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Abstract
The damage to a structure due to an underwater explosion, which must necessarily include the phenomenon of cavitation,
is a difficult problem to simulate. In this paper, the smoothed particle hydrodynamics (SPH) method is used to address the
simulation of a fully explicit three-dimensional (3D) underwater explosion in a rigid or deformable cylinder, incorporating
properly the physical phenomenon of cavitation. To this purpose, a general 3D SPH code has been implemented using the
Open-MP programming interface. The various components of the code have been validated using four test cases, namely the
Sjögreen test case for validation of the Riemann solver, the 1D cavitating flow in an open tube test case for validation of
the cavitation model, the 1D pentaerythritol tetranitrate detonation test case for validation of the Jones–Wilkins–Lee model
and a 3D high-velocity impact test case for validation of the elastic–perfectly plastic constitutive model. Following this
validation, a 3D explosion within a water-filled rigid cylinder and a water-filled deformable aluminum tube are simulated
with the general SPH code. The results of these simulations are compared against some available experimental data and some
numerical simulations obtained using an alternative approach. These comparisons are generally in good agreement with both
the experimental and numerical data, demonstrating that the SPH method can be used to simulate general 3D underwater
explosion problems.
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1 Introduction

An important research endeavor in naval weapon systems
design is the prediction of underwater explosions and their
effects on ships and submarines. Approaches for the predic-
tion of an underwater explosion and concomitant damage to
structures range from experimentation to simulation. How-
ever, experiments (trials) that investigate the effects of shock
waves on ships have limited utility owing to their prohibitive
cost and difficulties in the measurement of the phenom-
ena involved. In view of this, numerical simulation is an
alternative method that can be used for the investigation of
the spectrum of complex physical processes involved in an
underwater explosion.

Conventional simulation methods such as the finite differ-
ence method (FDM), finite volume method (FVM) and the
finite element method (FEM) have been widely applied in
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engineering and science. However, these grid-based numer-
ical methods have a number of deficiencies in their ability
to address explosion simulations. For example, the mesh-
ing and remeshing of the solution domain for explosion
simulations are time-consuming. Moreover, extreme distor-
tions of the mesh that may result in this remeshing can
provoke numerical instabilities that can culminate in a pro-
gram crash. In consequence, traditional numerical methods
for explosion simulation are frequently augmented with var-
ious other strategies in order to resolve various numerical
difficulties associated with the simulation. As an example of
this approach [1], a boundary element method (BEM) such
as the doubly asymptotic approximation (DAA) is used to
simulate the movement of the water due to an explosion,
whereas a FEM is used to model the effects of the explosion
on the structure. Other strategies involve the combination
of a Lagrangian and an Eulerian grid framework in which
a Lagrangian mesh is used to track the material interface,
while an Eulerian mesh is used to model the large deforma-
tions that characterize an underwater explosion [2,3]. Zhang
et al. [4] coupled a Runge–Kutta discontinuous Galerkin
(RKDG) method with a FEM in order to investigate the cav-
itation problem induced in the near field of an underwater
explosion [4].

Recently, there has been a growing interest in the applica-
tion of particle methods for explosion simulation, owing to
the fact that these methods can track the changing material
interface easily and, hence, are more applicable to address-
ing detonation problems involving large deformations. In this
paper, a gridless methodology known as smoothed particle
hydrodynamics (SPH) [5,6] is used to address underwater
explosion problems. Although this approach was originally
applied for the simulation of astrophysical phenomena, it has
been used in various computational fluid dynamics (CFD)
problems, especially those that involve multi-phase pro-
cesses owing to the fact that the rates of change of physical
variables in the governing equations can be obtained readily
through particle–particle interactions.

In some seminal work, Swegel [7] investigated the fea-
sibility of using the SPH method to simulate an underwater
explosion and demonstrated that the SPH method can cap-
ture the shock wave and treat the large deformations that
characterize detonation phenomenology well. Liu et al. [8]
simulated air and underwater explosions using the SPH
method. Fan and Li [9,10] investigated three-dimensional
(3D) landmine detonation using the SPH methodology in
conjunction with Open-MP. Zhao et al. [11] simulated under-
water explosions and their effects on steel and reinforced
concrete slabs using the SPH method. Zhang et al. [12]
investigated bubble pulsing, jet formation and shock wave
propagation in an underwater explosion using a combination
of the SPH method and BEM.

Currently, SPH simulations of an underwater explo-
sion are mostly limited to two-dimensional (2D) models.
Although some 3D underwater explosion problems such as
an axial symmetrical column charge detonation can be con-
verted to a 2D problem and simulated using an axisymmetric
SPH method, it is still difficult to address general 3D explo-
sion problems using the SPH method, owing to the fact
that these problems are extremely compute-intensive [12].
In view of this situation, our research group has developed a
general 3D in-house SPH code [13,14] based on a strategy
described by Liu and Liu [15]. The Open-MP programming
interface has been utilized in this code in order to reduce the
computational time (viz. to improve significantly the compu-
tational efficiency of a simulation involving a large number of
particles required for 3D underwater explosion simulations).
To this purpose, we have applied this code to the simula-
tion of an underwater explosion within a rigid cylinder and
a deformable aluminum tube, including the phenomenon of
cavitation for the first time using the SPH method. Further-
more, the 3D underwater explosion in a tube is simulated
directly as a full 3D problem, rather than reducing it to a 2D
problem by using a 2D cylindrical coordinate system as has
been done in previous investigations [16,17].

