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Abstract
This paper presents an unresolved computational fluid dynamic–discrete element method (CFD–DEM) model for the simu-
lation of flows mixing fluid and grains. The grains trajectories are solved at a fine scale using a discrete element method. It
provides the velocities and the trajectories of the grains with an accuracy that is needed to describe microscopic phenomena
like clogging in pipe happening in these flows. Solved at a coarse scale using the finite element method, the fluid motion is
deduced from a mean continuous representation of the fluid phase giving computational performance and keeping variables
evolutions that are of interest for a lot of simulation processes. The key point of this method lays in the coupling of the
two different representation scales. An empirical drag formula for monodisperse granular media parametrises the transfer of
momentum between the phases. Applying this model to the well-known problem of suspension drops provides validation and
insight in this kind of methodology. Simulations in which inertia is non-negligible are achieved to prove the generality and
adaptability of the unresolved CFD–DEM model compared to other models.

Keywords Multiscale model · Multiphase flow · Suspension drops · Finite element · Discrete element · Simulations

1 Introduction

Immersed granular flows are flows mixing fluid and grains.
Increasing numbers of industrial processes make use of
immersed granular flows that is why it has become an impor-
tant research area. Insight into immersed granular flows will
benefit civil engineering (concrete, cement, etc.) and geology
(avalanches, lava flows, transport of marine sediments, etc.)
along with pharmaceutical, cosmetic, chemical and agro-
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food industries (toothpaste, fertilisers, etc.). There is lack
of knowledge on immersed granular flows due to the com-
plexity of the flow that can be greatly inhomogeneous and
the influence of these inhomogeneities on the flow regime
[61].

The numerical models solving immersed granular flows
can be separated with respect to the scale at which the
fluid and the solid phases are computed [68]. On the one
hand, large-scale simulations are performed using the con-
tinuum approaches. Grains can be modelled as a continuous
phase using balance equations as in the so-called two fluid
model [25]. An averaging process is applied on variables to
transform the second Newton’s law of motion for an iso-
lated grain and the Navier-Stokes equations for the fluid
phase into continuum equations representing the transfer of
momentum between the two phases [4,31]. This Eulerian–
Eulerian representation of the two phases is convenient
because of the smaller computational cost but the coarse
representation of the solid phase requires empirical rela-
tions [67]. For example, it has been quite common to use
a two fluid model to compute macroscopic behaviours of
a fluidised bed because the solid phase can be viewed in
such an application like a fluid [9,50]. Another possibil-
ity is to consider the grains totally mixed with the fluid
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and the whole computed with models for non-Newtonian
fluid [53]. It is quite obvious that the representation of
the solid phase in continuum approaches is inaccurate and
these models are not able to give insight on the fine scale
characteristics like trajectories and forces applied on each
grain.

On the other hand, there exist numerical models that fully
resolved the two phases constituting the discrete approaches.
This second class of models can be divided depending on
the method used to solve the two phases. The trajectories of
the grains are solved using discrete element methods (DEM)
that compute trajectories in a Lagrangian way. The forces
applied on each grain are computed and used to move the
grains taking into account the constraints imposed by the
other grains and the boundaries. Event-driven methods [42]
are not applicable to solve contacts in dense granular media
where the time step between two collisions is very small.
For mixtures with a high concentration of grains, it is nec-
essary to use time stepping methods. In the smooth DEM
[16], interpenetration and slight deformations of the grains
are allowed and give the elastic, plastic and friction forces
between the grains. By contrast, in the nonsmooth grains
model [32] deformations and interpenetrations are totally
banned. The discrete approaches are also dependent on the
representation of the fluid interacting with the grains. Meth-
ods that are fully resolved compute the fluid at a smaller (or
identical) scale than the fine grain scale making the compu-
tations very CPU time-consuming. On top of the cost linked
to the scale resolution, methods using a mesh covering only
the fluid phase need to update the mesh of the computa-
tional domain at each displacement of the grains [29]; the
use of a penalty or Lagrange multipliers methods to take
into account the boundaries of the grains [48] avoids updat-
ing of mesh. However, it is possible to free itself from the
use of a mesh by using, for example, the lattice-Boltzmann
method to represent the fluid [65]. In that case, special cau-
tions are necessary when grains are closer than one grid
spacing because it leads to a loss of mass and difficulties
to solve the fluid flow in this gap [45]. Despite their com-
putational cost, these methods have the advantage that they
do not necessitate phenomenological laws and can therefore
be used to calibrate the parametrisation of other approaches
[23,66].

