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Abstract
A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing
interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel
algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-
critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing
communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, trans-
mitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information
between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and
tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code
including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of
particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communica-
tion time is a decreasing function of the number of compute nodes in strong scaling measurements. The code’s capability
of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory
studies on micromechanical properties of granular materials and many realistic engineering applications involving granular
materials.
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1 Motivation

The discrete element method (DEM) has been applied to
study the mechanical behavior of particle assemblages for
more than 30years since its introduction in the late 1970s by
Cundall and Strack [3]. However, application of 3-D DEM
in simulating practical problems involving granularmaterials
is still limited in terms of problem size (namely, number of
bodies/particles). For example, most applications involving
complex-shaped particles such as axisymmetric/revolution
ellipsoids [23,24] or true ellipsoids [34] constrain their num-
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ber of particles to a few thousand, typically not exceeding
10,000, which implies merely 21 × 21 × 21 particles in
3D space. This is mainly due to the fact that the DEM
poses high computational demands characterized by CPU-
intensive interparticle contact detection and a conventional
explicit time integration scheme.

For many applications, the length scale and problem
size of practical engineering problems cannot be circum-
vented even if a multi-scale model is employed. For instance,
to study the influence of blast waves on gravitationally
deposited coarse-grained soils in which an explosive charge
is ignited, a 40cm×40cm×40cm specimen composed of
ellipsoidal sand particles is generated containing roughly 500
million 0.1–1mm diameter particles depending on the par-
ticle shapes and size distribution. In engineering problems
such as pile foundation installation, a 10-m-long precast con-
crete pile (modeled by the finite element method (FEM))
driven into sandy soil would involve large shear deforma-
tion along its frictional side as well as point-bearing end.
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Even if the thin shearing layer around the pile body and
a small region at the pile end are modeled by DEM while
transition to faraway zones is modeled by FEM (so-called
DEM–FEM coupling [26,34]), the number of discrete par-
ticles needed in such conditions could still be surprisingly
large.

The limitation of problem size (number of particles) is a
barrier to simulating realistic engineering or laboratory prob-
lems involving complex-shaped particles that are of same
size as physical particles. As an example, if 2200 parti-
cles (roughly 13×13×13 particle array) in 3-D space are
adopted to study the internal evolution of shear band and
force chains in conventional triaxial compression test or
true triaxial compression test [1], the shear band is diffi-
cult to observe: In each dimension, there are 13 particles,
at least two of them on each side are needed to account
for boundary effects and then only nine particles remain
to investigate the internal shearing behavior. The numeri-
cal experiment would not be sufficiently convincing until an
approximate 50×50×50 particle array is modeled, wherein
that specimen amounts to 125k particles. Fu and Dafalias
[6,7] employed 120k particles to study the shear band evo-
lution and anisotropic shear strength of granular materials
using 2-D ployarc DEM.

It is natural to make use of modern supercomputers to
perform such large-scale computational tasks. This paper
presents a comprehensive study on the parallelism of a
DEM code for simulating granular materials composed of
complex-shaped particles, including design, implementa-
tion, optimization, theoretical analysis and practical evalu-
ation of performance, and benchmarks.

It should be emphasized that the parallelization of a 3-
D DEM code discussed in the paper is mainly developed
for complex-shaped particles such as true ellipsoids [34],
poly-ellipsoids [25], superellipsoids [4,30], superquadrics
[31], or asymmetrical particles constructed by non-uniform
rational basis splines (NURBS) [14], rather than simple
spheres. In many geotechnical and geomechanical problems,
the shapes (and sizes, gradations, etc) of the discrete particles
play an insurmountably important role such as for capturing
interlocking and particle fracture, whereas modeling those
complex-shaped particles often costs orders of magnitude
more computational power than spheres. However, the par-
allelism is also applicable to spheres, if of interest to the
modeler.

The paper contains seven sections. Section 1 has stated
the motivation, mainly from the perspective of engineering
applications; Sect. 2 is an introduction to the DEM method
and its computational features; Sect. 3 reviews development
in parallel DEM and describes new features in the paper;
Sect. 4 covers numerous concepts, techniques, principles,
optimizations, work-around, and programming technologies
in the process of parallelization; Sect. 5 presents performance

analysis using numerical experiment data collected from
DoD HPC supercomputers in light of Gustafson–Barsis’s
law, Karp–Flatt metric and iso-efficiency relation; Sect. 6
studies MPI profiling of the parallel code, formulates the
relationships between execution time, communication time,
and parallel overhead percentage with respect to number of
processors and problem size, and suggests optimal compu-
tational granularity for various scales of simulation; and a
summary is given in the last section.

2 Fundamentals of DEM

2.1 The DEM framework

A complete DEM system is composed of multiple essential
components: particle geometry representation, interparti-
cle mechanical models (such as Hertzian nonlinear normal
contact model [11] and Mindlin’s history-dependent shear
model [18,19]), contact search and resolution algorithm, time
integration scheme, damping mechanism, boundary control
methods for modeling various loading conditions, etc. A
typical procedure of DEM analysis consists of three major
computational steps in sequence,which are integrated in time
using central difference method until a simulation is com-
pleted:

– contact detection between particles, including two
phases:

1. neighbor search (neighbor estimate)
2. contact resolution

– contact force computation for each pair of particles in
contact.

– particle motion update (translations and rotations) using
Newton’s second law.

The contact detection process is usually the major com-
putational bottleneck, especially for a large number of
complex-shaped particles. It is divided into two phases: the
neighbor search (or spatial reasoning) phase and the con-
tact resolution phase. Neighbor search identifies/estimates
objects near the target object. It often uses an approximate
geometry for the objects, such as bounding box or bounding
sphere. The geometric contact resolution phase then uses a
specific geometric representation of each body to resolve
the contact geometry. For complex shapes such as ellip-
soidal particles (three different semi-axis lengths) [34] or
non-symmetric poly-ellipsoidal particles [25], the contact
resolution between two particles is much more expensive
than spheres, increasing the floating-point operations by sev-
eral orders of magnitude due to the requirement of numerical
accuracy and robustness. This is the most computationally
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challenging part of 3-DDEM in addition to the nonlinear and
history-dependent mechanical models that describe interpar-
ticle interactions.

2.2 Neighbor search

The time complexity of a n-by-n simple search algorithm is
O(n2), where n denotes the number of particles in a particle
assemblage. It is acceptable to use the simple approach if n
is less than several thousand. However, this simple method
would become extremely inefficient as the number of par-
ticles increases significantly, for example, up to more than
50k, not to mention on the order of millions or billions of
particles. Partitioning algorithms are therefore introduced,
and they fall into two main classes: tree-based algorithms,
which use specific data structures for storage and search and
result in time complexity of O(nlogn) [12,20]; and binning
algorithms whose time complexity is O(n).

The idea of binning algorithm is to place each particle
into a bin using a hash on the particle’s coordinates. Once
the particles are sorted into bins, one can reason about the
spatial closeness based solely on the fixed relationships of
the bins. Munjiza and Andrews [21] implemented a binning
algorithm, which scales linearly to large numbers of particles
but is limited to particles of approximately the same size.
Williams et al. [32] extended the traditional binning algo-
rithm so that objects of arbitrary shape and size in two and
three dimensions can be handled by introducing an abstrac-
tion. The algorithm achieved the partitioning of n particles
of arbitrary shape and size into n lists in O(n) operations,
where each list consists of particles spatially near to the target
object.

