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Abstract
The incompressible smoothed particle hydrodynamics (ISPH) method is a numerical method widely used for accurately and
efficiently solving flow problems with free surface effects. However, to date there has been little mathematical investigation of
properties such as stability or convergence for this method. In this paper, unique solvability and stability are mathematically
analyzed for implicit and semi-implicit schemes in the ISPHmethod. Three key conditions for unique solvability and stability
are introduced: a connectivity condition with respect to particle distribution and smoothing length, a regularity condition
for particle distribution, and a time step condition. The unique solvability of both the implicit and semi-implicit schemes
in two- and three-dimensional spaces is established with the connectivity condition. The stability of the implicit scheme in
two-dimensional space is established with the connectivity and regularity conditions. Moreover, with the addition of the time
step condition, the stability of the semi-implicit scheme in two-dimensional space is established. As an application of these
results, modified schemes are developed by redefining discrete parameters to automatically satisfy parts of these conditions.

Keywords Incompressible smoothed particle hydrodynamics method · Incompressible Navier–Stokes equations · Unique
solvability · Stability

1 Introduction

The smoothed particle hydrodynamics (SPH) method [6,11]
is a kind of numerical method for solving partial differential
equations and discretizing them in space using a weighted
average of interactions between particles within a neighbor-
hood defined by a smoothing length. For the incompressible
Navier–Stokes equations, the incompressible smoothed par-
ticle hydrodynamics (ISPH) method, by which the equations
are discretized by the SPH method in space and a semi-
implicit projection method [4,7] in time, was developed by
Cummins and Rudman [5]. The ISPH method has been
widely used as a numerical method as it is able to accu-
rately and efficiently solve flow problems with free surface

This work was supported by JSPS KAKENHI Grant Number
17K17585, JSPS A3 Foresight Program, and “Joint Usage/Research
Center for Interdisciplinary Large-scale Information Infrastructures”
in Japan (Project ID: jh180060-NAH).

B Yusuke Imoto
y-imoto@tohoku.ac.jp

1 Tohoku Forum for Creativity, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai 980-8577, Japan

effects [1,10,15]. Moreover, in order to simulate problems
with high viscosity, an ISPH method that uses an implicit
projection method has been developed [9].

However, there is almost no mathematical background
on properties such as stability or convergence for the ISPH
method. Although there are a few mathematical analyses for
the SPH method or related particle methods, e.g., error esti-
mates for the SPH method with particle volumes related to
the vortex method [2,3,13] and error estimates for Poisson
and heat equations of a generalized particle method [8], their
results do not directly apply to the ISPH method. Hence,
the identification of discrete parameter conditions necessary
for obtaining stable results has had to rely on experimental
studies [14].

This paper establishes the mathematical properties of
unique solvability and stability for implicit and semi-implicit
schemes in the ISPH method. We introduce three key con-
ditions for unique solvability and stability: a connectivity
conditionwith respect to the particle distribution and smooth-
ing length, a regularity condition for the particle distribution,
and a time step condition corresponding to viscous diffusion.
Then, we show the unique solvability of both the implicit and
semi-implicit schemes in two- and three-dimensional spaces
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Fig. 1 Domain Ω and boundaries ΓW and ΓS

with the connectivity condition. We go on to prove the sta-
bility of velocity for the implicit scheme in two-dimensional
space with the connectivity and regularity conditions. Fur-
ther, we show the stability of velocity for the semi-implicit
scheme in two-dimensional space with the addition of the
time step condition. The main advantage of these results in
the engineering sense is to clarify conditions required for sta-
ble computing in the ISPHmethod.As an application of these
results, we introduce modified schemes with discrete param-
eters redefined to automatically satisfy the semi-regularity
and time step conditions.

2 Incompressible smoothed particle
hydrodynamics method

Let Ω be a bounded domain in R
d (d = 2, 3) with smooth

boundary Γ . The boundary Γ is divided into two parts: a
wall boundary ΓW ⊂ Γ and a free surface boundary ΓS :=
Γ \ΓW; see Fig. 1.

We consider the incompressible Navier–Stokes equations:
Find u : Ω × (0, T ) → R

d and p : Ω × (0, T ) → R such
that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Du

Dt
= − 1

ρ
∇p + νΔu + f , (x, t) ∈ Ω × (0, T ),

∇ · u = 0, (x, t) ∈ Ω × (0, T ),

u = a, x ∈ Ω, t = 0,
u = 0, (x, t) ∈ ΓW × (0, T ),

(1)

where u : Ω × (0, T ) → R
d , p : Ω × (0, T ) → R, ρ > 0,

ν > 0, f : Ω × (0, T ) → R
d , and a : Ω → R

d denote
velocity, pressure, density, kinematic viscosity, body force,
and initial velocity of the fluid, respectively. Furthermore,
D/Dt denotes the material derivative defined as D/Dt :=
∂/∂t+u ·∇. The unknowns are the velocity u and pressure p.
We assume the uniqueness and existence of a smooth solution
for the incompressible Navier–Stokes equations (1).

We introduce the ISPHmethod. Let τ > 0 be the time step.
Let K be K := �T /τ�, where �T /τ� denotes the greatest
integer that is less than or equal to T /τ . For k = 0, 1, . . . , K ,

Fig. 2 Particle distribution

the kth time tk is defined as tk := k τ . For N ∈ N, we define
a particle distribution XN as

XN := {
xi ∈ Ω ∪ Γ

∣
∣ i = 1, 2, . . . , N , xi 	= x j (i 	= j)

}
.

(2)

We refer to xi ∈ XN as a particle. Let X k
N and xki be a

particle distribution and an i th particle at tk , respectively.
Let ΛN := {1, 2, . . . , N }. Let Λk

S ⊂ ΛN be the index set
of particles judged to be on the free surface, Λk

W ⊂ ΛN the
index set of particles on the wall boundary, and Λk

F ⊂ ΛN

the index set of the other particles. We refer to xki (i ∈ Λk
F),

xki (i ∈ Λk
S), and xki (i ∈ Λk

W) as an inner fluid particle, a
surface particle, and a wall particle, respectively; see Fig. 2.

For N ∈ N, we define a particle volume set VN as

VN :=
{

ωi > 0

∣
∣
∣
∣
∣
i = 1, 2, . . . , N ,

N∑

i=1

ωi = |Ω|
}

. (3)

Here, |Ω| denotes the volume of Ω . We refer to ωi ∈ VN

as a particle volume. In the SPH method, by introducing a
particle density ρi and particle mass mi , the particle volume
ωi is generally given as ωi = ρi/mi .