It is also possible to couple a discrete representation
for the grains and a continuous model for the fluid defin-
ing an Eulerian–Lagrangian model for immersed granular
flows. Since the introduction by Tsuji et al. [59,60] of this
kind of model to compute the behaviour of fluidised beds,
a lot of studies have been achieved to test the accuracy of
the model [28,63]. Such an unresolved CFD–DEM model
is particularly valuable because it is applicable to dense
particulate reaction system like energy conversion or petro-
chemical processing [67] and dense particulate flows in

complex geometries like gas-solid flow in pneumatic con-
veying band or gas cyclone separator [14,15]. The Eulerian
representation of the fluid has a smaller computational cost
than discrete approaches while the Lagrangian representa-
tion of the grains provides information like trajectories and
forces applied on each grain that are inaccessible with con-
tinuum approaches. Unresolved CFD–DEM models should
then be used to compute immersed granular flows with a
large discrepancy in the volume fraction of grains going
from porous media to pure fluid and local effects such as the
obstruction of an injection pipe. The difficulty of this method
comes from the coupling between the two scales represent-
ing the phases. The dynamics of the fluid is deduced from
a continuous representation of the mixture between grains
and fluid at the coarse scale of a computational cell while the
solid motion is at the fine grain scale [64]. The momentum
transfer between each phase should be parametrised. It can-
not be computed directly at the fine scale because the details
of the fluid flow are not represented [61]. Different coupling
terms have been proposed in the literature depending on pres-
sure gradient or buoyancy force distribution on the phases
[35]. Comparisons with experiments tend to favour models
in which the pressure drop is only supported by the fluid
phase [26] but a more recent review states that there exists
a unique consistent set of equations presented in different
forms [18].

This article presents an unresolved CFD–DEMmodel for
immersed granular flows. The grains motion is computed
with a nonsmooth discrete element method [19] while the
fluid phase is solved with the finite element method. The
triangle-based meshes can be easily refined and adapted at
regular time interval to capture important flow features in
complex geometries with a constant number of elements.
Unstructured meshes using Lagrange linear shape functions
for both the pressure and the velocity ensure a fast computa-
tion of flows but require to be stabilised. A stable numerical
scheme is though require to apply the interaction force both
on the fluid and the grains due to the explicit coupling
between the phases.

This model is validated on simulations of the well-known
problem of suspension drops that refers to cluster of grains
settling in a (viscous) fluid. Since the research achieved by
Brinkman [12] in 1947 on the force exerted by a fluid on a
cloud made up of grains, a lot of studies have been driven
to describe accurately this problem. A great attention was
given to the particular evolution of the falling drop when
Reynolds number is negligible. In 1977, Adachi et al. [2]
tried to describe analytically the falling velocity of the drop.
The theoretical model based on a steady-state assumption
was not quite good but gives a lower bound compared to
experiments. Injection process of the drop during experi-
ments is a tricky step because it is practically impossible
to form a perfectly spherical drop. Despite this variability
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in the initial shape, the drops go through similar stages dur-
ing their fall that have been summarised by Adachi et al.
[2]. Just after the drop begins to move, some grains escape
from the cloud and form a tail that grows in time until it
separates from the swarm. The tail contains grains from the
rear of the swarm as well as grains from inside because of
the recirculation that leads grains outside the closed envelop.
The rate of grains leakage is linked to the falling velocity
of the swarm, the radius of the swarm and the radius of
the grains [46]. At some time, the centre of the swarm con-
tains not enough grains and the tail breaks up. The fluid can
go through the centre of the swarm and it changes into an
open torus that destabilises during expansion and contrac-
tion phases to form two (or more) secondary droplets [41].
The probability the torus breaks up has been analysed statis-
tically and linked to the initial number of grains in the swarm
by Metzger et al. [43]. They also give another formula for
the rate of grains leakage based on this initial number of
grains.

Interests carried in suspension drops have increased dur-
ing the last twodecades both experimentally and numerically.
The fall of suspension drops settling at vanishing Reynolds
number also called Stokes cloud can be computed using
Stokeslet model [46] that have been proved to provide con-
sistent results when it is compared to experiments [41,43].
However, the evolution of the suspension drop is mod-
ified by increasing inertia. Subramanian and Koch [55]
pointed out different regimes for suspension drops and
developed equations based on the Oseen stream function
[6,37] to represent the fall of suspension drops at small
but nonzero Reynolds number dominated by source-field
interactions. It has been found that the drop goes through
the different steps faster and the normalised time at which
break-up occurs decreases with increasing inertia [49] but it
seems that this time tends to a steady-state value for high
Reynolds number [40]. The inertia has also an impact on the
number of secondary droplets that are formed after break-
up [8].

If a lot of these researches state about monodisperse
clouds, a growing number of articles have recently dealt with
polydisperse clouds. Abade and Cunha [1] studied the sta-
bility of polydisperse clouds and find it less important than
for comparable monodisperse clouds. Simulations, validated
with the experiments of Mylyk et al. [44], show similarity
between Gaussian polydisperse clouds and monodisperse
clouds [27]. One of the differences is that small grains
leave a polydisperse cloud faster than corresponding grains
in a monodisperse cloud. This accelerated time of depar-
ture from the cloud has an influence on the break-up that
could occur earlier. It is also important to note that the
leakage of small grains is dependant on the initial configu-
ration of the polydisperse cloud. A greater number of grains

are lost during the fall in unmixed clouds than in mixed
clouds [13].