The paper is organized as follows. The fundamental prin-
ciples underpinning the SPH method is presented in Sect. 2.
The test cases used for validation of our SPH code for explo-
sion simulations, as well as the validation of the various
components of our code, are described in Sect. 3. The simula-
tion of a 3D underwater explosion within a rigid cylinder and
a deformable aluminum tube is presented in Sect. 4. Section 5
summarizes the key conclusions of this work.

2 Fundamentals of the SPHmethod

2.1 Function approximation in SPH

In a conventional SPH method, an arbitrary function f (x) is
approximated (estimated) by convolving the function with a
kernel function W (x, h) [15],

〈 f (x)〉 =
∫

Ω

f (x′)W (x − x′, h)dx′ , (1)

where h is the smoothing length (kernel radius). The particle
approximation for f (x) can be obtained from the discretiza-
tion of Eq. 1 as follows:

〈 f (xi )〉 =
N∑
j=1

f (x j )Wi j
m j

ρ j
, (2)

where Wi j ≡ W (xi − x j , h), m j and ρ j are the mass and
density for particle j , respectively, and N is the total number
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of particles used in the simulation. There are many choices
for the kernel function W (x, h). In this paper, we will use
the Gaussian kernel function given by

W (R, h) =
{

αde−R2
, 0 ≤ R ≤ 3 ;

0, R > 3 .
(3)

Here, R is the normalized distance from particle i to particle
j defined as R ≡ r

/
h = | xi − x j |/h and αd is a nor-

malization factor given by 1
/
(πh2) in two dimensions and

1
/
(π

3
2 h3) in three dimensions.

2.2 Discretized equations for the Navier–Stokes
(N–S) equation

The stress tensor σαβ is defined in terms of a symmetrical
deviatoric stress tensor Sαβ and an isotropic tensor pδαβ as

σαβ = −pδαβ + Sαβ . (4)

The Navier–Stokes equation can be discretized in the SPH
methodology as follows [15]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρi
dt =

N∑
j=1

m jv
α
i j

∂Wi j

∂xα
i

, (a)

dvα
i

dt =
N∑
j=1

m j

(
σ

αβ
i + σ

αβ
j

ρiρ j
+ Πi jδ

αβ

)
∂Wi j

∂xβ
i

, (b)

dei
dt = 1

2

N∑
j=1

m j

(
pi + p j

ρiρ j
+ Πi j

)
v

β
i j

∂Wi j

∂xβ
i

+ 1
2ρi

Sαβ
i ε

αβ
i + ΔW (n)

p , (c)

pi = p(ρi , ei ) , (d)

(5)

where ρi , vi , ei , pi and mi are density, velocity, internal
energy, pressure andmass of particle i , respectively; d( · )

/
dt

is the time derivative; vα
i j ≡ vα

i − vα
j ; ε

αβ
i is the strain

rate component of particle i ; Πi j is the Monaghan artificial

viscosity which is described in Sect. 2.3; ΔW (n)
p is the incre-

mental plastic work at the nth time step which is presented in
Sect. 2.4; and the equation of state (EOS) [Eq. (5d)] is given
in Sect. 2.5.

2.3 Artificial viscosity

The Monaghan-type artificial viscosity [18] is incorporated
into SPH in order to smooth potential unphysical oscilla-
tions, to prevent unphysical particle–particle penetration and
to stabilize the numerical solutions. This artificial viscosity

assumes the following form:

Πi j =
⎧⎨
⎩

−αci jφi j+βφ2
i j

ρi j
, vi j · xi j < 0 ;

0 , vi j · xi j ≥ 0 .
(6)

Here, φi j = hi jvi j ·xi j
|xi j |2+(ϕ)2

, ci j = 1
2 (ci + c j ), ρi j = 1

2 (ρi + ρ j ),

hi j = 1
2 (hi + h j ), vi j = vi − v j , and xi j = xi − x j , where

ci is the speed of sound associated with particle i ; α and β

are constant coefficients that are set to have values of 1.0
and 10.0, respectively; and ϕ = 0.1hi j is applied in order to
prevent the unphysical overlapping of two particles.