In molecular dynamics (MD), the link-cell (LC) method
[8] is widely used for large numbers of molecules in short-
range interaction with a well-defined cutoff, while Verlet’s
neighbor table is used for small number of molecules. The
LCmethod divides a computational spatial domain into equal
cubic cells of size not smaller than the cutoff distance (inMD)
or diameter of the largest particle (in DEM). Each particle is
referenced to the cell according to the position of the particle
centroid. The neighbor-searching method comprises refer-
encing individual particles to the cells and constructing the
neighbors list of particles using cells. The time complexity
of LC method is O(n).

All of these nontrivial methods are based on the idea of
increasing spatial locality in serial computing, namely a dis-
crete particle does not need to check with all other particles
but only needs to check its surrounding neighbors, thus low-
ering computational cost substantially. However, the overall
computational improvement from these methods might be
highly limited for complex-shaped particles because neigh-
bor search only takes up a small fraction in floating-point
operations.

2.3 Contact resolution

Yan et al. [34] developed a robust contact resolution algo-
rithm for three-axis ellipsoidal particles by constructing an
extreme value problem of finding the deepest penetration of
one particle into the other. Such an extreme value problem
results in a sixth order polynomial equation. Conventional
polynomial root finders cannot satisfy the high-precision
numerical requirement in the 3-D DEM computation. For
example, the elastic overlap between two particles of typical
quartz sand may vary between 10−8 and 10−5 m depending
on particle size, shape, and external force, and a low-
precision solver can lead to numerical instability or spurious
explosion of particles. Therefore, an iterative eigenvalue
method, which performs QR decomposition of real Hessen-
berg matrices, is selected to find roots of the polynomial
and determine the contact geometry. The algorithm and its
implementation has been shown to be robust such that it is
applicable to not only regularly bulky ellipsoidal shapes but
also extreme-shaped ellipsoidal particles such as disks and
needles, as shown in Fig. 1a–d.

Peters et al. [25] proposed a non-symmetric poly-ellipsoid
shape, which joins eight component ellipsoids in eight dif-
ferent octants, respectively, to produce continuous surface
coordinates, normal directions, and intersections. It is more
computationally expensive than a symmetric ellipsoid but it
acts as a useful extension, as shown in Fig. 1e–f.

3 State of the art of DEM parallelization

3.1 Interest and challenge in developing parallel
DEM

There has been considerable interest in developing paral-
lel DEM codes in recent years. Baugh Jr and Konduri [2]
presented a distributed computing system for DEM that
is designed for loosely coupled networks of workstations,
where the interprocess communication is implemented using
low-level BSD sockets rather than popular tools or API such
as MPI, OpenMP, or PVM (parallel virtual machine). The
implementation subdivides the simulation region into cube-
shaped cells, and a neighbor list is constructed within a
radius Rc + �R, where Rc is a cutoff radius and �R is a
small value determined empirically. The implementation is
used to simulate a system with as many as 200,000 spher-
ical particles using eight processors. As an example, the
speedup is close to 6 using eight processors for the com-
putation of 120k spherical particles. The authors pointed
out that a replacement of the client–server model with
peer-to-peer communication would reduce communication
cost.
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Fig. 1 Ellipsoids and poly-ellipsoids represent a wide variety of shapes in DEM. a Ellipsoids with various aspect ratios, b spherical particles, c
disk-like particles, d needle-like particles, e poly-ellipsoids with various aspect ratios, and f poly-ellipsoids

Washington and Meegoda [29] simulated a triaxial test
using an algorithm titled “TRUBAL for Parallel Machines
(TPM)” and showed its benefits over the serial version DEM
code, TRUBAL. The TPM assigns each processor a multi-
ple number of contact pairs (two spheres in contact) existing
within an assembly of spheres using static memory arrange-
ment. The rubber membrane boundary is approximated and
assumed to stretch between the particles. Two simulation
scales are tested and compared, one with 403 spheres and
the other with 1672 spheres, on Connection Machine (CM-
5) with 512 nodes at the Pittsburgh Supercomputing Center.
The speedup is as low as 7.9 using 512 nodes for 403 spheres.
The authors found that a drastic increase in the problem size
did not decrease the overall speedup. Indeed, an increase in
the problem size should increase the speedup according to
Amdahl effect [17].

Maknickas et al. [16] described the DEMMAT_PAR
code for simulation of viscoelastic frictional granular media,
which has been created in the Parallel Computing Labora-
tory of Vilnius Gediminas Technical University. The code

adopts a static spatial domain decomposition strategy, link-
cell concept, and MPI interprocessor communications. The
parallel performance tests were carried out on their PC clus-
ter VILKAS for systems consisting of 5000, 20,000, and
100,000 particles whose parameters are artificially assumed,
for example, the Young’s modulus is as low as 1MPa
(compared to 29GPa for quartz sand). The speedup is approx-
imately 11 on 16 processors for 100,000 spherical particles.

Henty [10] chose to investigate the performance of amuch
smaller test code that implements precisely the same algo-
rithm but has limited functionality rather than tackling a
complete physics DEM application with all of its functional-
ity and complexity. He implemented a hybrid parallelization
of the message-passing and shared-memory models simulta-
neously. The superlinear speedup is observed in his tests. The
author pointed out: “The results are somewhat disappointing,
showing that the pure MPI code is always more efficient for
a given granularity” than a hybrid scheme.

Vedachalam and Virdee [28] used LAMMPS (large-scale
atomic and molecular massively parallel simulator) and
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LIGGGHTS (LAMMPS improved for general granular and
granular heat transfer simulations) to study the motion of
snow particles, wherein the snow grains are assumed to be
spherical particles of 5mm diameter. An empirical coef-
ficient of restitution (ratio of rebound velocity to impact
velocity) is adopted rather than the strict Hertzian nonlin-
ear contact model, while Mindlin’s history-dependent shear
model is not considered.With regard to the performance gain
of parallelism, the authors wrote “on 480 processors for 75K
particles, the speedup was 1.99, while on 960 processors for
same number of particles speedup achieved was 2.52” in
comparison with 120 processors, which is a relatively low
performance gain.

Munjiza et al. [22] adopted parallel particle mesh (PPM)
library to parallelize the DEM and used a conservative lower
bound to estimate the number of time steps between two Ver-
let list updates. In a sand avalanche simulation, 122 million
spheres were used. In the figure generated from fixed-size
problems that use up to 192 processors, superlinear speedup
appears to occur when the number of processors increases to
a certain value.

It should be noted that the DEMs mentioned above share
several weaknesses and challenges:

1. They only deal with spheres rather than complex-shaped
particles, thus leading to several orders of magnitude less
computational demand, as detailed inSect. 3.2. For exam-
ple, the CPU demand of simulating 122 million spheres
is merely equivalent to that of simulating 488k poly-
ellipsoids, and the CPU demand of simulating 10 million
ellipsoids approaches that of 500 million spheres, when
using the same interparticle contact mechanical models.
Peters et al. [25] divide DEMs by two motivations: (1)
prototype-scale simulations for engineering studies and
(2) micromechanical studies for research of fundamental
mechanics. They pointed out: “Prototype scale analyses
require accurate bulk behavior of themedium,which pre-
sumably can be achieved without capturing details at the
particle scale. In fact, in such studies both particle size
and shape are sacrificed to obtain problem sizes suitable
for practical computations. For micromechanical stud-
ies, greater fidelity to the actual particle characteristics is
needed, because for simulation to be on equal footing
with physical experiments, the particle-scale behavior
must be correct. Simply reproducing bulk behavior is
not sufficient if the intent is to develop generalizations
about fundamentalmechanics.”Unfortunately, the spher-
ical DEMs mentioned above fall into the category of
prototype-scale simulations.

