and severe 
deformation problems suggest the stability of the present 
method and its applicability in the nonlinear analysis. In 
particular, the present method has shown to offer a unique 
numerical capability in modeling the extreme thread form-
ing operation. To the authors’ best knowledge, this is the 
first time in the literature a numerical method is success-
fully applied to model the forming of threads during the 
FDS driving process. In the future, the applications of the 

Fig. 10   Flow drill screw 
model: discretization of central 
∅7.0 mm region

Fig. 11   Flow drill screw-driving simulation: plunge force

Table 2   Normalized CPU time

Discretization MC-SPG SPG

0.15 mm 0.125 mm 0.10 mm 0.125 mm

Normalized CPU 0.61 1.0 2.03 2.39
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MC-SPG method to the simulation of other advanced joining 
techniques such as SPR connections will be studied.
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