2.4 Elastic–perfectly plastic constitutive model for
solids

The elastic–perfectly plastic constitutive relation is used for
the solid impact between two particles and is formulated as
follows. The Jaumann rate of stress Ṡαβ

J is widely used for
this purpose [19] and is related to the stress tensor as follows:

Ṡαβ = Ṡαβ
J + Sαγ ẇβγ + Sγβẇαγ . (7)

For a material in the elastic range,

Ṡαβ
J = 2G

(
ε̇αβ − 1

3
δαβ ε̇γ γ

)
, (8)

where G is the shear modulus. With the Jaumann rate of
stress, the evolution of the trial elastic stress can be obtained
from Eqs. (7) and (8) as

Sαβ
e = Δt

(
2G

(
ε̇αβ − 1

3
δαβ ε̇γ γ

)
+ Sαγ ẇβγ

+ Sγβẇαγ
) + Sαβ

(n) , (9)

where Sαβ

(n) is the deviatoric stress component at the nth time
step. The strain rate and rotation rate tensors are defined as

ε̇αβ = 1

2

(
∂vα

∂xβ
+ ∂vβ

∂xα

)
(10)

and

ẇαβ = 1

2

(
∂vα

∂xβ
− ∂vβ

∂xα

)
. (11)

The particle approximations for the strain rate and spin
rate components can be obtained from

ε̇
αβ
i = 1

2

N∑
j=1

m j

ρ j

(
vα
j i

∂Wi j

∂xβ
i

+ v
β
j i

∂Wi j

∂xα
i

)
(12)
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and

ẇ
αβ
i = 1

2

N∑
j=1

m j

ρ j

(
vα
j i

∂Wi j

∂xβ
i

− v
β
j i

∂Wi j

∂xα
i

)
, (13)

where vα
j i = vα

j − vα
i . The second invariant J2 of the devia-

toric part of the elastic trial stress Sαβ
e is

J2 = 1

2
Sαβ
e Sαβ

e . (14)

The plastic regime is determined by vonMises criterionwhen
the second invariant J2 is greater than one-third of the square
of the yield stress σY. In this case, the components of the
deviatoric stress tensor are brought back to the yield surface
in accordance with

Sαβ =
⎧⎨
⎩
Sαβ
e , if J2 ≤ σ 2

Y/3 ;√
σ 2
Y

3J2
Sαβ
e , if J2 > σ 2

Y/3 .
(15)

The Johnson–Cook model that accounts for thermal soft-
ening, high strain rates and strain hardening is used to
calculate the plastic yield stress σY [20]:

σY = [
A + B(εp)

n] [
1 + C ln

(
ε̇p

ε̇0

)] [
1 − (T ∗)k

]
, (16)

where εp is the equivalent plastic strain, ε̇p is the equivalent
plastic strain rate and ε̇0 = 1 s−1. Furthermore, T ∗ is the
dimensionless temperature which is defined as

T ∗ = T − Troom
Tmelt − Troom

, (17)

where Troom is the room temperature, Tmelt is the melting
temperature, T is the temperature, and A, B, C , k and n are
coefficients that define the material properties.

The incremental plastic work is determined from

ΔW (n)
p = 1

2

(
σ (n+1)
p + σ (n)

p

)
Δε(n)

p

(
m

ρ(n+1/2)

)
, (18)

where σp at the (n + 1)th time step is calculated from the

deviatoric stress tensor S(n+1)
e as follows:

σ (n+1)
p =

(
3

2
S(n+1)
e : S(n+1)

e

)1/2

. (19)

Finally, the incremental equivalent plastic strain is deter-
mined from

Δε(n)
p = σ

(n)
p − σY

3G
. (20)

2.5 The EOS of solids and compressible flow

We use the Mie–Gruneisen equation [21] for the EOS of the
solids used in the simulations conducted in this paper. This
EOS assumes the following form:

p =
(
1 − 1

2
Γ η

)
PH (ρ) + Γ ρE , (21)

where

PH (ρ) =
{
a0η + b0η2 + c0η3 , η > 0 ;
a0η , η ≤ 0 .

(22)

Here, η = ρ
/
ρ0 − 1 is used to represent the compression; Γ

is the Gruneisen parameter; E is the specific internal energy;
and the constants a0, b0 and c0 are obtained from

⎧⎪⎨
⎪⎩
a0 = ρ0C2 ,

b0 = a0 [1 + 2 (S − 1)] ,

c0 = a0
[
2 (S − 1) + 3 (S − 1)2

]
,

(23)

where C and S are constant parameters.
The Jones–Wilkins–Lee (JWL) equation is used here to

calculate the pressure resulting from a pentaerythritol tetran-
itrate (PETN) detonation [22]. The JWL equation is given
by

p = A

(
1 − wη1

R1

)
e
− R1

η1 + B

(
1 − wη1

R2

)
e
− R2

η1

+wη1ρ0E , (24)

where A, B, R1, R2, w are constant parameters; η1 is the
ratio of the detonation products density to the initial density
of the explosive; ρ0 is the initial density; and E is the specific
internal energy. A gas bubble in an underwater explosion is
assumed to be homogeneous, isentropic and compressible,
and the EOS for a gas bubble [16] is determined from

pg = p0

(
ρg

ρg0

)γ

, (25)

where p0 is the initial pressure for the bubble gas; ρg0 and
ρg are the initial density and the density of the gas, respec-
tively; and the constant γ is taken to have a value of 2 for our
underwater explosion simulations. The speed of sound in the
gas bubble is determined from

ag =
(
dp

dρ

) 1
2 =

(
p0γ

ρg0

(
ρg

ρg0

)γ−1
) 1

2

. (26)