2. They highly simplify the complicated interparticle con-
tact models and can hardly capture physical properties of
internal frictional granular material correctly. For exam-
ple, Munjiza et al. [22] assumes constant normal and

tangential elastic modulus, and LAMMPS assumes vari-
able normal and tangential elastic modulus; however,
both ignore the well-known history-dependent tangen-
tial behavior for granular particles, which needs special
implementation to keep track of the complex loading-
unloading-reloading path and history variables. Munjiza
et al. [22] update the Verlet lists every 150 time steps;
however, interparticle contacts can generate and disap-
pear, and lasting shear contact behavior can evolve, at
every time step in conventional DEM, not to mention in
high-fidelity simulations like soil-buried explosion.

3. They do not completely disclose or implement advanced
parallelism requirements such as memory consumption
management, dynamic load balancing technique, tran-
mission of dynamically allocated objects between MPI
processes, particle motion tracking mechanism across
MPI processes, which set a ceiling on computational
performance gain and scalability. For example, the root
process may deplete compute node memory in parallel
computing, if it does not implement an effective mem-
ory deallocation mechanism during the process of time
integration of millions of steps; a particle could disap-
pear in computation when it moves across dynamically
adaptive compute grids, if particle migration mechanism
is not implemented correctly.

4. They achieve poor parallel speedup and scalability. As a
typical example of LAMMPS, 4× number of processsors
gives rise to a low speedup of 1.99, and 8× number pro-
cessors leads to a low speedup of 2.52, in the simulation
of 75k spheres [28]. Among these parallel DEMs, the
algorithmic speedup and scalability challenges mainly
come from: (1) strategy of static versus dynamic spatial
domain decomposition; (2) performance-critical details
in design and implementation of theMPI transmission of
adjacent particles from one process to another, which are
described briefly in Sect. 3.2 and covered thoroughly in
Sect. 4.

3.2 A comprehensive study of parallel 3-D DEM

This paper aims to provide a comprehensive study of paral-
lel DEM by applying the parallel computing techniques to
the mechanics research of granular materials. It includes the
following novel features:

1. Uses Hertzian nonlinear normal contact model and espe-
cially Mindlin’s history-dependent tangential contact
model, combined with Coulomb friction model and
interparticle contact dampingmodel, to describe the com-
plicated interaction between particles. This differs from
LAMMPS fundamentally because the latter uses highly
simplified models and ignores the interparticle tangential
behavior that determines the mechanical property of the

123



558 Computational Particle Mechanics (2018) 5:553–577

Fig. 2 Link-cell algorithm and serial DEM profiling, a link-cell algorithm, b CPU time components for ellipsoid and c CPU time components for
Spheres

internal frictional granular media, such as geological and
geotechnical materials.

2. Computes true three-axis ellipsoids and non-symmetric
poly-ellipsoids and allows extension to other complex-
shaped particles. For complex shapes such as three-
axis ellipsoidal particles [34] or non-symmetric poly-
ellipsoidal particles [25], the contact resolution between
two particles is several orders of magnitude more
expensive than spheres. For example, contact resolution
between a pair of three-axis ellipsoids is approximately
50 times as expensive as that of a pair of spheres, and con-
tact resolution between a pair of poly-ellipsoids is nearly
260 times as expensive as that of a pair of spheres[33].

3. Puts forward concepts of link-block, ghost/border layer,
and migration layer to optimize the parallelism and
allows high flexibility and scalability in modeling from
quasi-static (such as laboratory triaxial tests of soil) to
dynamic problems (such as particle pluviation, buried
explosion).

4. Derives the theoretical scalability function to predict 3-D
DEM features of scalability and memory usage and ana-
lyzes performance through parallelism laws rigorously
such as Gustafson–Barsis’s law, Karp–Flatt metric, and
iso-efficiency relation.

5. Develops a dynamic load balancing technique using
adaptive compute grids; optimizes memory management
by minimizing global communication and avoiding large
MPI memory consumption; uses migration layer to track
particle motion across adjacent MPI processes; achieves
efficient MPI transmission of dynamic objects and point-
ers using Boost C++ libraries; and eliminates redundant
contact information between adjacent MPI processes
using a special data structure. We emphasize such a
completely optimized DEM system for complex-shaped
particles; otherwise, a highly efficient and scalable paral-
lel system for large-scale simulations cannot be achieved.

6. Performs extensive tests across five orders of magnitude
of simulation scale (namely, the number of complex-
shaped particles), evaluates the optimal computational
granularity across the scales, and studies the characteris-
tics of communication and parallel overhead with respect
to number of processors and problem size across the
scales.

4 MPI design and implementation

4.1 Four-step design and link-block

The paper follows the four-step paradigm proposed by Fos-
ter [5] in designing the MPI parallelization algorithm of
the DEMcode: partitioning, communication, agglomeration,
andmapping. The computational spatial domains are divided
in link-cell (LC)method into equal-sized cubic cells of length
not smaller than the diameter of the largest particle, illustrated
in Fig. 2a.

Figure 2b reveals the CPU time percentage of various
components of 3-D DEM for simulating 2000 ellipsoidal
particles, whereby it is observed the neighbor search only
accounts for a small fraction (13.2%) of the overall CPU
time. In comparison, the neighbor search takes up to 74.7%
ofCPU time for simulating2000 spherical particles, as shown
in Fig. 2c.

Weupscale the link-cell (LC) to link-block (LB) technique
in parallel DEM.With introduction of LB, Foster’s four-step
paradigm can be readily applied in designing a parallel algo-
rithm in DEM.

Partitioning The computational domain is divided into
blocks. Each block may consist of many virtual cells. In
Fig. 3, there are eight blocks numbered from 0 to 7, each
containing 5×5×5 small virtual cells. The size of the vir-
tual cells may be chosen to be the maximum diameter of the
discrete particles.
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Fig. 3 Schematic of link-blocks, virtual cells, and border layers

Communication Each cell, as a primitive task unit, can com-
municate with 26 possible surrounding ones to determine
contact detection. However, the communication manner may
be changed after the process of agglomeration.

Agglomeration By combining 5×5×5 virtual cells into a
block, communication overhead is lowered in that each block
only needs to communicate with neighboring blocks through
border/ghost layers, which are virtual cells marked by blue
dots in Fig. 3.

Mapping There are choices of mapping a block of particles
to a core, a CPU, multiCPUs within a node, or even a whole
node. Very often each block is mapped to a whole compute
node.

4.2 Flowchart of the parallel algorithm

The flowchart of the parallel code is designed as depicted in
Fig. 4. It exhibits 12 flow processes or steps, among which
one is sequential, two are partially parallel, and nine are
fully parallel. Ten of the twelve processes are integrated
in time using time increment loops until a simulation is
completed. The 12 steps are not equally weighted or even
have different repeatability in the time increment loops in
terms of computational cost and communication overhead,
and how to optimize them is discussed in subsequent sec-
tions.

In comparison with the serial algorithm, the parallel one
ends up with six more steps as follows:

1. Step 2: 2-Root process divides and broadcasts info. This
step only runs once so it does not cost much CPU time.

2. Step 3: 3-All processes communicate with neighbors.
This interprocess communication is the most important
step in the parallel algorithm.

3. Step 9: 9-All processes update compute grids. This step
arises from consideration of computational load balance.

4. Step 10: 10-All processes merge and output info. This
step serves the goal of snapshotting simulation states.
Beware that it does not execute at each time increment;
otherwise, it could cause unacceptable cost.

5. Step 11: 11-All processes release memory of receiving
particle info. This step arises from MPI transmission
mechanism and must be carefully taken care of.

6. Step 12: 12-All processes migrate particles. This step
handles the situation when particles move across block
borders.