For w : [0,∞) → R, we consider the following condi-
tions:

w(r)

{
> 0, 0 < r < r0,

= 0, r ≥ r0;
(4)

ẇ(r)

{
< 0, 0 < r < r0,

= 0, r = 0 or r ≥ r0;
(5)

∫

Rd
w(|x |)dx = 1; (6)

w ∈ C2([0,∞)). (7)

Here, r0 and ẇ are a positive constant and the first derivative
of w, respectively. We define a function setW as

W := {w : [0,∞) → R | w satisfies (4)−(7)} . (8)

We refer tow ∈ W as a reference weight function.We define
a smoothing length h as a positive number that satisfies r0h >

min{|xki − xkj | | i 	= j}. For the reference weight function
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w ∈ W and the smoothing length h, a weight function wh :
[0,∞) → R is defined as

wh(r) := 1

hd
w

( r

h

)
. (9)

For example, in the SPH method, the following reference
weight functions are often used: the cubic B-spline (r0 = 2)

w(r) := βcubic
d

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 3

2
r2 + 4

3
r3, 0 ≤ r < 1,

1

4
(2 − r)3, 1 ≤ r < 2,

0, 2 ≤ r ,

(10)

and the quintic B-spline (r0 = 3)

w(r) := β
quintic
d

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(3 − r)5 − 6(2 − r)5 + 15(1 − r)5, 0 ≤ r < 1,

(3 − r)5 − 6(2 − r)5, 1 ≤ r < 2,

(3 − r)5, 2 ≤ r < 3,

0, 3 ≤ r .

(11)

Here, βcubic
d and β

quintic
d are constants dependent on d to sat-

isfy condition (6) and are calculated as

βcubic
d =

⎧
⎪⎨

⎪⎩

10

7π
, d = 2,

1

π
, d = 3;

β
quintic
d =

⎧
⎪⎨

⎪⎩

7

478π
, d = 2,

1

120π
, d = 3.

(12)

For an index setΛ ⊂ ΛN and k = 0, 1, . . . , N , a function
space V k

N (Λ) is defined as

V k
N (Λ) :=

{
v : {xki ∈ X k

N }i∈Λ → R

}
. (13)

For k = 0, 1, . . . , K , a function f k ∈ V k
N (ΛN ) is defined as

f k(xki ) :=
{
f (xki , t

k), i ∈ Λk
F ∪ Λk

S,

0, i ∈ Λk
W.

(14)

Hereinafter, for a function vk (k = 0, 1, . . . , K ) defined in
X k

N , we denote vk(xki ) as vki . Now, we consider the following
two schemes in the ISPH method.
Implicit scheme: find uk ∈ V k

N (ΛN )d (k = 0, 1, . . . , K ) and
pk ∈ V k

N (Λk
F ∪ Λk

S) (k = 1, 2, . . . , K ) such that

u0i = a(x0i ), i = 1, 2, . . . , N , (I-a)

and for k = 0, 1, . . . , K − 1,

⎧
⎨

⎩

ũk+1
i − uki

τ
= ν〈Δ̃u〉k+1

i + f ki , i ∈ Λk
F ∪ Λk

S,

ũk+1
i = 0, i ∈ Λk

W;
(I-b)

{
〈Δp〉k+1

i = ρ

τ
〈∇ · ũ〉k+1

i , i ∈ Λk
F,

pk+1
i = 0, i ∈ Λk

S;
(I-c)

⎧
⎨

⎩

uk+1
i − ũk+1

i

τ
= − 1

ρ
〈∇p〉k+1

i , i ∈ Λk
F ∪ Λk

S,

uk+1
i = 0, i ∈ Λk

W.

(I-d)

Semi-implicit scheme: finduk ∈ V k
N (ΛN )d (k = 0, 1, . . . , K )

and pk ∈ V k
N (Λk

F ∪ Λk
S) (k = 1, 2, . . . , K ) such that

u0i = a(x0i ), i = 1, 2, . . . , N , (SI-a)

and for k = 0, 1, . . . , K − 1,

⎧
⎨

⎩

ũk+1
i − uki

τ
= ν〈Δu〉ki + f ki , i ∈ Λk

F ∪ Λk
S,

ũk+1
i = 0, i ∈ Λk

W;
(SI-b)

{
〈Δp〉k+1

i = ρ

τ
〈∇ · ũ〉k+1

i , i ∈ Λk
F,

pk+1
i = 0, i ∈ Λk

S;
(SI-c)

⎧
⎨

⎩

uk+1
i − ũk+1

i

τ
= − 1

ρ
〈∇p〉k+1

i , i ∈ Λk
F ∪ Λk

S,

uk+1
i = 0, i ∈ Λk

W.

(SI-d)

Here, the approximations of the derivatives are defined as

〈Δu〉ki := 2
∑

j 	=i

ω j
uki − ukj
|xki − xkj |

xki − xkj
|xki − xkj |

· ∇wh(|xki − xkj |), (15)

〈Δ̃u〉k+1
i := 2

∑

j 	=i

ω j
ũk+1
i − ũk+1

j

|xki − xkj |
xki − xkj
|xki − xkj |

· ∇wh(|xki − xkj |), (16)

〈∇ · ũ〉k+1
i :=

N∑

j=1

ω j (̃u
k+1
j + ũk+1

i ) · ∇wh(|xki − xkj |),

(17)

〈∇p〉k+1
i :=

∑

j∈Λk
F∪Λk

S

ω j (p
k+1
j − pk+1

i )∇wh(|xki − xkj |),

(18)

〈Δp〉k+1
i := 2

∑

j∈Λk
F∪Λk

S\{i}
ω j

pk+1
i − pk+1

j

|xki − xkj |
xki − xkj
|xki − xkj |

· ∇wh(|xki − xkj |). (19)
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In both schemes, the particles are updated by

xk+1
i = xki + τuk+1

i , i = 1, 2, . . . , N , k = 0, 1, . . . , K − 1.

(20)

Equations (I-b) and (SI-b) are referred to as the prediction
step, Eqs. (I-c) and (SI-c) as the pressure Poisson equation,
and Eqs. (I-d) and (SI-d) as the correction step. The differ-
ence between these schemes is only the viscous term in the
prediction steps (I-b) and (SI-b). Because (I-b) and (I-c) are
implicit, we refer to the first scheme as the implicit scheme.
In contrast, because only the equation for pressure (SI-c) is
implicit, we refer to the second scheme as the semi-implicit
scheme.

Remark 1 Although many approximation operators have
been proposed for the ISPHmethod, the approximation oper-
ators (15)–(19) are chosen because they satisfymathematical
properties in Sect. 4.2. Analyses of the ISPH method using
other approximation operators are left as future problems.

3 Key conditions for discrete parameters

In order to analyze the unique solvability and the stability for
the implicit and semi-implicit schemes, we introduce three
important conditions for discrete parameters: the connectiv-
ity, semi-regularity, and time step conditions.