Water is modeled as a compressible fluid and is repre-
sented using two different EOSs. One of these EOSs is an
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alternative form of the Mie–Gruneisen equation [23] given
by

p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ0C2
0μ

[
1+(1− γ

2 )μ− αμ2

2

]

[
1−(S1−1)μ− S2μ2

μ+1 − S3μ3

(μ+1)2

]2 + (γ + αμ)E , μ > 0 ;

ρ0C2
0μ + (γ + αμ)E , μ ≤ 0 ,

(27)

where μ = ρ
/
ρ0 − 1, ρ0 is the initial density, E is the

specific internal energy, and S1, S2, S3, γ , α and C0 are
the coefficients of the material. Another EOS for water is
Tait’s equation where the relation between the density and
the pressure is expressed as

pw = B

(
ρw

ρw0

)N

− B + A , (28)

where B and A are constants with values of 3.31 × 108 and
1.0× 105 Pa, respectively; ρw0 and ρw are the initial density
and the density of water, respectively; and N is a constant
with a value of 7.15. The parameter A is set equal to the initial
water pressure. The speed of sound in water is given by

aw =
(
dp

dρ

) 1
2 =

(
BN

ρw0

(
ρw

ρw0

)N−1
) 1

2

. (29)

Both theMie–GruneisenEOSandTait’s equation can be used
in the simulation of a compressible flow. Tait’s equation is the
simplest form of EOS for a compressible water flow, and it
works well when the pressure is below 20,000 atm. [16]. The
Mie–Gruneisen equation of state is suitable for a completely
compressible flow, and the variation in the internal energy is
properly accounted for in this equation [24].

In the case of an underwater explosion near a structure
and a free surface, the cavitation is created just below the
free surface or in the vicinity of the structure. The primary
difficulties in the simulation of a cavitating flow are in cre-
ation and collapse of the cavity. To date, various one-fluid
methods have been developed for cavitation simulation in a
compressible flow [16,17]. The modified Schmidt cavitation
model is one of the most important models in this category
and has been used exclusively in underwater explosion sim-
ulations [25]. Moreover, this cavitation model is physically
stable. As the cavitation flow is assumed to be homogeneous,
the density and the pressure of the mixture is governed by
the following relationship:

dp

dρ
= a2m . (30)

The speed of sound am in the mixture, consisting of vapor
and liquid components, is determined from

am =
{
[ρl + α · (ρv − ρl)] ·

[
α

ρv · a2v
+ (1 − α)

ρl · a2l

]}− 1
2

.(31)

The pressure of the mixture can be obtained by integrating
Eq. (30) after the substitution of am from Eq. (31). Alter-
natively, if Tait’s EOS is used for pure water, the modified
Schmidt cavitation model reduces to the following form:

pw =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B
(

ρ
ρ0

)N − B + A , p ≥ psat ;

psat + pgl · ln
[

ρv·a2v ·(ρl+α·(ρv−ρl))

ρl·
(
ρv·a2v−α·

(
ρv·a2v−ρl·a2l

))
]

, pε < p < psat ;

pε , p ≤ pε ,

(32)

where

pgl = ρv · a2v · ρl · a2l · (ρv − ρl)

ρ2
v · a2v − ρ2

l · a2l
; (33)

av and al are the constant speed of sound in the vapor and
liquid components (equal to 208 m s−1 and 1538 m s−1),
respectively; and ρv and ρl are constant densities of the vapor
and liquid components, respectively. The liquid density is
assumed to have a value of ρl = 103 kg m−3 and the ratio
of vapor to the liquid density is assumed to have a value
of ρv/ρl = 10−5. Finally, in Eq. (32), pε is a small positive
value (about 10−5) andα is the void fraction,which is defined
as α ≡ (ρ − ρl)

/
(ρv − ρl).

2.6 Boundary conditions

The imposition of boundary conditions is a challenge in the
SPH method. Various methodologies have been proposed
for the imposition of boundary conditions in SPH simula-
tions [21,26,27]. In this paper, dummyparticles are employed
to impose the no-slip solid boundary condition at the walls
of the rigid cylinder within which the underwater explosion
occurs (see Fig. 1). The components of the stress tensor of
a real particle i are assigned to all those dummy particles
that lie in the support domain S of this particle; so for, these
dummy particles we set σ

αβ
d = σ

αβ
i for d ∈ S [28]. The

velocities of the dummy particles vd are assigned the value
of the velocity of the solid boundary vw (viz. vd = vw).
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Fig. 1 Depiction of the imposition of the no-slip boundary condition
along a solid surface in SPH using dummy particles

Fig. 2 Comparison of the SPH predictions of the pressure distribution
along the shock tube at a time of 0.15 s with an analytical solution

3 Validation of SPHmethod for explosion
simulations

In order to validate our in-house 3D SPH code and physical
model, we compare our predictionswith some published ana-
lytical results and experimental data for the following four
test cases, namely for the Sjögreen problem test case, for a
1D cavitating flow in an open tube, for a 1DPETNdetonation
and for a 3D high-velocity impact test case.