Note steps 5 and 7 are boundary processes: Although they
are partially parallel in spatial distribution (only boundary
processes are running while other processes are idle), these
two steps only perform 3-D operations on computational
boundaries, therefore taking up a relatively small fraction
of computational cost. Among the 12 steps, most of them
only involve local communication, while three of them are
associated with global communication.

4.3 Interblock communication

In Fig. 3, beware that a border/ghost layer is not limited to
constructing a surface layer between two adjacent blocks, as
there are other forms. For example, block 3 communicates
with block 1 through a surface border layer, block 3 com-
municates with block 0 through an edge border layer, while
block 3 communicates with block 4 through a vertex border
layer, as shown in Fig. 3. Usually, a block needs to exchange
information with its neighbors through six surface border
layers, 12 edge border layers, and eight vertex border layers.
It might be anticipated that communication overhead in 3D
DEM is not trivial.

A “patch” test is designed using 162 ellipsoidal parti-
cles. The particle assemblage is composed of two layers of
81 particles, gravitationally deposited into a rigid container,
illustrated in Fig. 5a. The container is partitioned into four
blocks separated byblue dashed lines shown inFig. 5b,which
also represents the initial configuration of the randomly sized
particles as shown from top view.

Each block is mapped to and computed by an individual
process, so there are four processes, p0 to p3. Each process
needs to communicate with other processes to determine its
own boundary conditions. For example, process p3 needs to
know those particles from process p1 that are enclosed by the
pink rectangular box, those from process p2 enclosed by the
red rectangular box, and those from process p0 enclosed by
the green square box. A detailed movie records how those
particles move across the borders and collide with parti-
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Fig. 4 Flowchart of the parallel
algorithm of 3-D DEM

cles from other blocks, and it reveals that each process is
able to determine its boundary conditions accurately. The
overall motion of the 162 particles through parallel com-
puting is observed to be the same as that observed in serial
computing.

4.4 Across-border migration

Each process only knows its own space and associated par-
ticles, and a particle may enter or leave this space, which is
called across-block migration. If a particle migrates across
the block border, one process needs to delete this particle
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Fig. 5 Illustration of interblock communication, a 3-D view of initial configuration, b top view of initial configuration, c top view at time t1 during
simulation and d top view at time t2 during simulation

while another process needs to add this particle. Consider
a small particle located at location 1 in process p1 at time
t1 in Fig. 5c: It moves across the border of process p1 and
enters the domain of process p0 at a later time t2, arriving at
location 2 in Fig. 5d.

The algorithm to track how particles migrate across
block/process borders is depicted in Fig. 6. It looks simi-
lar to that of interprocess communication; however, they are
different or even the inverse of each other conceptually. In
Fig. 6, those rectangular and square boxes are a spatially
outward extension of process p3, not the inward inclusion of
process p0, p1, p2, respectively. They are called migration
layers ormigration zones. For example, p3 ought to check its
three spatial migration layers to see whether any of its par-
ticles move into the migration layers, and if yes, p3 should
send such particles to its neighbors and delete them from its

own space. The width of the migration layers is independent
of the size of virtual cells, and it is actually determined by
the velocities of the particles and time step used in current
time increment.

4.5 Load balance and adaptive compute grids

In parallel computing, it is important to maintain load bal-
ance between processes; otherwise, some processes are busy
computing while others could be hungry awaiting tasks. To
this end, dynamically adaptive compute grids are developed
in 3-D DEM. In a test of pouring particles into a container
via gravity, it can be clearly observed from the movie that
the compute grids dynamically follow motion of the parti-
cles and redistribute across the space. Three snapshots of
this process are captured and shown in Fig. 7, where the
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Fig. 6 Particles migrate across blocks

2×2×3 compute grids in x, y, z direction, respectively, are
marked by green boxes (differentiated from the fixed black
box of the container). Note that compute gridsmust be distin-
guished from the physical container in terms of underlying
data structure because compute grids are a dynamic data
structure while a container uses a fixed one.

A gravitational depositing process of 1 million polydis-
perse ellipsoidal particles is simulated with dynamic load
balancing across 256 compute nodes, and relevant high-
resolution videos are located at https://www.youtube.com/
playlist?list=PL0Spd0Mtb6vVeXfGMKS6zZeikWT55l-ew.

4.6 Minimizing global communication

Parallel algorithms have two kinds of communication pat-
terns: local and global. One of the principles in designing
high-performance parallel algorithms is to minimize global
communication and prefer local communication.

As pointed out in Sect. 4.2, there are three steps involving
global communication. Among them, step 2 (2-Root process
divides and broadcasts info) is executed once before entering
time increment loops; step 9 (9-All processes update compute
grids) calls a function MPI_Allreduce on a few floating-
point numbers, and thus it causes minimal communication;
step 10 (10-All processes merge and output info) tries to
collect particles from all processes and causes high commu-
nication; however, it does not execute at each time increment.
Instead, it runs on a specified interval: For instance, it only
runs 100 times during 5 million time increment steps; thus,
the communication overhead is still negligible.

Fig. 7 Dynamically adaptive compute grids that achieve efficient load
balance. a Initial configuration of particle pluviation, bmiddle stage of
particle pluviation and c final stage of particle pluviation

At each time increment, two steps undergo local commu-
nication: They are step 3 (3-All processes communicate with
neighbors) and step 12 (12-All processes migrate particles).
In these two steps, a process exchanges particle information
through border layers or migration layers with its 26 possible
neighbors, which is a typical local communication.

4.7 OOP/C++/STL and boost C++ libraries

The principles of object-oriented programming (OOP) [15,
27] are applied in the design and programming of the code.
For instance, various classes are designed to model the prac-
tical concepts and objects that exist in a DEM simulation
system: particles, interparticle contacts, assemblage of par-
ticles and boundaries, and the particle class is refactored
to accommodate more particle shapes such as ellipsoidal,
poly-ellipsoidal, and super-ellipsoidal particles using poly-
morphism. The Standard Template Library (STL) is heavily
used such as vector, map, and list to ensure code robustness
and performance.

In developing MPI transmission of 3-D DEM, the Boost
C++ libraries are heavily relied on, such as Boost.MPI,
Boost.Serialization, Boost Non-blocking communication.
For instance, a process’s local communications with its 26
neighbors (six surface border layers, 12 edge border layers,
and eight vertex border layers) are all accomplished in a non-
blocking manner.

Boost.MPI runs on top of MPI implementations. On DoD
Spirit supercomputer, we choose to use a robust combination
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of Intel compilers 13.0.1 and SGIMPT 2.11, based on which
we build Boost C++ 1.57.

4.8 Particle–boundary interaction

Step 10 (10-All processes merge and output info) in the
flowchart shown in Fig. 4 not only gathers particle infor-
mation from all processes but also collects information
on particle–boundary interaction from those boundary pro-
cesses. As shown in Fig. 7, to obtain particle–boundary
interaction information on the bottom and four sides of the
top-open rigid container, relevant parallel processes must be
identified, collected, and then communicated to merge the
information.

4.9 Avoiding largememory consumption with MPI

Step 10 (10-All processes merge and output info) in the
flowchart shown in Fig. 4 was originally coded to gather
interparticle contact information from all processes. How-
ever, when a simulation of 1 million particles was tested
on the Janus supercomputer (1368 compute nodes, 12 cores
and 24GB RAM per node) at the University of Colorado
Boulder, a severe memory management issue was discov-
ered: On a hybrid MPI/OpenMP execution of 384 processes
(1 process/12 threads per node) on 384 nodes, the memory
footprint log revealed that the root process gradually depleted
nodememory (24GB)while other parallel processes retained
nearly constant 50MBusage for running up to 40hwall clock
time.