Definition 1 (h-connectivity condition) For the smoothing
length h, the particle distribution X k

N satisfies the h-
connectivity condition if for all i ∈ Λk

F, there exist sequences

{il}ζl=1 and {i∗l }ζ ∗
l=1 ⊂ ΛN such that

i1 = i, 0 < |xkil − xkil+1
| < r0h (1 ≤ l < ζ),

il ∈ Λk
F (1 ≤ l < ζ), iζ ∈ Λk

S, (21)

i∗1 = i, 0 < |xki∗l − xki∗l+1
| < r0h (1 ≤ l < ζ ∗),

i∗l ∈ Λk
F (1 ≤ l < ζ ∗), i∗ζ ∗ ∈ Λk

W. (22)

Definition 2 (semi-regularity condition)A family{({X k
N }Kk=0,

VN , h, τ )} satisfies the semi-regularity condition if there
exists a positive constant c0 such that

max
i=1,2,...,N

⎧
⎨

⎩

N∑

j=1

ω j |xki − xkj ||ẇh(|xki − xkj |)|
⎫
⎬

⎭

≤ d + c0τ, k = 1, 2, . . . , K . (23)

Definition 3 (time step condition) A family {({X k
N }Kk=0,VN ,

h, τ )} satisfies the time step condition if there exists a con-
stant δ (0 < δ < 1) such that

τ ≤ δ

2ν

⎡

⎣ max
i=1,2,...,N

⎛

⎝
∑

j 	=i

ω j
|ẇh(|xki − xkj |)|

|xki − xkj |

⎞

⎠

⎤

⎦

−1

,

k = 1, 2, . . . , K . (24)

Remark 2 Consider a graph G whose vertex set is particle
distribution X k

N and whose edges are a pair (xki , x
k
j ) that sat-

isfies 0 < |xki − xkj | < r0h, as shown, for example, in Fig. 3.

By Definition 1, that the particle distributionX k
N satisfies the

h-connectivity condition is equivalent to all fluid particles
having a path on G to a surface particle and a wall particle.

Remark 3 Because the approximation

max
i=1,2,...,N

⎧
⎨

⎩

N∑

j=1

ω j |xki − xkj ||ẇh(|xki − xkj |)|
⎫
⎬

⎭

≈
∫

Rd
|y| |ẇh(|y|)| dy = d (25)

holds, the family {({X k
N }Kk=0,VN , h, τ )} can satisfy the

semi-regularity condition under appropriate settings of dis-
crete parameters. In particular, as the left side of (23)
becomes largerwhen a cohesion of particles occurs, the semi-
regularity condition partially denotes a regularity of particle
distributions.

Remark 4 The time step condition (24) corresponds to a
constraint of the time step due to viscous diffusion. Experi-
mentally, the constraint is given by

τ ≤ α
h2

ν
, (26)

where the coefficient α is usually given as a value on the
order of 0.1 [12,14]. In contrast, the time step condition (24)
becomes

τ ≤ δ

2ν

⎡

⎣ max
i=1,2,...,N

⎛

⎝
∑

j 	=i

ω j
|ẇh(|xki − xkj |)|

|xki − xkj |

⎞

⎠

⎤

⎦

−1

< α̂
h2

ν
, (27)

where α̂ is defined by

α̂ := 1

2h2

⎡

⎣ max
i=1,2,...,N

⎛

⎝
∑

j 	=i

ω j
|ẇh(|xki − xkj |)|

|xki − xkj |

⎞

⎠

⎤

⎦

−1

. (28)
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Fig. 3 Particle distributions X k
N

and their graphs G: the left and
right sides show particle
distributions a with and b
without satisfying the
h-connectivity condition,
respectively

(a) (b)

Therefore, α̂ corresponds to α. Moreover, because the
approximation

α̂ = 1

2h2

⎡

⎣ max
i=1,2,...,N

⎛

⎝
∑

j 	=i

ω j
|ẇh(|xki − xkj |)|

|xki − xkj |

⎞

⎠

⎤

⎦

−1

≈ 1

2h2

(∫

Rd

|ẇh(|y|)|
|y| dy

)−1

= 1

2

(∫

Rd

|ẇ(|y|)|
|y| dy

)−1

(29)

holds, we can estimate the approximate value of α̂ for ref-
erence weight functions in advance. When w is the cubic
B-spline (10), the approximate value of α̂ is calculated as

α̂ ≈ 1

2

(∫

Rd

|ẇ(|y|)|
|y| dy

)−1

=

⎧
⎪⎨

⎪⎩

7

40
= 0.175, d = 2,

1

6
≈ 0.167, d = 3,

(30)

and when w is the quintic B-spline (11) as

α̂ ≈ 1

2

(∫

Rd

|ẇ(|y|)|
|y| dy

)−1

=

⎧
⎪⎪⎨

⎪⎪⎩

239

924
≈ 0.259, d = 2,

1

4
= 0.250, d = 3.

(31)

Because α is experimentally given as on the order of 0.1, the
above approximate values of α̂ agree well with the experi-
mental values.

4 Unique solvability and stability

4.1 Unique solvability

First, we show the unique solvability for the implicit and
semi-implicit schemes.

Theorem 1 If particle distribution X k
N satisfies the

h-connectivity condition for all k = 0, 1, . . . , K − 1, then
both the implicit and semi-implicit schemes have a unique
solution.

Proof Because (I-d), (SI-b), and (SI-d) are explicit, these are
clearly solvable. Therefore, we prove the unique solvability
of (I-b), (I-c), and (SI-c).

First, we show the unique solvability of the prediction
step (I-b). We fix k = 0, 1, . . . , K . Let Nk

F and Nk
S be the

number of inner fluid particles and the number of surface
particles, respectively, at time step tk .We renumber the index
of particles so that i = 1, 2, . . . , Nk

F ∈ Λk
F and i = Nk

F +
1, Nk

F + 2, . . . , Nk
F + Nk

S ∈ Λk
S. Let ai j (i, j = 1, 2, . . . , N )

be

ai j :=

⎧
⎪⎨

⎪⎩

0, i = j,

−2
xki − xkj

|xki − xkj |2
· ∇wh(|xki − xkj |), i 	= j .

(32)

We define a matrix A ∈ R
(Nk

F+Nk
S )×(Nk

F+Nk
S ) and a vector

b ∈ R
Nk
F+Nk

S respectively as

Ai j :=

⎧
⎪⎪⎨

⎪⎪⎩

1 + τν

N∑

l=1

ωlail , i = j,

−ω j ai j , i 	= j;
(33)

bi := uki + τ f ki , i = 1, 2, . . . , Nk
F + Nk

S . (34)

Then, (I-b) is equivalent to the linear equations

Ax = b, (35)

where xi := ũk+1
i (i = 1, 2, . . . , Nk

F + Nk
S). Therefore, it is

sufficient to show that A is non-singular. From (5), we have

−2
xki − xkj

|xki − xkj |2
· ∇wh(|xki − xkj |) = −2

ẇh(|xki − xkj |)
|xki − xkj |

≥ 0.