In Sect. 2 of the present paper, we state the equations of
the unresolved CFD–DEM. Section 3 is devoted to the vali-
dation of the model using Stokes cloud simulations. Finally
the flexibility of the implementation is shown on results of
flows at non-negligible Reynolds number along with the pos-
sibility to obtain fast prediction by using the bidimensional
version of the model.

2 Modelling and numerical background

The present section is devoted to an overview of the unre-
solved FEM–DEM multiscale model highlighting its key
points. First comes the coarse scale averaged Navier-Stokes
equations that are necessary to observe phenomena of inter-
est in the flow motion. Then the details of the nonsmooth
DEM will be exposed insisting on an original management
of the iterative contact solver to finally present the interac-
tion between the coarse scale fluid variables and the fine scale
solid variables.

2.1 Fluid phase dynamics

The physical fields computed by the Navier-Stokes equa-
tions are averaged using a weight function to smooth the
influence of the grains at each point of the fluid [4]. These
averaged variables over a local control volume are obtained
by using the porosity φ as aweighting variable that represents
the volume fraction of fluid inside the local control volume.
The complete derivation of the equations has been proposed
by Anderson and Jackson [4]. Assuming that the fluid den-
sity ρ is constant and noting u = φw the mean velocity
of the fluid phase, the conservation laws for the fluid phase
are:

ρ

(
∂u
∂t

+ ∇ · uu
φ

)
= ∇ · [2μφd(u) − p I] + f + φρg,

(1)

∂φ

∂t
+ ∇ · u = 0, (2)

where p is the pressure, f is the force density coming from
the fluid–grains interaction, g is the gravity, I is the identity
tensor and d(u) is the rate of deformation tensor:

d(u) �
(

∇ u
φ

+
(

∇ u
φ

)T
)

.

It has to be noticed that the two unknown fields p and
u depend on the porosity field which can be computed at
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each time step using the positions of the grains in the mesh.
This formulation is often referred as Model B in which the
fluid phase is the only one contributing to the pressure drop
through the mix medium [25] that has been showed to pro-
vide more consistent results [22]. These equations describe
a typical saddle-point problem

ρ

(
∂u
∂t

+ ∇ · uu
φ

)
= ∇ · (2μφd(u)) −∇p + f + φρg

∂φ

∂t
= −∇ · u 0 0

The weak form to solve using a stabilised P1-P1 finite ele-
mentmethod can be easily obtained noting the approximation
of the fields on the mesh:

p(x, t) � ph(x, t),

u(x, t) � uh(x, t).

Find (uh, ph) such that

〈
ûh

(
ρ

∂uh

∂t
+ ρ∇ · u

huh

φ
− f h − φρg

)〉

+
〈
∇ûh ·

(
2μφd(uh) − ph I

)〉
= 0 ∀ûh,〈

p̂h
∂φ

∂t

〉
+

〈
∇ p̂h ·

(
−uh + ε∇ph

)〉
= 0 ∀ p̂h,

(3)

where ûh, p̂h are the test functions. The Laplacian of pres-
sure in the mass equation is used to stabilise the P1-P1 finite
element formulation used to solve the above equations that
does not respect the LBB condition [5,10,36]. Unless the
equations are stabilised, high-frequency pressure modes are
developing and the simulations blow up. Introducing a dif-
fusive term of pressure in the continuity equation is a simple
way to couple the pressure unknowns and make the problem
stable [11,30]. This stabilisation term introduces a critical
parameter ε that could change the nature of the problem if it
is too big. However, if it is too small, the additional term does
not stabilise the problem anymore. It can be shown using a
convergence analysis on the Stokes problem that this param-
eter should be of orderO(h2/ν)where h is the element mesh
size [30].

2.2 Solid phase dynamics

Algorithm 1: ContactSolver
Create a queueQ containing all the potential contacts
for each contact q ∈ Q do

dq =‖ x j − xi ‖ −(r j + ri )
the separating distance between
the two objects i and j implied
in q

nq = x j − xi
‖ x j − xi ‖

the centre-to-centre normal
between the two objects
implied in q

The normal relative velocity δvq is initialised with its value at the
previous step

end
while Q is not empty do

for each contact q ∈ Q do

• Verify the interaction law to update the velocities of the objects
implied in contact q:

vi

v j

← vi + m j

mi + m j
δvqnq

← v j − mi

mi + m j
δvqnq

remove the old cor-
rection on the veloc-
ities coming from the
contact q

δvq ← max

(
0, (vi − v j ) · nq − dq

Δt

)
compute the contri-
bution of contact q
to verify interaction
law for the velocities
modified by all the
other contacts

vi

v j

← vi − m j

mi + m j
δvqnq

← v j + mi

mi + m j
δvqnq

update the velocities
of the grains con-
cerned by contact q

• Suppress q fromQ
• ActualiseQ
if ΔδvqΔt > ζ where ζ is a geometrical tolerance and Δδvq is
the difference between the correction of the current contact
resolution and the previous one then