The underlying data structure of C++ class Contact
contains two pointers to the pair of in-contact particles.
Boost.Serialization serializes and deserializes a pointer
inside a class, that means, gathering interparticle contact
information not only collects the underlying particle infor-
mation implicitly, but also may collect particle information
multiple times because a particle could appear in multiple
interparticle contacts. This explains why the MPI transmis-
sion volume increases sharply when using MPI to gather
interparticle contact information.

Our solution to the memory consumption issue can be
summarized as one principle: prefer post-data processing to
MPI global transmission, which covers several details:

– Separate large data operation from MPI transmission.
– Use post-processing code/script to merge or consoli-
date smaller pieces of data that are output from the
runtime.

– Apply parallel I/O technique, or use optimized I/O
libraries like HDF or NetCDF, during the process of exe-
cution.

Fig. 8 Redundant interparticle contact information between adjacent
processes

4.10 Parallel I/O of interparticle contact information

In ParaEllip3d, a collective and shared file pointer method
is selected for parallel I/O such that each process writes
its interparticle contact information to a shared data file
using a shared pointer, i.e., the function MPI_File_write
_ordered is called. In case parallel I/O is not desired,
there is a work-around implementation: Each process writes
its interparticle contact information to an individual file,
and then a post-processing tool is used to merge those
files.

4.11 Unique interparticle contact information

Owing to the collection algorithm described in Sect. 4.10,
redundant interparticle contact information exists between
adjacent processes and must be removed for accurate statis-
tics. As shown in Fig. 8, p1 and p3 each take into account
the interparticle contacts at their shared border and produce
obvious redundancy or overlapping.

During post-processing of interparticle contact statis-
tics from the data file generated from parallel I/O, the
redundancy must be eliminated. A special data structure
from Boost C++ libraries, “unique hashed associative con-
tainer” (called boost :: unordered_set) is chosen for this
task. It is able to process millions of interparticle contacts
quickly with automated data consolidation and optimal per-
formance.
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5 Performance analysis OF 3D DEM

5.1 Types of DEM simulations

Overall, the problems that are modeled by 3-DDEM fall into
two main categories:

– Static or quasi-static problems: laboratory tests such
as oedometer compression, isotropic compression, con-
ventional or true triaxial compression, in situ cone
penetration test (CPT), static load test of cast-in-place
piles.

– Dynamic problems: sand pluviation or deposition with
gravity, collapse of particle assemblage, landslide under
gravity, explosion beneath soil, installation of precast
piles by means of hammers, sand dune movement, etc.

These two types of problems exhibit different features of
particle interaction in 3-D DEM simulations. The most pro-
nounced difference is that particles come in and out of contact
frequently in dynamic simulations, while there is less con-
tact rearrangement in static or quasi-static modeling. This is
mainly why granular materials are sometimes considered as
the fourth state of matter (different from solids, liquids, or
gases): Granular particles may transition in an instant from
deforming like a solid to flowing like a fluid and vice versa.

To cover these variations, sand pluviation (“raining”)
is selected as our representative test in evaluating parallel
performance. Illustrated in Fig. 7, the sand particles are gen-
erated based on a specific soil gradation curve (so that they
have different sizes) and “floated” in space initially without
interaction; during the process of gravitational pluviation, the
bottom particles start to pack up and interparticle contacts
should be detected; at the end, all particles come to rest and
stay in a relatively “dense” state statically under gravity. The
overall pluviation process and the static packed state are both
used in the performance evaluation of parallel computing.

The static/quasi-static simulations can achieve excellent
load balance, whereas in dynamic simulations, such as buried
explosion in sand, it is difficult to achieve good load bal-
ance because the motion and distribution of soil grains are
unknown. Even though each link-block contains the same
number of particles, there could still be load imbalance,
because the computational cost is not determined by the
number of particles but instead by the number of interpar-
ticle contacts, which is unknown before the computation is
performed.

The simulations are performed on Spirit, one of the
DoD HPC supercomputers (https://centers.hpc.mil/systems/
unclassified.html#Spirit). Spirit is an SGI ICE X System
located at the AFRL DSRC. Spirit has 4590 compute nodes
each with 16 cores (73,440 total compute cores), 146.88
TBytes of memory, and is rated at 1.5 peak PFLOPS. Each

compute node has two Sandy Bridge-based Intel Xeon CPU
E5-2670 2.60GHz and 32 GB memory. The cluster of com-
pute nodes is interconnected through FDR 14x InfiniBand
network with enhanced LX hypercube topology.

5.2 Speedup, efficiency, and laws

In parallel computing, speedup and efficiency are defined as
follows:

speedupψ(n, p) ≡ sequential execution time

parallel execution time

≤ σ(n) + ϕ(n)

σ (n) + ϕ(n)/p + κ(n, p)
(1)

efficiency ε(n, p) ≡ ψ(n, p)

p
(2)

where n is the problem size (number of particles), p is the
number of processors, σ(n) is the inherently serial portion of
computation, ϕ(n) is the parallelizable portion of computa-
tion, and κ is the overhead of parallelization (communication
operations plus redundant computation).

Gustafson–Barsis’s law The maximum speedup (also called
scaled speedup) ψ achievable by a parallel program is

ψ ≤ p + (1 − p)s, (3)

where s = σ(n)/(σ (n) + ϕ(n)/p) denotes the fraction of
time spent in the parallel computation performing inherently
sequential operations.

Karp–Flatt metric Given a parallel computation exhibiting
speedup ψ on p processors, the experimentally determined
serial fraction (EDSF) e can be computed by Eq. (4),

e = 1/ψ − 1/p

1 − 1/p
= p/ψ − 1

p − 1
. (4)

The EDSF e is defined as

e = σ(n) + p
p−1κ(n, p)

T (n, 1)
, (5)

where T (n, 1) denotes serial execution time using only one
processor. The EDSF is useful in detecting sources of effi-
ciency decrease.

5.3 MPI performance across multiple nodes

For sand pluviation of 12k particles, 1–8 compute nodes
are utilized and their wall clock time versus computational
progress curves are plotted in Fig. 9; for 150k particles, 32
and 64 nodes are used to complete the simulation within 24h
and plotted in Fig. 10a; for 1 million particles, 256 nodes are
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Fig. 9 MPI performance acrossmultiple nodes simulating 12k particles

requested to run within 24h and plotted in Fig. 10b. Note that
all of the times, including wall clock time and module execu-
tion times per step, are acquired using function MPI_Wtime
for a high-resolution measurement, as well as the “export
MPI_WTIME_IS_GLOBAL=1” option to ensure synchro-
nization across all processes.

From all the simulations of 2.5k, 12k, 150k, and 1 million
particles, it is observed that wall time versus computational
progress curves using different number of compute nodes
exhibit larger gaps,which is particularly clear inFig. 10a:The
32-node and 64-node curves overlap at the earlier stage of
simulationwhen interparticle contacts have not accumulated,

but deviate and keep increasing the gap at later simulation
stage when more interparticle contacts have developed.

5.3.1 Greater than 100% efficiency

Referring to Fig. 9, a dynamic simulation of 12k particles
on one node runs for approximately 44h, while a two-node
simulation runs for approximately 12h, four-node 8h, and
eight-node 6h. From Eq. (2), efficiencies for various number
of nodes are calculated precisely as follows:

ε(node = 2) = (44 × 60 + 12) min

2 × (11 × 60 + 27) min
= 193%

ε(node = 4) = (44 × 60 + 12) min

4 × (8 × 60 + 10) min
= 135%

ε(node = 6) = (44 × 60 + 12) min

6 × (6 × 60 + 37) min
= 111%

ε(node = 8) = (44 × 60 + 12) min

8 × (5 × 60 + 50) min
= 95%

(6)

Normally, 0 ≤ ε ≤ 1 while we see higher than 100%
efficiency here. It is not uncommon to achieve higher than
100% parallel efficiency for a small number of processors
for some types of problems [9,13].