(36)
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Therefore, as ai j is nonnegative and aii = 0, we have, for
i = 1, 2, . . . , Nk

F + Nk
S ,

|Aii | −
∑

j 	=i

|Ai j | = 1 + τν

N∑

l=1

ωlail −
∑

j 	=i

ω j ai j

= 1 + τν

N∑

l=Nk
F+Nk

S+1

ωlail > 0. (37)

Hence, A is a strictly diagonally dominant matrix. Thus, A
is non-singular.

Next, we show the unique solvability of the Poisson equa-
tions (I-c) and (SI-c). We define matrices Â, D ∈ R

Nk
F×Nk

F

and a vector b̂ ∈ R
Nk
F respectively as

Âi j :=

⎧
⎪⎪⎨

⎪⎪⎩

Nk
S∑

l=1

ωl

ωi
ail , i = j,

−ai j , i 	= j;
D := diag(ωi );
b̂i := ρ

τ
〈∇ · ũ〉k+1

i , i = 1, 2, . . . , Nk
F . (38)

Then, (I-c) and (SI-c) are equivalent to

ÂDx̂ = b̂, (39)

where x̂i := pk+1
i (i = 1, 2, . . . , Nk

F). As ωi > 0 (i =
1, 2, . . . , Nk

F ), the diagonal matrix D is non-singular. There-
fore, it is sufficient to prove that Â is non-singular. As Â is
symmetric, we will prove that Â is a positive definite matrix.
For all α ∈ R

Nk
F\{0}, we have

Nk
F∑

i, j=1

αiα j Âi j = 2
∑

1≤i< j≤Nk
F

αiα j Âi j +
Nk
F∑

i=1

α2
i Âi i

= −2
∑

1≤i< j≤Nk
F

αiα j ai j +
Nk
F∑

i=1

α2
i

Nk
S∑

k=1

ωk

ωi
aik

=
∑

1≤i< j≤Nk
F

(
ω jαi − ωiα j

)2

ωiω j
ai j

+
Nk
F∑

i=1

α2
i

Nk
S∑

k=Nk
F+1

ωk

ωi
aik . (40)

As ai j is nonnegative and ωi is positive, (40) is nonnegative.

For a ∈ R
Nk
F\{0}, we set i such that αi 	= 0. Because of the

particle distribution X k
N with h-connectivity, we can take a

sequence {ik}ζk=1 such that the conditions given in (21) hold.

As all terms of the last equation in (40) are nonnegative, we
have

Nk
F∑

i, j=1

αiα j Âi j ≥
ζ−1∑

k=1

(
ωik+1αik − ωikαik+1

)2

ωikωik+1

aik ik+1

+ ωiζ

ωiζ−1

α2
iζ aiζ−1iζ . (41)

As |xkik −xkik+1
| < r0h, the value of aik ik+1 (k = 1, 2, . . . , ζ −

1) is positive. Thus, if the right side of (41) equals zero,
then αik = 0 (k = 1, 2, . . . , ζ ). As this is inconsistent with
αi = αi1 	= 0, the right side of (41) is positive. Therefore,
the matrix Â is a positive definite matrix. Consequently, the
matrix Â is non-singular. ��

4.2 Discrete Sobolev norms and their mathematical
properties

Next, we introduce some notation and show certain lemmas.
For Λ ⊂ ΛN , m = 1, 2, . . . , d, and k = 0, 1, . . . , N ,
we define a discrete inner product (·, ·)Λ : V k

N (Λ)m ×
V k
N (Λ)m → R and discrete L2 norm ‖·‖0,Λ : V k

N (Λ)m → R

as

(φ, ϕ)Λ :=
∑

i∈Λ

ωi φi · ϕi , (42)

‖φ‖0,Λ := (φ, φ)
1/2
Λ =

(
∑

i∈Λ

ωi φ
2
i

)1/2

, (43)

respectively. Moreover, we define a discrete H1
0 semi-norm

| · |1,Λ,k : V k
N (Λ)m → R and discrete H−1

0 semi-norm | ·
|−1,Λ,k : V k

N (Λ)m → R as

|φ|1,Λ,k :=
⎛

⎝
∑

i∈Λ

ωi

∑

j∈Λ\{i}
ω j

|φi − φ j |2
|xki − xkj |

|ẇh(|xki − xkj |)|
⎞

⎠

1/2

,

(44)

|φ|−1,Λ,k := sup
ϕ∈V k

N (Λ)m\{0}

(φ, ϕ)Λ

|ϕ|1,Λ,k
, (45)

respectively. Then, we obtain the following lemmas:

Lemma 1 Forφ, ϕ ∈ V k
N (Λ)d (Λ ⊂ ΛN , k = 0, 1, . . . , K ),

we have

(φ, ϕ)Λ ≤ ‖φ‖0,Λ‖ϕ‖0,Λ. (46)

Proof The Cauchy–Schwarz inequality (see Appendix A)
immediately yields inequality (46). ��
Lemma 2 Assume the particle distribution X k

N (k = 0, 1,
. . . , K ) satisfies the h-connectivity condition and ϕ ∈
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V k
N (ΛN )d (k = 0, 1, . . . , K ) satisfies ϕi = 0 for i ∈ Λk

W.
Then, we have, for φ ∈ V k

N (ΛN )d (k = 0, 1, . . . , K ),

(φ, ϕ)Λk
F∪Λk

S
= (φ, ϕ)ΛN ≤ |φ|−1,ΛN ,k |ϕ|1,ΛN ,k . (47)

Proof We first show the norm property: ϕ = 0 ⇔ |ϕ|1,ΛN ,k

= 0. From the definition of discrete H1 semi-norm (44), it is
obvious that ϕ = 0 ⇒ |ϕ|1,ΛN ,k = 0. Assume |ϕ|1,ΛN ,k =
0. As the particle distributionX k

N satisfies the h-connectivity
condition, for any i ∈ Λk

F ∪ Λk
S, we can take a sequence

{i∗k }ζ
∗

k=1 such that

i∗1 = i, 0 < |xki∗l − xki∗l+1
| < r0h (1 ≤ l < ζ ∗),

i∗ζ ∗ ∈ Λk
W. (48)

Therefore, we have, for i ∈ Λk
F ∪ Λk

S,

|ϕ|21,ΛN ,k

=
∑

i∈ΛN

ωi

∑

j∈ΛN \{i}
ω j

|ϕi − ϕ j |2
|xki − xkj |

|ẇh(|xki − xkj |)|

≥
ζ ∗−1∑

l=1

ωi∗l ωi∗l+1

|ϕi∗l − ϕi∗l+1
|2

|xki∗l − xki∗l+1
| |ẇh(|xki∗l − xki∗l+1

|)| ≥ 0.