Fig. 3 Comparison of the SPH predictions of the velocity distribution
along the shock tube at a time of 0.15 s with an analytical solution

Fig. 4 Comparison of the SPH predictions of the pressure distribution
along twowater streams at a time of 0.2ms for three different resolutions
with those for a conventional mesh-based method of Liu et al. [16]

3.1 Sjögreen problem

The gas–gas shock tube problem is used here to show that a
shock wave simulation can be well predicted by our 3D SPH
code. For this test case, Eq. (25) is used as the EOS for the
simulation. The initial conditions on the left and right sides
of the simulation domain are given by

(
ρ (kgm−3), v (ms−1), p (Pa)

)

=
{

(1.0,−2.0, 0.4) , for 0.0 < x < 0.5 ;
(1.0, 2.0, 0.4) , for 0.5 < x < 1.0 .

(34)

The pressure and velocity distributions along the shock tube
at a time of 0.15 s are shown in Figs. 2 and 3, respectively. A
perusal of these figures indicates that our predictions using
the SPH method are in excellent agreement with the analyt-
ical results [29].

3.2 1D cavitating flow in an open tube

The second test case proposed by Liu et al. [16] is used to
validate the cavitation model implemented in our 3D SPH

Fig. 5 Comparison of the SPH predictions of the velocity distribution
along twowater streams at a time of 0.2ms for three different resolutions
with those for a conventional mesh-based method of Liu et al. [16]
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Table 1 Coefficients of the
JWL model for the 1D PETN
detonation

ρ0 (kg/m3) A (Pa) B (Pa) R1 R2 w E0 (J/kg)

1765 6.17×1011 1.6926×1010 4.4 1.2 0.25 5.722×106

code. For this test case, Eq. (28) is used as the EOS for the
simulation. The initial conditions on the left and right sides of
the simulationdomain for thiswater–waterRiemannproblem
are prescribed as follows:

(
ρ (kg/m−3), v (ms−1), p (Pa)

)

=
{

(1000,−100, 100, 000) , 0.0 < x < 0.5 ;
(1000, 100, 100, 000) , 0.5 < x < 1.0 .

(35)

The numerical predictions of the distributions of pressure
and velocity along twowater streams obtained using SPH for
three different resolutions (Δx, 4/3Δx, 2Δx withΔx = 0.5
mm) at a time of 0.2 ms is compared with a numerical result
obtained using a conventional mesh-based method with a
one-fluid cavitation model [16] in Figs. 4 and 5, respectively.
It can be seen that the SPH predictions are generally in good
conformance with the mesh-based predictions.

3.3 1D PETN detonation

The simulation of the 1D pentaerythritol tetranitrate (PETN)
explosive detonation is conducted in order to validate the
JWL model incorporated in our 3D SPH code. For this test
case, Eq. (24) was used as the EOS for the simulation. The
JWL parameters for the 1D PETN detonation are summa-
rized in Table 1 [30]. The total length of the PETN slab is
0.1 m. In our SPH simulation, the initial particle spacing is
0.0002 m and the time step is 1.0 × 10−9 s. The pressure
distributions along the PETN slab for four different numbers
of particles (namely for 250, 500, 1000, 2000 particles) at
various distances along the slab is shown in Fig. 6. An exam-

Fig. 6 SPH predictions of the pressure distribution along the 1D PETN
slab during the detonation process for four different numbers of particles

ination of this figure shows that the peak pressure predicted
by the SPH simulations converges to the experimental peak
pressure of 33.5 GPa.

3.4 3D high-velocity impact

The impact of a 3D aluminum (Al) sphere on a thin Al plate
is simulated in order to validate the elastic–perfectly plastic
constitutive model implemented in our 3D SPH code. The
Mie–Gruneisen equation and Johnson–Cook parameters for
Al–Al impact are summarized in Tables 2 and 3 [21], respec-
tively. The radius of the Al sphere is 0.01 m, and the velocity
of the sphere is 6180ms−1. The length, width and height
of the Al plate are 0.1 m, 0.004 m and 0.1 m, respectively.
A total of 690,243 particles were used in this simulation.
The SPH predictions of the high-velocity impact at a time
of 16 µs are shown in Fig. 7. Qualitatively, it is noted that
the overall general shape of the debris cloud obtained from
the simulation is similar to that obtained from some exper-
imental data (cf. Fig. 8 [31] with Fig. 7). Furthermore, the
impact model has also been validated quantitatively in our
previous research paper [14] using the Armco iron cylinder
impact test case study.