5.3.2 Constraint on performance gain

Figure 11a plots the speedup and EDSF for a static sim-
ulation of 12k particles in terms of number of processors
(namely, evaluated relative to the single-processor perfor-
mance). For a problem of fixed size, the speedup of a parallel
computation typically increases while the efficiency typi-

Fig. 10 MPI performance of a large number of particles. a 150k particles and b 1 million particles
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Fig. 11 MPI speedup and EDSF of 12k particles. a In terms of number of processors/cores and b in terms of number of nodes

cally decreases, as the number of processors increases; this
is observed in Eq. (6). For the relatively small number of
processors (128) used in these tests, the speedup exhibits a
nonlinear relationship. MPI has achieved excellent speedup
in this test; for example, it achieves a speedup of 83 using 128
cores.

The EDSF is computed using Eq. (4) and plotted as well in
Fig. 11a. Firstly, it is seen that the EDSF e values are between
0.01 and 0.43%, which indicates a very low serial fraction.
Recall the Gustafson–Barsis’s law presented in Sect. 5.2,
ψ ≤ p+(1− p)s, inwhichwe let s = e, which actually over-
estimates the value of s. Using the data from 128 processors,
it is obtained that ψ ≤ 128 + (1 − 128) ∗ 0.43% = 127.45,
thus an excellent scaled speedup is achieved.

Secondly, it is shown that EDSF increases as the number of
processors increases. This provides an important indication:
The MPI performance gain is not constrained by inherently
sequential code, butmostly by parallel overhead,which could
be time spent in process start-up, communication, or syn-
chronization, or it could be an architectural constraint, as
stated by the book Parallel Programming in C with MPI and
OpenMP [17].

5.3.3 EDSF evaluation in terms of nodes

It is worth noting that if speedup and EDSF are evaluated in
terms of number of nodes (namely, relative to the single-node
performance), the curves exhibit different characteristics as
shown in Fig. 11b: Speedup decreases from a range of 1–80
in terms of processors to a range of 1–4 in terms of nodes;
EDSF increases from a range of 0.01–0.43 to 26.5–13.7%,
and it decreases as the number of compute nodes increases.
These data must be interpreted with caution.

It is not uncommon that the EDSF could decrease as the
number of compute processors/nodes increases. This was
pointed out by Karp and Flatt [13] using the data from the
work of the winners of the Gorden Bell Awards in 1987
(http://www.sc2000.org/bell/pastawrd.htm): All of the three
problems (Beam Stress Analysis, Surface Wave Simulation,
Unstable fluid flow model) reveal a significant reduction of
the EDSF using four to 1024 processors.

The interesting discrepancy results from granularity of
evaluation and can be analyzed from Eqs. (4) and (5). Firstly,
let us see why the EDSF values jump up in terms of node
number: From the right term of Eq. (4), (p/ψ − 1)(p −
1), p changes from 128 (processors) to eight (nodes) as an
example, while p/ψ does not change much, which is shown
by Fig. 12: p/ψ = 1/ε according to Eq. (2), and ε represents
efficiency.

Secondly, for a fixed problem size, the difference lies in
the term p/(p − 1) ∗ κ(n, p). As κ(n, p) is a decreasing
function of number of compute nodes, as pointed out later in
Sect. 6.3.1, the term p/(p− 1)∗ κ(n, p) must decrease with
an increasing number of nodes.

5.4 Iso-efficiency relation analysis of 3-D DEM

The execution time of a parallel program executing on p
processors is

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p), (7)

where n is the problem size (number of particles), p is the
number of processors, σ(n) is the inherently serial portion
of computation, ϕ(n) is the parallelizable portion of com-
putation, and κ is the overhead of parallelization (processor
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Fig. 12 MPI speedup and efficiency of 12k particles. a In terms of number of processors/cores and b in terms of number of nodes

communication and synchronization, plus redundant compu-
tations). The serial program does not have any interprocessor
communication or synchronization, so the execution time is

T (n, 1) = σ(n) + ϕ(n). (8)

In order to sustain the same level of efficiency as the num-
ber of processors p increases, problem size n must increase
to satisfy inequality (9),

T (n, 1) ≥ CTo(n, p), (9)

where To(n, p) = (p−1)σ (n)+ pκ(n, p), and C = ε/(1−
ε) is a constant related to efficiency ε. This is called the iso-
efficiency metric, which is used to determine the scalability
of a parallel system.

For 3-D DEM, supposing n is the number of particles and
p the number of processors used, we are able to derive the
iso-efficiency metric following the analysis by Michael [17].
Yan and Regueiro [33] pointed out: In both serial and parallel
computing of complex-shaped 3-D DEM, the O(n2) neigh-
bor search algorithm is inefficient at coarse CG; however,
it executes faster than the O(n) algorithm at fine CGs that
are mostly employed in computational practice. The practi-
cal time complexity of 3-D DEM falls between O(n2) and
O(n). Firstly, we let

T (n, 1) = O(n2),

and the time needed to perform communications which are
mostly through 2-D surface layers is

κ(n, p) =
(

3
√
n

3
√
p

)2

=
(
n

p

) 2
3

.

Now Eq. (9) gives

n2 ≥ Cp

(
3
√
n

3
√
p

)2

�⇒ n ≥ Cp
1
4 . (10)

The amount ofmemory needed to represent a problem of size
n isM(n) = n; then, the scalability function, which indicates
how the amount of memory used per processor must increase
as a function of p in order to maintain the same level of
efficiency, is calculated as follows:

M( f (p))

p
= Cp

1
4

p
= Cp− 3

4 . (11)

FromEq. (10), when the number of processors p increases
from 1 to 10,000, the number of particles n only needs to
increase ten times for maintaining the same efficiency; this
is easily satisfied in practical computations. Equation (11)
states that when the number of processors increases, the
memory requirement per processor decreases.

Secondly, we let

T (n, 1) = O(n),

and obtain

M( f (p))

p
= Cp

1
4

p
= C . (12)

Equation (12) states that when the number of processors
increases, the memory requirement per processor remains
constant. In both cases, a parallel system of 3-D DEM is
perfectly scalable, according to Michael [17]: “ A parallel
system is perfectly scalable if the same level of efficiency
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can be sustained as the number of processors are increased
by increasing the size of the problem being solved.” Overall,
the memory scalability function is a nonlinearly decreasing
function of the number of processors, which is an intrinsic
feature of 3-D DEM.

6 MPI profiling, overhead, and granularity of
3D DEM

6.1 MPI profiling

For each scale of number of particles (2.5k, 12k, 150k, 1M,
and 10M), various numbers of compute nodes are used to test
the speedup and efficiency in static simulations. In particular,
an excessive number of compute nodes may be employed for
the following purpose: (1) observe how the speedup and effi-
ciency respond to the increasing number of compute nodes;
(2) test whether there is an optimal computational granularity
(number of particles per process) for each scale.

6.1.1 Speedup and efficiency

Figure 13 plots the speedup and efficiency of the five scales,
each of which tests up to an excessive number of compute
nodes. For example, the 2.5k-particle test requests up to 128
nodes, which results in nearly one particle per process, and
the 150k-particle test requests up to 512 nodes, which results
in nearly 18 particles per process.