(49)

Then, because |ϕ|1,ΛN ,k = 0 and ωi∗l ωi∗l+1
|xki∗l − xki∗l+1

|−1

|ẇh(|xki∗l − xki∗l+1
|)| > 0, we have |ϕi∗l − ϕi∗l+1

| = 0 for l =
1, 2, . . . , ζ ∗ − 1. Moreover, because ϕiζ∗ = 0, we obtain

ϕi = ϕi1 = 0. Because i ∈ Λk
F ∪ Λk

S is arbitrary, we obtain
ϕ = 0.

Next, we show (47). As ϕi = 0 for i ∈ Λk
W, we have

(φ, ϕ)Λk
F∪Λk

S
= (φ, ϕ)ΛN . When |ϕ|1,ΛN ,k = 0, the norm

property, ϕ = 0 ⇔ |ϕ|1,ΛN ,k = 0, yields

(φ, ϕ)ΛN = |φ|−1,ΛN ,k |ϕ|1,ΛN ,k = 0. (50)

When |ϕ|1,ΛN ,k 	= 0, from the definition of discrete H−1

semi-norm (45), we obtain

|φ|−1,Λ,k = sup
ϕ̂∈V k

N (Λ)m\{0}

(φ, ϕ̂)Λ

|ϕ̂|1,Λ,k
≥ (φ, ϕ)Λ

|ϕ|1,Λ,k
. (51)

Therefore, we conclude (47). ��
Lemma 3 Forφ ∈ V k

N (Λ)d andψ ∈ V k
N (Λ) (Λ ⊂ ΛN , k =

0, 1, . . . , K ), we have

(ψ, 〈∇ · φ〉k)Λ = −(〈∇ψ〉k, φ)Λ, (52)

−(ψ, 〈Δψ〉k)Λ = |ψ |21,Λ,k . (53)

Here, these approximations of derivatives are defined as

〈∇ · φ〉k :=
∑

j∈Λ

ω j
(
φ j + φi

) · ∇wh(|xki − xkj |), (54)

〈∇ψ〉k :=
∑

j∈Λ

ω j
(
ψ j − ψi

)∇wh(|xki − xkj |), (55)

〈Δψ〉k := 2
∑

j∈Λ\{i}
ω j

ψi − ψ j

|xki − xkj |
xki − xkj
|xki − xkj |

· ∇wh(|xki − xkj |). (56)

Proof First, we prove (52). As∇wh(|xki −xkj |) = −∇wh(|xkj
− xki |), we have

(ψ, 〈∇ · φ〉k)Λ
=

∑

i∈Λ

ωiψi

∑

j∈Λ

ω j
(
φ j + φi

) · ∇wh(|xki − xkj |)

=
∑

i∈Λ

∑

j∈Λ

ωiω jψi
(
φ j + φi

) · ∇wh(|xki − xkj |)

= 1

2

∑

i∈Λ

∑

j∈Λ

ωiω j (ψi − ψ j )
(
φ j + φi

) · ∇wh(|xki − xkj |)

=
∑

i∈Λ

ωiφi ·
∑

j∈Λ

ω j (ψi − ψ j )∇wh(|xki − xkj |)

= −(〈∇ψ〉k, φ)Λ. (57)

Next, we prove (53). Let

Ji j :=

⎧
⎪⎨

⎪⎩

0, i = j,
xki − xkj

|xki − xkj |2
· ∇wh(|xki − xkj |), i 	= j .

(58)

Because Ji j = −J ji , we obtain

−(ψ, 〈Δψ〉k)Λ = 2
∑

i∈Λ

ωiψi

∑

j∈Λ

ω j
(
ψi − ψ j

)
Ji j

= 2
∑

i∈Λ

∑

j∈Λ

ωiω jψi
(
ψi − ψ j

)
Ji j

=
∑

i∈Λ

∑

j∈Λ

ωiω j
(
ψi − ψ j

)2
Ji j

= |ψ |21,Λ,k . (59)

��
Lemma 4 Assume that a family {({X k

N }Kk=1,VN , h, τ )} sat-
isfies the semi-regularity condition with c0. Then, for ψ ∈
V k
N (Λ) (Λ ⊂ ΛN , k = 0, 1, . . . , K ), we have

‖〈∇ψ〉k‖20,Λ ≤ (d + c0τ)|ψ |21,Λ,k . (60)
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Here, 〈∇ψ〉k is defined as in (55).

Proof From

∇wh(|xki − xkj |) = xki − xkj
|xki − xkj |

ẇh(|xki − xkj |) (61)

and the Cauchy–Schwarz inequality (see Appendix A), we
have

‖〈∇ψ〉k‖20,Λ

=
∑

i∈Λ

ωi

⎛

⎝
∑

j∈Λ

ω j
(
ψ j − ψi

)∇wh(|xki − xkj |)
⎞

⎠

2

=
∑

i∈Λ

ωi

⎛

⎝−
∑

j∈Λ

ω j
(
ψ j − ψi

) xki − xkj
|xki − xkj |

|ẇh(|xki − xkj |)|
⎞

⎠

2

≤
∑

i∈Λ

ωi

⎛

⎝
∑

j∈Λ

ω j |ψ j − ψi ||ẇh(|xki − xkj |)|
⎞

⎠

2

≤
∑

i∈Λ

ωi

⎛

⎝
∑

j∈Λ

ω j
|ψ j − ψi |2
|xki − xkj |

|ẇh(|xki − xkj |)|
⎞

⎠

×
⎛

⎝
N∑

j=1

ω j |xki − xkj ||ẇh(|xki − xkj |)|
⎞

⎠ . (62)

As the family {({X k
N }Kk=1,VN , h, τ )} satisfies the semi-

regularity condition (23), we obtain (60). ��
Lemma 5 Assume that a family {({X k

N }Kk=1,VN , h, τ )} sat-
isfies the time step condition with δ. Then, for φ ∈
V k
N (Λ)d (Λ ⊂ ΛN , k = 0, 1, . . . , K ), we have

‖〈Δφ〉k‖20,Λ ≤ 2δ

τν
|φ|21,Λ,k, k = 0, 1, . . . , K . (63)

Here, the definition of 〈Δφ〉k is analogous to that given for
〈Δψ〉k in (56), with the vector function ψ replaced by the
scalar function φ.

Proof From the Cauchy–Schwarz inequality (see
Appendix A), we have

‖〈Δφ〉k‖20,Λ

=
∑

i∈Λ

ωi

⎛

⎝2
∑

j∈Λ\{i}
ω j

φi − φ j

|xki − xkj |
xki − xkj
|xki − xkj |

·∇wh(|xki − xkj |)
⎞

⎠

2

= 4
∑

i∈Λ

ωi

⎛

⎝
∑

j∈Λ\{i}
ω j

φi − φ j

|xki − xkj |
|ẇh(|xki − xkj |)|

⎞

⎠

2

≤ 4
∑

i∈Λ

ωi

⎛

⎝
∑

j∈Λ\{i}
ω j

|φi − φ j |2
|xki − xkj |

|ẇh(|xki − xkj |)|
⎞

⎠

×
⎛

⎝
∑

j∈Λ\{i}
ω j

|ẇh(|xki − xkj |)|
|xki − xkj |

⎞

⎠

≤ 4 max
i=1,2,...,N

⎛

⎝
∑

j∈Λ\{i}
ω j

|ẇh(|xki − xkj |)|
|xki − xkj |

⎞

⎠ |φ|21,Λ,k .