Insert inQ all the potential contacts that are not inQ
implying i or j

end
end

end

In this paper, we use a nonsmooth discrete element method
considering spherical grains that interact only via contact
forces. The velocity of a grain i (here free of contact) is
computed using Newton second law of motion

d

dt
(mivi ) = mi g − Vi ∇p|xi − f i (4)

where mi , Vi , xi and vi are, respectively, the mass, the
volume, the position and the velocity of the grain. The fluid–
grains interaction force is represented by the combination of
Vi ∇p|xi and f i .
The velocity of a grain obtained by integrating the differ-
ential equation above is a free velocity; it does not take into
account any contact. In order to prevent the overlapping of the
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grains, this free velocity is corrected due to contact reactions
computed with the nonsmooth Contact Dynamics method
(NSCD) [32], as detailed in Algorithm 1. As a first step, it is
required to detect all the potential contacts. A pair of grains
are susceptible to be in contact if they are closer than an alert
distance. This alert distance should depend on the solid time
step and on the velocities of the grains. In practice the alert
distance is fixed and equal to the radius of a grain. It results
from this choice of a fixed alert distance that the solid time
step is variable and computed so that the fastest grain does
not travel more than its radius during this variable time step.
Then the contact reactions are iteratively computed to verify
the contact laws.
Considering inelastic collisions, the contact reaction applied
on a grain is the resultant of all the active contacts involving
this grain during the time step. A boundary is considered as
an object with infinite mass at rest.
An improvement to the commonly nonlinear Gauss–Seidel
method (NLGS) used in NSCD has been achieved to fasten
computations. Usually a loop over all the potential contacts is
performed during the NLGS iterations [3,32–34,51]; it could
result in a loss of time particularly when many grains are at
rest as in deposit. This situation is prevented by skipping
contact computation when the involved grains motion is not
modified by other contacts up to a tolerance. The use of a
queue to process the contacts can then improve the computa-
tional timewithout loss of accuracy. The steady configuration
of the grains without overlapping is reached when the queue
is empty.

2.3 Fluid–grains interaction force

One question remains to solve the problem: which constitu-
tive law should be used for the fluid–grains interaction force?
There is no commonly accepted expression for the drag force
fitting all the situations. Theoretical developments for multi-
grains flows can be found using simplifying assumptions like
a Stokes regime or a dilute suspension [7] but for many appli-
cations, drag formula are empirically deduced within the
range of parameters needed usually based on measurements
of the pressure drop inside the fluid percolating through a
fixed assemble of grains [20] or on the settling velocity of a
dilute pack of grain in a fluid [52].
Dealing with multigrains medium requires to take into
account the influence of the neighbouring grains on the fluid–
grain interaction force experienced by an individual grain.
This can be done by multiplying the fluid–grain interaction
force experienced by a single grainwith an independent func-
tion of the porosity g(φ) [52]. The fluid–grain interaction
force can be written:

f i = g
(
φ|xi

)
Cdπr

2
i
ρ

2

∥∥∥∥∥vi − u
φ

∣∣∣∣
xi

∥∥∥∥∥︸ ︷︷ ︸
� γi

(
vi − u

φ

∣∣∣∣
xi

)
(5)

where ri is the radius of the grain and Cd is the drag coef-
ficient for which a well-established correlation for spherical
grains over a wide range of grain Reynolds number Rei has
been given by Dallavalle [17]:

Cd =
(
0.63 + 4.8√

Rei

)2

with

Rei = 2riρ φ|xi
μ

∥∥∥∥∥vi − u
φ

∣∣∣∣
xi

∥∥∥∥∥
Wen and Yu [62] have suggested a simple power law for
the independent multiplier function of the porosity that is
suitable for low and high Reynolds regimes:

g
(
φ|xi

) = φ−β
∣∣
xi

with β = 1.8 but there exists many refinements for this
coefficient [21,35,39,56,68] to fit the intermediate as well
as the extreme Reynolds regimes. By the Newton third law
of motion, this force is linked to the interaction force applied
by the grains on the fluid in Eq. (1):

f =
∑
i∈G

(
Vi ∇p|xi + f i

)
δ|xi

where G is the set of grains and δ|xi is the Dirac function
centred at the grains position. With this definition and the
use of the Dirac function, it is now clear that the relation
between f and its approximation on the mesh f h is exactly
the same that the relation between p, u and ph, uh .

2.4 Time integrationmethod

For many applications, the fluid–grains interaction source-
term is large and needs a particular attention because of the
coupling between the fluid and the grains. An easy way to
treat this dominant term is to use a semi-implicit scheme [47]
to linearise the source-term and deduce a prediction of the
grain velocity at the next time step. Introducing the drag force
formula (5) in the solid momentum Eq. (4), we can develop
the discrete time evolution of the grain velocity using a semi-
implicit scheme for the drag force:

mi

Δt

(
v∗
i − vni

)=mi g−Vi ∇pn+1
∣∣∣
xi

−γ n
i

(
v∗
i −

un+1

φn

∣∣∣∣
xi

)
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where n denotes the previous time step and v∗
i is a prediction

of the free velocity of grain i at the current time step. This
prediction can be isolated as

v∗
i =

(mi

Δt
+ γ n

i

)−1
[
mi

Δt
vni

+γ n
i

un+1

φn

∣∣∣∣
xi

+ mi g − Vi ∇pn+1
∣∣∣
xi

]
.