Of the five scales, it can be discovered that the excessive
number of compute nodes leads to a decrease in speedup,
although the speedup exhibits a nonlinear increase within the
range of adequate number of compute nodes. As an example,
the 150k-particle test achieves a speedup of 92 using 128
nodes while it achieves a speedup of 76 using 256 nodes.
It implies that for each scale of simulation, there must be
an optimization of computational resources, which we have
defined as computational granularity, namely the number of
particles per process.

With regard to efficiency, it can become very low if an
excessive number of compute nodes is used. For example, in
the 12k-particle test, the efficiency is 0.60 (60%) using eight
nodes and 0.07 (7%) using 128 nodes. Low efficiency means
low usage of computational resources and should be avoided
in parallel computing.

With adequate number of compute nodes, the speedup
exhibits a monotonically increasing relationship with respect
to the number of compute nodes at all scales, while the effi-
ciency exhibits a monotonically decreasing trend. On the
scale of 150k, 1M and 10M particles, higher-than-1 effi-
ciency is observed. The superlinear speedup is pronounced;
for example, the efficiency goes as high as 1.97 (197%) at
eight nodes in the 150k test; and 17.75 (1775%) at 32 nodes,

and 7.65 (765%) at 256 nodes in the 1 million particle test.
It is worth noting that for all of the one-node tests across the
five scales, thememory size is sufficiently adequate to satisfy
the computation and does not cause swap-out to hard drive.

As pointed out in Sect. 2.1, the DEM features a high
requirement onCPUfrequencies but exerts a low requirement
on memory usage. In Sect. 5.4, it is theoretically proved that
memory requirement per processor decreases when number
of processors and problem size increase to maintain the same
efficiency for 3-D DEM. Therefore, it may not be surprising
that the larger the simulation scale in terms of number of par-
ticles, the more pronounced superlinear speedup may occur,
because it becomes more likely that the process-partitioned
data fit into CPU caches. This strong superlinear speedup for
complex-shaped particle 3-DDEMcould be a common thing
and needs further investigation as a separate subject.

Figure 14a compiles all of the speedup data from static
simulations at the five different scales. A log–log graph is
plotted due to the wide range of problem size and number of
processors. The Amdahl effect is pronounced: Speedup is an
increasing function of the problem size for any fixed number
of processors.

Similarly, Fig. 14b plots the efficiency across the five dif-
ferent scales using a log–log graph. Large-scale simulations
such as 150k, 1M, and 10M particles exhibit high efficiency
above 1, while smaller scale simulations such as 2.5k and
12k particles show a lower-than-1 efficiency.

6.1.2 Module execution time and parallel overhead

Execution time of different modules is plotted with the
percentage of parallel overhead using adequate number of
compute nodes in Figures 15 and 16. Note that Fig. 16b uses
a logarithmic scale in wall time to distinguish between the
close curves shown in Fig. 16a. Each module is described
here again:

– commuT: communication time in step 3 (3-All processes
communicate with neighbors) of the flowchart in Fig. 4.

– migraT: migration time in step 12 (12-All processes
migrate particles) of the flowchart.

– compuT: numerical computation time, which equals
totalT-commuT-migraT.

– totalT: total time at each step.
– overhead%: (commuT+migraT)/totalT, i.e., the overall
parallel overhead percentage.

Note that the IO cost in 3-D DEM is very limited. As a
typical example, only 100 snapshots are taken for 5 million
time increments of 3-D DEM simulation. The synchroniza-
tion overhead is less than 0.1% of the commuT across all of
the simulation scales such that it is a negligible fraction of
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Fig. 13 Speedup and efficiency across orders of magnitude of simulation scale in terms of number of particles, a 2.5k particles, b 12k particles, c
150k particles, d 1 million particles, and e 10 million particles
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Fig. 14 Speedup and efficiency across orders ofmagnitude of simulation scale in terms of number of particles. a Speedup across orders ofmagnitude
simulation scale and b efficiency across orders of magnitude of simulation scale

Fig. 15 MPI profiling on modules for 12k and 150k particles. a 12k particles and b 150k particles

overall parallel coverhead, of which the communication cost
dominates.

Firstly, the ratio of migration time to communication time
is as low as 1–6% across all simulation scales. This makes
sense because there are no particles migrating across borders
in static simulations, although step 12 must be executed and
thus spends a very small fraction of time. Note that this ratio
remains low even if it is evaluated in a dynamic simulation
because use of the adaptive compute gridsminimizes particle
migration across borders.

Since step 3 (3-All processes communicate with neigh-
bors) and step 12 (12-All processes migrate particles) of the

flowchart employ the same design and implementation with
different layer definitions, as shown in Sects. 4.3 and 4.4, it
can be approximately deduced that the actual interprocess
communication spends about 95% of the overall communi-
cation overhead while the additional/redundant computation
needed for the communication only takes about 5%.

Secondly, as the number of compute nodes increases, both
the computation time and communication time (thus the total
time) decrease, and the decrease rates are high at the very
beginning and slow down later for a fixed problem size.
This is the goal and anticipation from parallel computing. In
addition, the communication time remains a small fraction
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Fig. 16 MPI profiling on modules for 1 million particles. a 1 million particles and b 1 million particles, wall time in logarithmic scale

relative to the computation time. That the communication
time decreases with increasing number of compute nodes is
of particular interest and will be discussed in Sect. 6.3.

Thirdly, the parallel overhead consumes a low fraction of
the wall time. On the scale of 12k particles, it stays as high as
between 11–21% using 2–8 nodes; on the 150k particles, it
ranges between 2.9–16.8% using 2–64 nodes; on the 1 mil-
lion particles, it ranges between 0.2% to nearly 14% when
the number of nodes increases from 2 to 256. Overall, the
parallel overhead percentage is nearly 10% for static simula-
tions when an optimal number of compute nodes is used for
computation. Considering that six steps are added in order
to parallelize the code, as described in Sect. 4.2, the overall
parallel overhead (communication operations plus redundant
computations) is low and acceptable.

Figure 17depicts the log–log relationship betweenmodule
time and parallel overhead for 1 million particles using 1–
1024 compute nodes excessively. In particular, a curve fitting
is performed for the total execution time per step and parallel
overhead percentage. It is seen that the relationship between
the total execution time per step and number of nodes can be
described in the form of a negative power function,

T (n, p) = O(p−k), (13)

where p is the number of nodes and k is a number greater
than 1. The relationship between the parallel overhead per-
centage and number of nodes can be described in the form
of a logarithmic function,

overhead% = O(logp). (14)

T (n, p) decreases quickly and overhead% increases slowly
when p increases.

Fig. 17 MPIprofilingonmodules for 1millionparticles using excessive
number of nodes

6.2 Computational granularity (CG) in MPI mode

Figure 18 plots thewall clock time versus number of particles
per MPI process on different computational scales such that
it is able to read the optimal computational granularity. Due
to the wide range of number of particles and wall clock time
per step, a log–log graph has to be used.

Overall, as the number of compute nodes increases and
thus the number of particles per process decreases, the wall
clock time decreases, which indicates that a smaller compu-
tational granularity leads to faster computation for a fixed
problem size. However, it can be observed that the wall
time starts to increase when an excessive number of com-
pute nodes is used and thus the computational granularity
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Fig. 18 Computational granularity for various scales of simulation

becomes too small. This occurs for all of the five scales:
2.5k, 12k, 150, 1M, and 10M particles.

Although the speedup can keep increasing and thus wall
clock time can keep decreasing until an extremely excessive
number of compute nodes is used and thus leads to a speedup
decrease and wall clock time increase eventually, the reason-
able amount of computational resource (number of compute
nodes) usually should not be requested too aggressively in
performing practical computational tasks. For example, the

150k-particle simulation achieves a speedup of 74.6 (27.3 s
per step) using 64 nodes, and 92.3 (25.3 s per step) using 128
nodes; then requesting 64 nodes may be a better choice than
requesting 128 nodes.