(64)

As the family {({X k
N }Kk=1,VN , h, τ )} satisfies the time step

condition (24), we obtain (63). ��

4.3 Stability for the implicit scheme

From the lemmas in the previous section, we obtain the fol-
lowing stability of velocity in two-dimensional space for the
implicit scheme in the ISPH method.

Theorem 2 Let d = 2. Let (uk+1, pk+1) be the solution of
the implicit scheme in the ISPH method. Assume a family
{({X k

N }Kk=1,VN , h, τ )} that satisfies the semi-regularity con-
dition with c0 and whose particle distribution X k

N satisfies
the h-connectivity condition. Then, there exists a positive
constant c dependent only on T , ν, and c0 such that

‖uk+1‖20,ΛN
≤ c

(

‖a‖20,ΛN
+

k∑

l=0

τ | f l |2−1,ΛN ,l

)

,

k = 0, 1, . . . , K − 1. (65)

Proof From (I-d) and Lemma 4, we have

‖uk+1‖20,ΛN

= ‖uk+1‖2
0,Λk

F∪Λk
S

= (uk+1, uk+1)Λk
F∪Λk

S

=
(

ũk+1 − τ

ρ
〈∇p〉k+1, ũk+1 − τ

ρ
〈∇p〉k+1

)

Λk
F∪Λk

S

= ‖̃uk+1‖2
0,Λk

F∪Λk
S
+ τ 2

ρ2 ‖〈∇p〉k+1‖2
0,Λk

F∪Λk
S

− 2
τ

ρ
(〈∇p〉k+1, ũk+1)Λk

F∪Λk
S
. (66)

From (I-c) and Lemmas 3–4, we have

‖〈∇p〉k+1‖2
0,Λk

F∪Λk
S

≤ (2 + c0τ)|pk+1|2
1,Λk

F∪Λk
S,k

= −(2 + c0τ)(pk+1, 〈Δp〉k+1)Λk
F∪Λk

S

= −(2 + c0τ)
ρ

τ
(pk+1, 〈∇ · ũ〉k+1)Λk

F∪Λk
S
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= (2 + c0τ)
ρ

τ
(〈∇p〉k+1, ũk+1)Λk

F∪Λk
S
. (67)

From (66)–(67) and Lemma 1, we have

‖uk+1‖20,ΛN

≤ ‖̃uk+1‖2
0,Λk

F∪Λk
S
+ c0τ

τ

ρ
(〈∇p〉k+1, ũk+1)Λk

F∪Λk
S

≤ ‖̃uk+1‖2
0,Λk

F∪Λk
S

+ c0τ
τ

ρ
‖〈∇p〉k+1‖0,Λk

F∪Λk
S
‖̃uk+1‖0,Λk

F∪Λk
S

= ‖̃uk+1‖20,ΛN
+ c0τ

τ

ρ
‖〈∇p〉k+1‖0,Λk

F∪Λk
S
‖̃uk+1‖0,ΛN .

(68)

Moreover, from (67) and Lemma 1, we have

‖〈∇p〉k+1‖2
0,Λk

F∪Λk
S

≤ (2 + c0τ)
ρ

τ
‖〈∇p〉k+1‖0,Λk

F∪Λk
S
‖̃uk+1‖0,Λk

F∪Λk
S
. (69)

Therefore, we have

‖〈∇p〉k+1‖0,Λk
F∪Λk

S
≤ (2 + c0τ)

ρ

τ
‖̃uk+1‖0,Λk

F∪Λk
S

= (2 + c0τ)
ρ

τ
‖̃uk+1‖0,ΛN . (70)

By combining (68) and (70), we obtain

‖uk+1‖20,ΛN
≤ {1 + c0(2 + c0τ)τ }‖̃uk+1‖20,ΛN

. (71)

From (I-b) and Lemmas 1–3, we have

‖̃uk+1‖20,ΛN

= ‖̃uk+1‖2
0,Λk

F∪Λk
S

= (̃uk+1, ũk+1)Λk
F∪Λk

S

= (uk + τν〈Δ̃u〉k+1 + τ f k, ũk+1)Λk
F∪Λk

S

= (uk, ũk+1)Λk
F∪Λk

S
+ τ( f k, ũk+1)Λk

F∪Λk
S

+ τν(〈Δ̃u〉k+1, ũk+1)Λk
F∪Λk

S

≤ ‖uk‖0,Λk
F∪Λk

S
‖̃uk+1‖0,Λk

F∪Λk
S

+ τ | f k |−1,Λk
F∪Λk

S,k
|̃uk+1|1,Λk

F∪Λk
S,k

− τν |̃uk+1|2
1,Λk

F∪Λk
S,k

. (72)

For α, β ∈ R and s > 0, the following inequality holds:

αβ ≤ s

2
α2 + 1

2s
β2. (73)

Hence, by utilizing

‖uk‖0,Λk
F∪Λk

S
‖̃uk+1‖0,Λk

F∪Λk
S

≤ 1

2
‖uk‖2

0,Λk
F∪Λk

S
+ 1

2
‖̃uk+1‖2

0,Λk
F∪Λk

S

= 1

2
‖uk‖20,ΛN

+ 1

2
‖̃uk+1‖20,ΛN

, (74)

| f k |−1,Λk
F∪Λk

S,k
|̃uk+1|1,Λk

F∪Λk
S,k

≤ 1

4ν
| f k |2−1,Λk

F∪Λk
S,k

+ ν |̃uk+1|2
1,Λk

F∪Λk
S,k

, (75)

we have

‖̃uk+1‖20,ΛN
≤ 1

2
‖uk‖20,ΛN

+ 1

2
‖̃uk+1‖20,ΛN

+ τ

4ν
| f k |2−1,Λk

F∪Λk
S,k

. (76)

Thus, we have

‖̃uk+1‖20,ΛN
≤ ‖uk‖20,ΛN

+ τ

2ν
| f k |2−1,Λk

F∪Λk
S,k

≤ ‖uk‖20,ΛN
+ τ

2ν
| f k |2−1,ΛN ,k . (77)

From (71) and (77), we have

‖uk+1‖20,ΛN
≤ ‖uk‖20,ΛN

+ c0(2 + c0τ)τ‖uk‖0,ΛN

+ (1 + c0(2 + c0τ)τ )
τ

2ν
| f k |2−1,ΛN ,k . (78)