and then included in the source-term defined by Eq. (5)
to determine the stable drag force used to compute the
unknowns at current time (n + 1)Δt :

f n+1
i =

(
1

γ n
i

+ Δt

mi

)−1
[
vni

− un+1

φn

∣∣∣∣
xi

+ Δt

(
g −

Vi ∇pn+1
∣∣
xi

mi

)]

This force formulation making use of the implicit fluid
velocity is computed during the implicit Euler time integra-
tion of the finite element problem. The forces are evaluated
at the grain positions by evaluating the fluid velocity at the
centre of each grain and then interpolated at the fluid nodes.
The different steps of a time loop computing the granular
flow dynamics are presented in Algorithm 2.

Algorithm 2: GranularFlowSolver
while nΔt < T f do

1. Obtain the porosity φn from the positions of the grains xn

2. Compute the fluid velocity un+1, the pressure pn+1 and the
interaction forces f n+1

i from un, pn, vni and φn by using
an implicit Euler scheme for the time integration of the
finite element problem

3. Compute the grain velocities vn+1
i that prevent

interpenetration from vni and f n+1
i by using the

Algorithm 1

4. Update the positions of the grains xn+1
i with the velocities

vni

end

3 Results

The first tests of the model stage the fall of a swarm or
a drop made up of grains in a viscous fluid. Such a drop
passes through different steps during its fall. In the next
sections, these steps are explained and qualitative compar-
isons between experiments found in the literature and our

simulations for mono- and polydisperse drops are achieved.
A special attention is paid to the comparison of bidimen-
sional and tridimensional simulations achievedwith the same
model.

3.1 Stokes cloudmade of grains

A spherical cloud made of grains falling in a viscous fluid is
considered. Metzger et al. [43] gave a complete description
of the evolution of such a cloud based on experiments and
Stokeslet simulations. In order to model the injection process
of the mixture cloud by a syringe in the viscous medium, the
initial vertical velocity of the cloud is set to the Stokes settling
velocity:

U0 ∼ φR2
0 g

mi − ρVi
Viμ

where R0 is the initial horizontal radius of the cloud. Machu
et al. [41] studied the effect of the initial shape on the evo-
lution of the cloud. It is practically impossible to create a
perfect spherical cloud in experiments and an initial bell-
shaped cloud slightly change the evolution of the cloud. In
this section, a perfectly spherical cloud is considered as the
first assumption made by Adachi et al. [2]. The fall of the
cloud creates a toroidal velocity field in the fluid phase. In
the frame of reference of the cloud, the fluid streamlines are
closed inside the mixture and open outside so that no fluid
from the surrounding medium is able to enter in the cloud.
The fluid streamlines form a closed envelop containing the
cloud as illustrated in Fig. 1. This Fig. 1 presented in this
paper shows the same features than Figure 12 presented in
Metzger et al. [43]. The parameters used for the simulations
presented in this paper are sum up in Table 1.

After being released in the fluid, the upper part of the cloud
lengthenswhile the lower part remains almost hemispherical.
Some grains are led to the rear by the circulating velocity
field and they escape the cloud where the streamlines break.
This causes a decrease in the aspect ratio between the cloud
horizontal radius R(t) and the cloud vertical radius H(t)
defined in Fig. 2. The cloud horizontal radius is defined as
the radius of a circle centred at the centre of mass of the cloud
in the plane xy containing 80% of the grains while the cloud
vertical radius is the distance between the centre of mass to
the leading front.

The escaped grains fall more slowly than the cloud and
they form a growing tail by continuously increasing the num-
ber of grains n(t) inside the tail. The fraction of the total
amount of grains inside the tail is shown in Fig. 3c. After a
while, the tail is disconnected from the cloud and left behind.
The rate of this grain leakage has been shown to be dependent
on the falling velocity of the cloud, the radius of the cloud
and the radii of the grains [46].
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Table 1 Parameters used for the
different simulations of clouds
falling in fluid

Sets R0 (10−3 m) ri (10−6 m) ρ (kg/m3) mi/Vi (kg/m3) ν (10−4 Pa s) φ Re St

1 3.3 154 1030 2450 11.34 0.8 9 × 10−5 2 × 10−8

2 2 25 1200 2400 1 0.987 10−5 4 × 10−11

3 2.7 25 1220 2400 1 0.97 6 × 10−5 9 × 10−11

4 2 25 1000 1600 0.1 0.9935 3 × 10−5 2 × 10−10

5 2 25 1000 400 0.1 0.9935 3 × 10−5 5 × 10−11

6 2 25 1000 1600 0.01 0.9935 3 × 10−4 2 × 10−9

7 2 25 1000 400 0.01 0.9935 3 × 10−4 5 × 10−10

Fig. 1 Fluid streamlines in the
frame of reference of the drop at
different time of a
tridimensional simulation
achieved with parameters Set 1
in Table 1. The blue circles
represent the sectional area of
the grains with the vertical plane
centred in depth. Top-right
corner figures show the different
steps at the same scale. This 3d
simulation has been performed
using 1704 grains. (Color figure
online)

An overpressure point in front of themotion and an under-
pressure point at the rear of the motion go along with the
circulating velocity field and forces the lower part of the
cloud to flatten. This flattening increases the aspect ratio and
slows down the falling velocity of the cloud as illustrated in
Fig. 3a, b. In Fig. 3, the star exponent means that the variables
are adimensionalised with R0 and U0.