4 Simulation of a 3D underwater explosion
within a cylinder

4.1 Underwater explosion within a rigid cylindrical
structure

After validation of the various components of our general
3D SPH code, we will focus now on the simulation of a 3D
underwater explosion in a rigid cylinder. The initial geometry
of this problem is shown in Fig. 9, which is the same as the
initial configuration in [17]. The diameter and the height of
the cylinder are 0.0889mand 0.2886m, respectively. In order
to enable a direct comparison of our predictions with those
from [17], the explosionmodel used herewill be simplified to
a high-pressure gas bubble. The spherical explosive gas bub-
ble has a diameter of 0.03 m and is located at the center of the

Table 2 Coefficients of the Mie–Gruneisen model for Al–Al high-
velocity impact

ρ0 (kg/m3) C (m/s) S G (MPa) Y0 (MPa) Γ

2710 5300 1.5 2.76 ×104 550 1.70
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Table 3 Johnson–Cook
parameters for Al–Al
high-velocity impact

A (MPa) B (MPa) C n k Troom (K) Tmelt (K) Cv (J/kg K)

175 380 0.0015 0.34 1.0 273 775 875

cylinder. The EOS for the gas bubble is described byEq. (25).
The initial pressure and density of the explosive gas bubble
are set to values of pg = 2× 109 Pa and ρg = 1770 kg m−3,
respectively. The parameter γ in Eq. (25) is set to a value of
2.0 for this simulation. Tait’s equation [Eq. (28)] is used in the
simulation. The initial pressure and density of thewater in the
cylinder are assumed to be pw = 1× 105 Pa and ρw = 1000
kgm−3, respectively. ThemodifiedSchmidt cavitationmodel
is utilized when the pressure is smaller than the saturated
vapor pressure. In the simulation, the latter assumes a value
of 3165 Pa. The initial particle spacing is Δx = 0.001 m,
and 1,800,000 particles are used for this simulation. Further-
more, three layers of dummy particles are included and used
to impose the no-slip wall (solid) boundary conditions. The
time step used for this simulation is Δt = 1.0 × 10−8 s.
The simulation was conducted on a computational platform
with Intel E5-2683CPUs. The total computational time (or,
wall clock time) for the simulation, consisting of 12,000 time
steps, is 120CPU hours.

Figure 10a1–a8 depicts the temporal evolution of the pres-
sure distribution at the following times, namely at 15, 30, 45,
60, 75, 90, 105 and 120 µs. After the initiation of the explo-
sion, a compressive shock wave is created. This shock wave
propagates radially in all directions to the solid boundary of
the rigid cylinder (cf. Fig. 10a1). Subsequently, the reflected
shock wave from the solid wall (of the cylinder) interacts
with the expanding high-pressure gas, and as a result, a rar-
efaction wave is generated (cf. Fig. 10a2). A cavitation zone

Fig. 7 SPH prediction of the debris cloud produced by the impact of
an Al sphere on a thin Al plate

Fig. 8 Experimental measurement of the debris cloud produced by the
impact of an Al sphere on a thin Al plate [31]

(white zone) may form near the bubble surface if the rar-
efaction wave is strong enough. Indeed, the rarefaction wave
impacts thewall of the rigid cylinder and is reflected from this
boundary, and induces a cavitation near the solid boundary
(cf. Fig. 10a3–a5). At the end of this process, the cavita-
tion zone collapses as a result of the compression generated
by the compressive shock wave (Fig. 10a6–a8). The tempo-
ral evolution of the pressure distribution predicted using the
SPHmethod (Fig. 10a1–a8) can be compared to that obtained
using the Arbitrary Lagrangian–Eulerian (ALE)method [17]
(see Fig. 10b1–b8). A careful perusal of these figures shows
that the shock wave propagation and the location of the cavi-
tation predicted by the SPHmethod are in good conformance
with those predicted by the ALE method.

Figure 11 exhibits the SPH prediction of the pressure his-
tory at the center location of the side wall, obtained with

Fig. 9 Initial geometry of
underwater explosion within a
rigid cylinder. The dimensions
shown in the diagram are in
millimeter
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Fig. 10 Predictions of the pressure distribution of an underwater explo-
sion within a rigid cylinder from 15–120 µs obtained using the SPH
method (a1–a8) and the ALE method (b1–b8) [17]

initial particle spacings of Δx and 1.5Δx where Δx =
0.001 m. These results are compared to the numerical sim-
ulation conducted by Liu et al. [16] using a mesh-based
approach. For an initial particle spacing of Δx , it is noted
that the pressure at the midline wall predicted by the SPH
method increases rapidly to a value of 0.660 GPa at a time

Fig. 11 Prediction of the pressure histories at the midline wall of a
rigid cylinder obtained by SPH for two different particle resolutions
compared with those obtained from Liu et al. [16]

of 19 µs. Subsequently, the pressure near the wall decreases
and a cavitation region is induced at 42 µs. This cavitation
region finally collapses completely at about 98µs. An exam-
ination of Fig. 11 shows that the first increase and decrease
in the pressure and the time at which cavitation occurs are
in good agreement with the results of Liu et al. [16]. For the
SPH prediction with an initial particle spacing of Δx , the
pressure is seen to increase to a peak value again at a time of
102 µs, followed subsequently by the creation of a second
cavitation region at about 117 µs. These SPH predictions for
the time of occurrence of the second pressure peak and of
the second cavitation region are earlier than those predicted
by Liu et al. [16]. Furthermore, the SPH method predicts
a value for the second pressure peak of 0.35 GPa which is
about 18% smaller than that predicted by Liu et al. [16] (viz.
the latter study predicts a value for the second pressure peak
of 0.43 GPa).