By replacing the index k with l in (78) and summing it over
l = 0 to k, we have

‖uk+1‖20,ΛN
≤ ‖a‖20,ΛN

+ c0(2 + c0τ)

k∑

l=0

τ‖ul‖0,ΛN

+ 1 + c0(2 + c0τ)τ

2ν

k∑

l=0

τ | f l |2−1,ΛN ,l . (79)

Because τ < T , we have

‖uk+1‖20,ΛN
≤ ‖a‖20,ΛN

+ c0(2 + c0T )

k∑

l=0

τ‖ul‖0,ΛN

+ 1 + c0(2 + c0T )T

2ν

k∑

l=0

τ | f l |2−1,ΛN ,l . (80)
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Consequently, Grönwall’s inequality (see Appendix A)
yields

‖uk+1‖20,ΛN

≤ exp (c0(2 + c0T )T )

×
(

‖a‖20,ΛN
+ 1 + c0(2 + c0T )T

2ν

k∑

l=1

τ | f l |2−1,ΛN ,l

)

.

(81)

Taking c as

c = exp (c0(2 + c0T )T )max

{

1,
1 + c0(2 + c0T )T

2ν

}

,

(82)

we conclude (65). ��

4.4 Stability for the semi-implicit scheme

In addition to the stability for the implicit scheme, we obtain
the following stability of velocity in two-dimensional space
for the semi-implicit scheme in the ISPH method.

Theorem 3 Let d = 2. Let (uk+1, pk+1) be the solution of
the semi-implicit scheme in the ISPHmethod. Assume a fam-
ily {({X k

N }Kk=1,VN , h, τ )} that satisfies the semi-regularity
condition with c0 and time step condition with δ and whose
particle distribution X k

N (k = 1, 2, . . . , K ) satisfies the h-
connectivity condition. Then, there exists a positive constant
c dependent only on T , ν, c0, and δ such that

‖uk+1‖20,ΛN

≤ c

(

‖a‖20,ΛN
+ τ

k∑

l=0

τ‖ f l‖20,ΛN
+

k∑

l=0

τ | f l |2−1,ΛN ,l

)

,

k = 0, 1, . . . , K − 1. (83)

Proof By the same procedure as for the estimation of uk+1

in the proof of Theorem 2, we obtain

‖uk+1‖20,ΛN
≤ {1 + c0(2 + c0τ)τ }‖̃uk+1‖20,ΛN

. (84)

From (I-b) and Lemmas 1–2, we have

‖̃uk+1‖20,ΛN

= ‖̃uk+1‖2
0,Λk

F∪Λk
S

= (̃uk+1, ũk+1)Λk
F∪Λk

S

= (uk + τν〈Δu〉k + τ f k, uk + τν〈Δu〉k + τ f k)Λk
F∪Λk

S

= ‖uk‖2
0,Λk

F∪Λk
S
+ τ 2ν2‖〈Δu〉k‖2

0,Λk
F∪Λk

S

+ τ 2‖ f k‖2
0,Λk

F∪Λk
S

+ 2τν(uk, 〈Δu〉k)Λk
F∪Λk

S
+ 2τ 2ν(〈Δu〉k, f k)Λk

F∪Λk
S

+ 2τ( f k, uk)Λk
F∪Λk

S

≤ ‖uk‖20,ΛN
+ τ 2ν2‖〈Δu〉k‖2

0,Λk
F∪Λk

S
+ τ 2‖ f k‖2

0,Λk
F∪Λk

S

− 2τν|uk |2
1,Λk

F∪Λk
S,k

+ 2τ 2ν‖〈Δu〉k‖0,Λk
F∪Λk

S
‖ f k‖0,Λk

F∪Λk
S

+ 2τ | f k |−1,Λk
F∪Λk

S,k
|uk |1,Λk

F∪Λk
S,k

. (85)

From (73), for δ (0 < δ < 1), we have

‖〈Δu〉k‖0,Λk
F∪Λk

S
‖ f k‖0,Λk

F∪Λk
S

≤ ν(1 − δ)

4δ
‖〈Δu〉k‖2

0,Λk
F∪Λk

S

+ δ

ν(1 − δ)
‖ f k‖2

0,Λk
F∪Λk

S
, (86)

| f k |−1,Λk
F∪Λk

S,k
|uk |1,Λk

F∪Λk
S,k

≤ 1

2ν(1 − δ)
| f k |2−1,Λk

F∪Λk
S,k

+ ν(1 − δ)

2
|uk |2

1,Λk
F∪Λk

S,k
. (87)

Hence, we have

‖̃uk+1‖20,ΛN

≤ ‖uk‖20,ΛN
+ τ 2

1 + δ

1 − δ
‖ f k‖2

0,Λk
F∪Λk

S

+ τ

ν(1 − δ)
| f k |2−1,Λk

F∪Λk
S,k

+ τν(1 + δ)
(τν

2δ
‖〈Δu〉k‖2

0,Λk
F∪Λk

S
− |uk |2

1,Λk
F∪Λk

S,k

)
.

(88)

By Lemma 5, we have

τν

2δ
‖〈Δu〉k‖2

0,Λk
F∪Λk

S
− |uk |2

1,Λk
F∪Λk

S,k
≤ 0. (89)

Hence, we obtain

‖̃uk+1‖20,ΛN
≤ ‖uk‖2

0,Λk
F∪Λk

S
+ τ 2

1 + δ

1 − δ
‖ f k‖2

0,Λk
F∪Λk

S

+ τ

ν(1 − δ)
| f k |2−1,Λk

F∪Λk
S,k

≤ ‖uk‖20,ΛN
+ τ 2

1 + δ

1 − δ
‖ f k‖20,ΛN

+ τ

ν(1 − δ)
| f k |2−1,ΛN ,k . (90)
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From (84) and (90), we have

‖uk+1‖20,ΛN

≤ ‖uk‖20,ΛN
+ c0(2 + c0τ)τ‖uk‖0,ΛN

+{1 + c0(2 + c0τ)τ }
×

{

τ 2
1 + δ

1 − δ
‖ f k‖20,ΛN

+ τ

ν(1 − δ)
| f k |2−1,ΛN ,k

}

.

(91)

By replacing the index k with l in (91) and summing it over
l = 0 to k, we have

‖uk+1‖20,ΛN

≤ ‖a‖20,ΛN
+ c0(2 + c0τ)

k∑

l=0

τ‖ul‖0,ΛN

+ 1 + c0(2 + c0T )T

1 − δ

×
{

τ(1 + δ)

k∑

l=0

τ‖ f l‖20,ΛN
+ 1

ν

k∑

l=0

τ | f l |2−1,ΛN ,l

}

.