If the initial cloud contains a too small number of grains,
it is disintegrated by constantly losing grains into the tail
[46]. Otherwise, when enough grains have left the swarm, the
overpressure point forces the fluid to go through the cloud
changing it into an open torus. This open torus experiences
expansion and contraction phases with a predominance of
the expansion behaviour [43]. The torus is unstable and can
divide into two or more droplets depending on the initial
number of grains inside the cloud [46] (see Fig. 1).

The description above is only valid for Stokes falling
cloud i.e. cloud falling in a viscous fluid such that the cloud
Reynolds number and the grains Stokes number are small.
The cloud Reynolds number is defined as the ratio between
the fluid inertia due to the cloud motion and the viscosity of
the fluid:

Re = U0R0

ν
∼ φ ‖ (ρi − ρVi )g ‖ R3

0

ρViν

 1,

and the grains Stokes number is defined as the ratio between
the kinetic energy of the cloud and the energy dissipated by
friction:

St = miU2
0

6πμriU0R0

 1.
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Fig. 2 Shape evolution up to the
destabilisation and the torus
formation of a single cloud
made up of grains falling in a
viscous fluid obtained with a
tridimensional simulation using
the parameter Set 1 in Table 1.
Cloud states are shifted to the
right each time interval of
Δt = 5 s

For dilute suspension, it is possible to consider only the
grains Reynolds number because the settling velocity of
the cloud is of order of the Stokes settling velocity of an
isolated grain. Then inertia can be neglected if the grains
Reynolds number is small. For dense clouds in which the
number of grains is sufficiently high to increase significantly
the velocity of the cloud with respect to the Stokes set-
tling velocity of an isolated grain due to mutually induced
motion, the cloud Reynolds number needs to be considered
[41]. We keep it with the grains Stokes number as indi-
cators of the fluid inertia because it is the more stringent
requirement.

3.1.1 Sensitivity to stabilisation parameter

Simulations achieved with the unresolved CFD–DEMmodel
can be altered by the stabilisation parameter ε. As pre-
sented in the previous Sect. 2, this parameter should vary
with the mesh size and the viscosity of the fluid [11,30] for
the Stokes problem but the stabilisation coefficient depends
on the problem and refinements have to be considered
for the general case of unsteady Navier-Stokes equations
[54,57,58].

Figure 3 sums up the main features of a Stokes cloud for
different value of the ε parameter. First of all, it should be
noted that all the simulations provide the expected behaviour.
During the fall, the drop flattens increasing its horizon-
tal radius (Fig. 3b). Due to this flattening, the density of
the swarm decreases and the cloud slows down (Fig. 3a).
The departure of the grains from the cloud at the rear of
the motion is associated with the expansion and decelera-
tion phase (Fig. 3c). The leakage rate decreases with time
until the tail is left behind and the cloud forms an open
torus.

3.2 Forecasting with bidimensional simulations

The great advantage of the unresolved CFD–DEM model
is its generality. The constitutive equations of the model
can easily be implemented for bidimensional problems by
considering the spherical grains as cylindrical grains of
unity depth. It requires to change the formula of the grains
Reynolds number and the expression of the drag force
because the sectional surface is changed to a rectangle of
length d and unity width:

Rei =
√
2d φ|xi

μ

f i = g
(
φ|xi

)
Cdd

ρ

2

∥∥∥∥∥vi − u
φ

∣∣∣∣
xi

∥∥∥∥∥
(
vi − u

φ

∣∣∣∣
xi

)

It is important to note that changing the grains from spheres
to cylinders also change the computation of the volume and
hence the porosity.

Bidimensional simulations are convenient because of the
low computational cost. In the case of Stokes cloud made up
of grains, the bidimensional features of the cloud can be seen
as a vertical cut of the tridimensional case. The traditional
Stokeslet simulations [41,43] are unable to provide bidimen-
sional simulations because the Stokes solution for the flow
around a sphere is not acceptable for infinite cylinders and
Oseen correction terms have to be considered [38].