The differences in the predictions given by SPH and ALE
are reasonable (and perhaps to be expected). Firstly, we con-
ducted a full (general) 3D underwater explosion within a
rigid cylinder simulation, in contrast to previous investiga-
tions [16,17] which exploited the cylindrical symmetry in
the problem to conduct 2D simulations using a cylindrical
coordinate system. Secondly, it is seen that a better numer-
ical pressure distribution (cf. Fig. 11) can be obtained from
the SPH method by simply using a larger number of par-
ticles. However, increasing the number of particles in the
simulation over and above what has been used in our current
simulations is beyond the capability of our currently avail-
able computational resources. Thirdly, the artificial viscosity
used in our SPH simulations tends to suppress the shock
wave oscillation. In contrast, Liu et al. [16] used an integral–
differential form to treat the relationship across the cavitation
boundary. Furthermore, the SPH approach is a Lagrangian
particlemethod inwhich the calculation of the physical quan-
tities is based on the summation of the particles in a support
domain (determined by the nature of the kernel function
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used), in stark contrast to a mesh-based numerical method.
Lastly, the implementation of the boundary conditions (uti-
lizing dummy particles) in SPH is totally different from how
boundary conditions are incorporated in conventional mesh-
based methods. Given these differences, the comparison of
numerical results provided by the SPH and ALE method is
reasonable, and from this perspective, we conclude that the
SPH methodology is able to adequately capture the details
of shock wave propagation and cavitation phenomenology in
underwater explosion simulations.

4.2 3D underwater explosion within a deformable
aluminum tube

We consider the simulation of a 3D underwater explosion
within an aluminum tube. The initial configuration for this
simulation conforms exactly to the initial geometry used
in the experiment conducted by Chambers et al. [30] (see
Fig. 12).

The case considered herein involved placing an explo-
sive charge within a deformable structure consisting of an Al
tube with the following dimensions: The tube has a length
of 19.2 cm, an outer diameter of 10.2 cm and a wall thick-
ness of 0.7 cm. A small explosive charge consisting of 3.0 g
PETN is suspended inside the Al tube which is filled with
distilled water. The JWL parameters for the PETN detona-
tion are summarized in Table 1. The Mie–Gruneisen and
Johnson–Cook model parameters for Al that are used in
our simulation are presented in Tables 2 and 3, respectively.
Both theMie–Gruneisen EOS andTait’s equation are utilized
in our compressible fluid simulation. The Mie–Gruneisen

Fig. 12 Initial geometry of an underwater explosion in a deformable
aluminum tube. The dimensions shown in the diagram are in millimeter

parameters for water used in the simulation are summarized
in Table 4 [15]. The initial particle spacing used for the sim-
ulation is 0.001 m. Furthermore, a total of 870,000 particles
were used in the simulation which was conducted with a time
step is 1×10−8 s. The Open-MP programming interface has
been used in order to improve the computational efficiency.
The simulation was conducted on a computational platform
with Intel E5-2683 CPUs. A total computational (wall clock)
time of 78 CPU hours was required to complete the simula-
tion which involved executing 12,000 time steps.

SPH predictions of the pressure and the velocity distribu-
tions of the underwater explosion using Tait’s equation are
exhibited in Figs. 13 and 14, respectively, at eight different
times, namely at 15, 30, 45, 60, 75, 90, 105 and 120 µs. The
results of our numerical simulations for this case seem to
suggest that clearer (better delineated) pressure contours for
the time interval from 75 to 120 µs can be obtained using
Tait’s equation in comparison with those obtained using the
Mie–Gruneisen EOS. From a careful examination of Fig. 13,
it is evident that the initiated shock wave propagates radially
in all directions within the water medium inside the Al tube.
This shock wave impacts the inside surface of the Al tube
at about 18 µs. At this time, it is seen that the pressure at
the midline wall increases rapidly and the surface of the Al
tube is deformed owing to the force on the tube generated by
the shock wave (see Fig. 13d–f). Furthermore, note that the
degree of deformation at the midline wall is larger than that
at other parts of the tube owing to the fact that the velocity
at the midline wall is a maximum on the tube at this loca-
tion (see Fig. 14). As the shock wave propagates, a cavitation
zone is created at a time of about 30 µs near the centerline
wall as the rarefaction wave hits the Al tube. Subsequently,
this cavitation zone collapses at a time of about 48 µs, as
the pressure in the cavitation zone increases as a result of
the compressive shock wave. This is evident in Fig. 15) and
demonstrates clearly that the generation and collapse of a
cavitation zone can be predicted by the SPH simulation.