As a guideline, the optimal computational granularity
(CG), which can be estimated before submitting a job on
supercomputers, is recommended in Table 1.

6.3 Communication time and parallel overhead
versus number of nodes

Figure 19 depicts the computation time per step versus num-
ber of compute nodes across five orders of magnitude of
simulation scale. For each fixed problem size (simulation
scale), the computation time decreases with an increasing
number of compute nodes; this is in response to the term
ϕ(n)/p in Eq. (2), wherein ϕ(n) is the parallelizable portion
of computation, n is the problem size, and p is the number of
processors. For a larger problem size, the computation time
increases.

6.3.1 Communication feature of 3-D DEM

Figure 20 plots the communication time per step versus num-
ber of compute nodes across five orders of magnitude of
simulation scale. For each fixed problem size (simulation
scale), the communication time decreases with an increas-
ing number of compute nodes; this is in response to the term

Table 1 Optimal computational
granularities

# of particles 1k 10k 100k 1 million 10 million

Optimal CG 20–50 50–100 100–300 200–500 5k–10k

Fig. 19 Computation time across orders of magnitude of simulation scale. a Logarithmic scale and b log–log scale
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Fig. 20 Communication time across orders of magnitude of simulation scale. a Logarithmic scale and b log–log scale

κ(n, p) in Eq. (2), wherein κ(n, p) denotes the time required
for parallel overhead. The communication time increases as
the problem size increases.

It is interesting to see that κ(n, p) is a decreasing function
of p, the number of nodes/processors for 3-D DEM. It is
known that κ(n, p) is an increasing function of p for many
problems in parallel computing. Why does the 3-D DEM
exhibit such a different feature?

It canbe attributed to the inherently complicated 3-DDEM
model.When an ellipsoidal particle is transmitted through the
border/ghost layer or migration layer of a link-block using
MPI, all the information of the particle needs to be trans-
mitted: particle ID, particle type, density, Young’s modulus,
Poisson’s ratio, current and previous position, current and
previous orientation, current and previous translational and
rotational velocities, current and previous force and moment
(note a history-dependentMindlin’s shear model is adopted).
This amounts to 624 bytes in the C++ class for each particle.
As a comparison, a computational cell in a 3-D CFD (Com-
putational Fluid Dynamics) solver for the Euler equations
only needs to transmit five variables (density, three velocities,
and energy), which amounts to 40 bytes in a C++ class. Put
simply, the 3-D DEM inherently involves much larger MPI
transmission volume than many other problems and poses a
high bandwidth requirement between compute nodes.

For a problem of fixed size, the communication volume
(MPI message transmission size) becomes smaller, while the
communication times (how many times that MPI transmis-
sion initiates and finalizes) become larger, when the number
of compute nodes increases and thus the communication
granularity decreases. The parallelism of 3-D DEM enables

the use of smaller communication granularity on the grounds
of its largeMPI transmission volume, and that is why the 3-D
DEM achieves less communication time using more com-
putational resources, as long as the latency of interconnect
between compute nodes is low.

6.3.2 Percentage of parallel overhead

Figure 21 plots the parallel overhead percentage versus
number of compute nodes across five orders of magni-
tude of simulation scale using a log–log graph. For each
fixed problem size (simulation scale), the parallel overhead
percentage increases with an increasing number of com-
pute nodes. It means that computation time decreases faster
than the communication time when the number of compute
nodes increases and the computational granularity decreases
accordingly. Thismakes sense because computation executes
in 3-D spacewhile communicationoccurs in 2-D space, refer-
ring to the link-block concept described in Sect. 4.1.

The parallel overhead percentage is

overhead% = κ(n, p)

σ (n) + ϕ(n)/p
≈ pκ(n, p)

ϕ(n)
, (15)

where n is a constant for a fixed problem size and κ(n, p) is
a decreasing function of p. σ(n) is negligible in the parallel
DEM, as pointed out in Sect. 5.2. Therefore, pκ(n, p) turns
out to be an increasing functionof p aswell as the overhead%.

As pointed out by Eq. (14), the parallel overhead percent-
age has a time complexity O(log p), then κ(n, p) should
have the following time complexity,
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Fig. 21 Parallel overhead across orders of magnitude of simulation scale. a Linear scale and b logarithmic scale

κ(n, p) = O

(
log p

p

)
. (16)

6.4 Communication time and parallel overhead
versus problem size (simulation scale)

Figure 22 plots the computation time, communication time,
and parallel overhead percentage with respect to the problem
size (number of particles) using various number of compute
nodes. For each fixed number of compute nodes, both the
computation time and communication time increase with an
increasing problem size, and it can be observed that the for-
mer increases faster than the latter, which actually leads to the
parallel overhead percentage decreasing with an increasing
problem size. This is also attributed to the fact that compu-
tation executes in 3-D space while communication occurs in
2-D space.

Fitting these curves exhibits the following equations:

κ(n, p) = O(nk1), 0 < k1 < 1 (17)

ϕ(n)/p = O(nk2), 0 < k2 < 1 (18)

k1 < k2 (19)

overhead% = O(n−k3), 0 < k3 < 1 (20)

where n denotes the problem size.
Applying Eq. (15) again, it is obtained that

k1 = k2 − k3. (21)

As an example, fitting the curves for 32 compute nodes
acquires the following values:

k1 = 0.42, k2 = 0.97, k3 = 0.52

which satisfies Eq. (21) approximately.
In summary, the execution time, communication time, and

parallel overhead percentage have time complexities with
regard to the number of compute nodes p and the number of
particles n as shown in Table 2.

7 Summary

Parallel computing for 3-D DEM of complex-shaped granu-
lar materials is designed and implemented in C++ following
Foster’s four-stepmethodology, with the presentation of con-
cepts of link-block, ghost/border layer, andmigration layer. It
features negligible serial fraction and low parallel overhead
when executing on modern multiprocessing supercomput-
ers.

The parallel code is heavily tested with dynamic and
static DEM simulations across a wide order of magnitude
of scales in terms of number of particles, on DoD HPC
supercomputers, and it achieves outstanding performance
gain and computational efficiency. In particular, along with
the derivation of theoretical scalability function, it exhibits
an inherently perfect scalability numerically and indicates
a great potential for simulating large-scale DEM problems
with complex-shaped particles.

The time complexity of execution time, communication
time and parallel overhead percentage of complex-shaped 3-
DDEMare formulatedwith regard to the number of compute
nodes (computational resource) and the number of parti-
cles (computational scale). It is particularly important to
discover that communication time is a decreasing function
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Fig. 22 Execution time and overhead across orders of magnitude of simulation scale. a Computation time (log), b computation time (log–log), c
communication time (log), d communication time (log–log), and e parallel overhead percentage
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Table 2 Time complexity of
complex-shaped 3-D DEM

p (# of compute nodes) n (# of particles)

Wall clock time T (n, p) O(p−k) O(nk2)

Communication time κ(n, p) O
(
log p

p

)
O(nk1)

Parallel overhead(%) O(log p) O(n−k3)

of the number of compute nodes. The optimal computa-
tional granularities (CG) across five orders of magnitude
of simulation scale are given as a guideline for the paral-
lel computing of complex-shaped 3-D DEM. These days,
DEMresearchers are still struggling in simulating a few thou-
sand complex-shaped particles, whereas we have advanced
the scale to 10 million and used them for simulations such
as gravitational deposition and buried explosion in sandy
soils for a DoD project successfully. All of these details and
progress should be able to provide a useful guide for future
complex-shaped particle 3-D DEM development and appli-
cations.
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