Interacting clouds experiments have been achieved by
Machu et al. [41]. The case of two vertically aligned clouds is
presented in Fig. 4. During the fall, the upper cloud lengthens
very fast while the lower one flattens. This results from the
addition of the two circulating velocity field. The lower cloud
is compressed between its own overpressure point and the
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Fig. 3 a Dimensionless vertical
cloud settling velocity U∗, b
dimensionless horizontal radius
R∗ and c fraction of grains in
the tail versus dimensionless
time T ∗ for different value of
the numerical parameter ε using
a cloud with Re = 9× 10−5 and
St = 2 × 10−8

(a) (b)

(c)

Fig. 4 Shape evolution of
vertically aligned interacting
clouds using the parameter Set 2
in Table 1. Clouds states are
shifted to the right each time
interval of Δt = 12.5 s. The 3d
simulation has been performed
using 12812 grains
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Fig. 5 Shape evolution of
interacting clouds with an
horizontal offset corresponding
to the diameter of the drops
using the parameter Set 3 in
Table 1. Clouds states are
shifted to the right each time
interval of Δt = 5 s. The 3d
simulation has been performed
using 73,590 grains

overpressure point of the upper cloud. This crushing changes
the lower cloud in an open torus through which the upper
cloud can cross. Until this time, the initially upper cloud
seems to experience the expedited evolution of a single cloud,
forming the reverse mushroom with the other cloud around
the tail. Then the initially upper cloud slows down and wrap
the other cloud.

Figure 4 shows vertical cuts of the evolution steps of
the clouds during the fall and comparisons with bidimen-
sional simulations. The same features can be observed with
some differences due to the loss of one dimension. In the
first detailed step, there is a larger layer of interstitial fluid
between the two clouds in the 3d simulation. This could be
explained by the cylinder representation of the grain. In bidi-
mensional simulations, the fluid can only move in a vertical
plane because the height of the cylinder is equal to the depth
of the domain.

It also can be seen that the grains spread more in 2d sim-
ulations. Due to the fall of the clouds, the fluid has to go up.
For the 3d case, the fluid is able to circumvent the clouds
in-depth but in the 2d case it has to cross the cloud vertically
spreading the grains.

The same observations are made for the case of two inter-
acting clouds with an horizontal offset. The evolution of
the clouds is similar to the previous case but the attrac-
tion between the clouds causes a diagonal trajectories to the
clouds. Figures 4 and 5 of this paper have been inspired on
purpose, respectively, by Figures 14 and 16 presented by
Machu et al. [41] to ease comparisons and validation.

3.2.1 Adaptive mesh

To speed up the computations, the fluid is solved at a greater
scale than the grain scale. However, for many applications
the global domain is much greater than a grain. Capturing
interactions between grains and fluid at a mesoscopic scale
requires to cover the global domain with several thousands of
elements that slow down the computations. Using an adap-
tive mesh reduces the computational cost. The velocity field,
the pressure field and the porosity field allow to predict the
location of the important physical effects where the mesh
needs to be refined and compute a size field L accordingly
to the empirical formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = max
(
min

(Lp,Lu, hmax
)
, hmin

)
Lp = hmin

min

(
1,max

( ∇p

∇pmax
,

∇pmin

∇pmax

))

Lu = hmin

min

(
1,max

( ∇u
∇umax

,
∇umin

∇umax

))
(6)

where hmax and hmin are the maximum and minimum size
in which the length of an element have to lie and the indices
max and min for the gradient of pressure and velocity means
themaximumandminimumgradient over all the nodes of the
mesh. Knowing the size field, the new number of elements is
computed to estimate the ratio between the expected number
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Fig. 6 Dimensionless vertical falling velocity of a Stokes cloudwith the
parameter Set 1 in Table 1 using different mesh sizes and the adaptive
mesh

Fig. 7 Pressure field around a Stokes cloud with parameters Set 1 in
Table 1 using the adaptive mesh obtained using GMSH. The mesh con-
tained approximately 20,000 elements and a minimum mesh size of
10−3

of elements and the real number of elements. The size field is
then multiplied by this ratio with the constraint that no value
of the size field can be smaller than hmin.

Figure 7 shows the fall of a bidimensional Stokes cloud
using an adaptivemesh containing approximately 20,000 ele-
ments with a minimum mesh size of 10−3 m. This mesh is
generated automatically by GMSH [24] using a size field
determined by the previous empirical formula (6) that has
proven its efficiency for many examples.

Table 2 CPU times and mesh properties used to compute the fall of a
bidimensional Stokes cloud using the parameters Set 1 in Table 1 until
t∗ = 27

Uniform Adaptive

Element size (10−3 m) h = 4 h = 2 h = 1 h ∈ [1; 5]
Nb of elements 5155 20,081 79,895 ∼20,000

CPU time (s) 5 33 221 50

U∗(t∗ = 25) 0.8369 0.9093 0.9228 0.9231

The adaptivemesh contains approximately the same num-
ber of elements than the mesh with elements of size h =
2× 10−3 m and four times less than the mesh with elements
of size h = 10−3 m. The results show a good agreement
between the curve obtained with the most refined uniform
mesh and the curve obtained with the adaptive mesh (see
Fig. 6) while the CPU time is 4.45 times smaller with the
adaptive mesh. The CPU times until the state shown in Fig. 7
and the properties of each mesh are sum up in Table 2.