Figure 15 also exhibits a comparison between the pres-
sure distribution predicted by our SPH simulation with some
experimental data [32]. Note that the predicted peak pres-
sures obtained using SPH with the Mie–Gruneisen EOS and
Tait equation are about 0.585 GPa and 0.560 GPa, respec-
tively. These values for the peak pressure compare well with
the experimental value of 0.620 GPa. Furthermore, it is seen
that the peak pressure obtained using the Mie–Gruneisen
EOS is in better conformance with the experimental value

Table 4 Coefficients of the Mie–Gruneisen model for water

ρ0 (kg/m3) C0 (km/s) S1 S2 S3 γ α E0 (J)

1000 1480 2.56 1.986 1.2286 0.5 0 0
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Fig. 13 Predictions of the
pressure distribution of an
underwater explosion in an
aluminum tube obtained using
SPH for a time interval from 15
to 120 µs

Fig. 14 Predictions of the
velocity distribution of an
underwater explosion in an
aluminum tube obtained using
SPH for a time interval from 15
to 120 µs

than that obtained using the Tait equation. Moreover, the
generation and collapse of the cavitation zones are similar to
the experimental results. The displacements at the midline
wall have also been compared with the experimental results,
and it is found that the relative errors between the predicted
and experimental results are generally less than about 20%
(cf. Table 5).

The discrepancy between the predicted pressure and dis-
placements and the associated experimental measurements
can be attributed to a number of factors. Firstly, only twoEOS
models (namelyTait’s equation and theMie–GruneisenEOS)
have been used to model the liquid compression in our simu-
lations. There are a number of alternative EOS compressible
fluid models that will need to be considered and evaluated to
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Fig. 15 Prediction of the pressure histories at the midline wall of a
deformable cylinder obtained by SPH compared with some experimen-
tal data [32]

determine whether these models can give predictions that are
in better conformance with the experimental measurements
(viz. better than what has been obtained in the current study).
Secondly, although less likely, the discrepancy between the
predictions and the experimental measurements may reside
in the form of the kernel function used in the determina-
tion of the physical quantities in SPH. Certainly, a number
of different kernel functions will need to be considered (in
future efforts) and evaluated in terms of their effects on the
SPH predictions of the pressure and displacement. Thirdly,
we have used only the Mie–Gruneisen model for the sim-
ulation of the impact on the Al tube. Certainly, a number
of additional solid impact models (e.g., Cowper–Symonds
model [33]) will need to be tested and evaluated in terms of
their effects on the prediction of the pressure and displace-
ment for underwater explosion problems. In view of this, it
is stressed that given the expected model and experimental
errors, current predictions obtained with our SPH method
for the structural deformation resulting from an underwater
explosion seem reasonable. In the future, it is expected that
these predictions can be further improved with the incorpo-
ration of more sophisticated models for liquid compression
and for solid impact.

5 Conclusion

In this paper, the SPH method in conjunction with a mod-
ified Schmidt model has been used to simulate a fully 3D
underwater explosion in a both rigid and deformable (Al)
tube. The proposed methodology has been implemented as
part of a general 3D in-house SPH code that incorporates
the Open-MP parallel programming interface to provide the
computational efficiency required to conduct simulations
with large numbers of particles. Various components of SPH
codehavebeenvalidated using a number of test cases, namely
the Sjögreen test case, a 1D cavitating flow in an open
tube test case, a 1D PETN detonation test case and a 3D
high-velocity impact test case. After this comprehensive val-
idation, the SPH code has been applied to the simulation of
a fully 3D underwater explosion in a rigid cylinder and in a
deformable aluminum tube. These 3D SPH predictions of an
underwater explosion have been comparedwith other numer-
ical simulations of the problem using alternative approaches,
as well as with some available experimental data.

The conclusions of this study can be summarized as fol-
lows. The cavitation phenomenon in an underwater explosion
in a cylinder (rigid or deformable) is well predicted gener-
ally using the SPH method in conjunction with the modified
Schmidt cavitating model. Predictions of the pressure dis-
tribution and the deformation of the structure obtained from
the SPH method are generally in reasonable to good confor-
mancewith experimental measurements as well as with other
numerical simulations. To the best of our knowledge, this
appears to be first time that a fully explicit 3D underwater
explosion in either a rigid or a deformable cylinder incor-
porating properly the cavitation phenomenology has been
successfully simulated using the SPH method.

With respect to future work, the solid impact Cowper–
Symonds model, the Mie–Gruneisen compressible fluid
model and the one-fluid cavitating model will be imple-
mented and incorporated into our SPH code. The damage
to various structures arising from an underwater explosion
will be conducted using these models and validated using
available experimental data in order the assess the capability
of the modeling scheme to predict structural damage.

Table 5 Comparison of the simulation and experimental displacements (mm) at midline wall, where %error = |simul. − expt.|/expt. × 100

Time (ms) 0.01 0.02 0.03 0.04 0.06 0.08 0.1 0.15
Expt. (experiment) 0.0 0.50 1.20 2.00 3.33 4.17 4.65 5.50
Simul. (Tait) 0.0 0.41 1.00 1.61 2.93 3.85 4.10 5.10
Simul. (Mie–Gruneisen) 0.0 0.42 1.00 1.70 2.95 3.86 4.12 5.20
%Error (Tait) 0.0 18.0 16.6 19.5 12.0 7.67 11.8 7.27
%Error (Mie–Gruneisen) 0.0 16.0 16.6 15.0 11.4 7.43 11.3 5.40
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