(92)

From τ < T , we have

‖uk+1‖20,ΛN

≤ ‖a‖20,ΛN
+ c0(2 + c0T )

k∑

l=0

τ‖ul‖0,ΛN

+ 1 + c0(2 + c0T )T

1 − δ

×
{

τ(1 + δ)

k∑

l=0

τ‖ f l‖20,ΛN
+ 1

ν

k∑

l=0

τ | f l |2−1,ΛN ,l

}

.

(93)

Consequently, Grönwall’s inequality (see Appendix A)
yields

‖uk+1‖20,ΛN

≤ exp (c0(2 + c0T )T )

{

‖a‖20,ΛN

+ 1 + c0(2 + c0T )T

1 − δ

×
(

τ(1 + δ)

k∑

l=0

τ‖ f l‖20,ΛN
+ 1

ν

k∑

l=0

τ | f l |2−1,ΛN ,l

)}

.

(94)

Taking c as

c = exp (c0(2 + c0T )T )

×max

{

1, (1 + c0(2 + c0T )T )
1 + δ

1 − δ
,

1 + c0(2 + c0T )T

ν(1 − δ)

}

, (95)

we conclude (83). ��

4.5 Extension for modified schemes

We consider improving the implicit and semi-implicit
schemes by utilizing our results. As the time step τ and parti-
cle volume set VN = {ωi } are fixed in the previous sections,
we consider the introduction of modified schemes with vari-
able time step τ k and particle volume set Vk

N = {ωk
i } defined

so as to satisfy some key conditions.
For k = 0, 1, . . . , K − 1, let τ k > 0 be a variable time

step satisfying

K−1∑

k=0

τ k = T . (96)

Then, the kth time tk is defined as tk = 0 (k = 0), and
tk+1 := tk + τ k (k = 0, 1, . . . , K − 1). We set the particle
volume set Vk

N = {ωk
i } by a solution of the linear equation

Akωk = bk, (97)

where Ak ∈ R
N×N , ωk ∈ R

N , and bk ∈ R
N are

Ak
i j := |xki − xkj ||ẇh(|xki − xkj |)|, (98)

ωk := (ωk
1, ω

k
2, . . . , ω

k
N )T, (99)

bk := (d, d, . . . , d)T, (100)

respectively. Then, because the condition

N∑

j=1

ωk
j |xki − xkj ||ẇh(|xki − xkj |)| = d, i = 1, 2, . . . , N ,

(101)

is satisfied, the semi-regularity condition (23) is automat-
ically satisfied at tk . Therefore, we obtain the following
corollary:

Corollary 4 Let d = 2. Let (uk+1, pk+1) be the solution of the
modified implicit scheme, which is the implicit scheme whose
time step τ and particle volume set VN are replaced with
variable time step τ k and particle volume set Vk

N . Assume for
a family {({X k

N ,Vk
N }Kk=1, h, τ k)} that its particle distribution
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X k
N satisfies the h-connectivity condition and particle volume

set Vk
N = {ωk

i > 0} exists for k = 0, 1, . . . , K. Then, there
exists a positive constant c dependent only on T , ν, and c0
such that

‖uk+1‖20,ΛN
≤ c

(

‖a‖20,ΛN
+

k∑

l=0

τ l | f l |2−1,ΛN ,l

)

,

k = 0, 1, . . . , K − 1. (102)

Moreover, for fixed constant δ (0 < δ < 1), we give τ as

τ k = δ

2ν

⎡

⎣ max
i=1,2,...,N

⎛

⎝
∑

j 	=i

ωk
j

|ẇh(|xki − xkj |)|
|xki − xkj |

⎞

⎠

⎤

⎦

−1

,

k = 1, 2, . . . , K . (103)

Then, the time step condition (24) is automatically satisfied at
each time step. Therefore, we obtain the following corollary:

Corollary 5 Let d = 2. Let (uk+1, pk+1) be the solution of
the modified semi-implicit scheme, which is the semi-implicit
scheme whose time step τ and particle volume set VN are
replaced with variable time step τ k and particle volume
set Vk

N . Assume for a family {({X k
N ,Vk

N }Kk=1, h, τ k)} that its
particle distribution X k

N satisfies the h-connectivity condi-
tion and particle volume set Vk

N = {ωk
i > 0} exists for

k = 0, 1, . . . , K. Then, there exists a positive constant c
dependent only on T , ν, c0, and δ such that

‖uk+1‖20,ΛN

≤ c

(

‖a‖20,ΛN
+

k∑

l=0

(τ l)2‖ f l‖20,ΛN
+

k∑

l=0

τ l | f l |2−1,ΛN ,l

)

,

k = 0, 1, . . . , K − 1. (104)

5 Concluding remarks

We have analyzed the unique solvability and stability
of the implicit and semi-implicit schemes in the incom-
pressible smoothed particle hydrodynamics (ISPH) method.
Three key conditions were introduced for our analysis,
the three conditions on discrete parameters, which are
the h-connectivity, semi-regularity, and time step condi-
tions. With h-connectivity, the unique solvability of the
implicit and semi-implicit schemes was obtained in two- and
three-dimensional space. With the h-connectivity and semi-
regularity conditions, the stability of velocity for the implicit
scheme was established in two-dimensional space. More-
over, with the addition of the time step condition, the stability
of velocity for the semi-implicit scheme was established in
two-dimensional space. Thanks to these results, the condi-

tions on discrete parameters sufficient for obtaining stable
computing with the ISPH method are clarified.

As an application of these results, we introduced modified
implicit and semi-implicit schemes by redefining discrete
parameters. By introducing the modified particle volume set,
which imposes an additional constraint condition at each
step, the modified implicit scheme becomes stable without
the semi-regularity condition. Moreover, by introducing the
variable time step, which is updated according to the particle
distribution and particle volume set, the modified semi-
implicit scheme becomes stable without the semi-regularity
and time step conditions.

As future work, we will extend the stability to that in
three-dimensional space and with boundary conditions such
as Neumann boundary conditions in the pressure Poisson
equation. Moreover, we will investigate convergence for the
ISPH method mathematically.
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Appendix AMathematical tools

Cauchy–Schwarz inequality

Let M ∈ N. For all ai , bi ∈ R (i = 1, 2, . . . , M), the fol-
lowing, called the Cauchy–Schwarz inequality, holds:

M∑

i=1

aibi ≤
(

M∑

i=1

a2i

)1/2 (
M∑

i=1

b2i

)1/2

. (105)

Grönwall’s inequality

Let M ∈ N. Assume that ai , bi > 0 (i = 0, 1, . . . , M),
c > 0 satisfy the inequality

ak ≤ a0 + c +
k−1∑

j=0

a jb j , k = 1, 2, . . . , M . (106)

Then, the following, called Grönwall’s inequality, holds:

ak ≤ (a0 + c)
k−1∏

j=0

(1 + b j ) ≤ (a0 + c) exp

⎛

⎝
k−1∑

j=0

b j

⎞

⎠ ,

k = 1, 2, . . . , M . (107)
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