For now the mesh is rebuild from scratch when the adap-
tation is needed and the unknown fields have to be evaluated
at the new mesh nodes. This procedure is not optimal and
creates an additional computational cost that can be seen
by comparing the CPU time of the uniform mesh with
h = 2 × 10−3 m with the CPU time of the adaptive mesh.
These two meshes have approximately the same number of
elements but the computation using the adaptive mesh is 1.5
times slower because of the adaptation. That is why it is not
fruitful to adapt the mesh at each iteration. In practice for
the case of cloud falling in a fluid, the number of iterations
between two adaptations of the mesh can be estimated based
on the refined area and the settling velocity of the swarm. For
the case shown in Fig. 7, the mesh is adapted each 20 itera-
tions. It ensures that the clouds do not go out of the refined
area.

3.3 General model for polydisperse flows with
non-negligible Reynolds number

Due to the complete representation of the fluid, the Reynolds
number can be increased continuously without changing the
model. To show the effect of inertia on the grains dynamics,
an example is presented in which three clouds made up of
grains with a greater density than the fluid fall over a cloud
made up of grains with a smaller density than the fluid. This
situation is shown in Figs. 8 and 9. At the beginning of the
simulation, the two lower clouds move towards each other,
while the two upper clouds are attracted exactly like in the
simulations showing two vertical interacting clouds. At this
stage, it is already possible to distinguish the effect of the
inertia by observing the vortices let by the clouds in their
wake. In the case of a smallRe, the dissipation is such that the
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Fig. 8 Shape evolution of interacting clouds made up with grains of
different densities. The blue cloud (parameter Set 5 in Table 1) is lighter
than the fluid while the red ones (parameter Set 4 in Table 1) are heavier.
Clouds states are shifted to the right each time interval of Δt = 2.5 s.
(Color figure online)

Fig. 9 Shape evolution of interacting clouds made up with grains of
different densities. The blue drop (parameter Set 7 in Table 1) is lighter
than the fluid while the red ones (parameter Set 6 in Table 1) are heavier.
Clouds states are shifted to the right each time interval of Δt = 0.25 s.
(Color figure online)

vortices of the heavy clouds merge when they approach the
light cloudwhile they are still separate in the case of a greater
Re as shown in Figure 10. The adimensionalisation of the
time is based on the initial cloud radius and the Stokes settling
velocity. It also has to be noticed that the circulating velocity
fields have a greater interaction in the small Reynolds number
case. The two lower clouds flatten completely before they
collide while they remain hemispherical for the case with
higher Reynolds number. This greater interaction forces the
upper clouds to lengthen so that we observe a bigger tail in
the viscous case and an accelerated evolution of the clouds.

4 Conclusions

In this paper, we have coupled a stabilised finite element
method and a nonsmooth discrete element method to repre-
sent the flowof grains immersed in a fluid.Using thismethod,
it is possible to model accurately the local effects at the grain
scale due to their Lagrangian representation with a compu-
tational convenience coming from the representation of the
fluid at a greater scale than the grain’s one.

The sensitive part of the model is the empirical formula
used for the grain–fluid interaction force. This force is a

Fig. 10 Comparison of the fluid streamlines at the same adimensional
times for two different Reynolds numbers. The blue drop is lighter than
the fluid while the red ones are heavier. (Color figure online)

dominant source-term so that its parametrisation has a great
influence on the results and it is required to use a semi-
implicit scheme to stabilise themomentum coupling between
the two phases. This stable form of the drag force makes use
of a prediction of the grains free velocities at the next time
step so that the fluid experiences a force due to the grains that
does not exactly correspond to the dissipation due to the real
relative motion of the two phases.

Many steps still need to be completed to fully certify
the model. The precision of simulations will suffer from
the continuous representation of the fluid while the discrete
representation of the solid phase will limit the software to
applications inwhich the number of grains is restricted. Com-
parisons with suitable experiments have to be achieved in
order to determine the range of application of this model. It
is often complicated to reproduce exactly experiments found
in the literature because of the lack of some data and the
misconception of the real laboratory conditions. A perfect
validation will require experiments calibrated with the exact
conditions enforced in the software.
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However, comparisons with experiments and simulations
found in literature have been achieved and proved the good
performance of the implementation. The results have been
discussed, and a focus on the basic stabilisation of the finite
elementmethod has shown its consistency and a convergence
towards a unique solution. The CPU times have been pre-
sented along with a empirical formula to adapt the size field
of the mesh during the computation. Comparing the settling
velocity of a Stokes cloud with different meshes, we have
shown that the adaptive mesh gives accurate results with a
much smaller CPU time.

The great advantage of this model is its generality. It is
possible to add grains with various material properties and
shapes in various geometries containing an arbitrary fluid.
The only numerical requirement is that the radii of the grains
have to be smaller than the edge of the elements representing
the fluid. One advantage of this numerical model compared
with Stokeslet simulations [41] is that it does not require to
consider correction terms of the Oseen stream function [55]
when the inertia increases. Achieving simulations at vari-
ous Reynolds number, we have shown the flexibility of the
implementation and the importance of the contacts computa-
tion when clouds collide at non-negligible Reynolds number.
The freeMigFlow software based on the equations presented
in this paper and the different simulations shown in figures
are available to the following link https://git.immc.ucl.ac.be/
fluidparticles/migflow.
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