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Abstract The rheological properties of granularmatter sub-
mitted to torsional shear are investigated numerically by
means of discrete element method. The shear cell is made of
a cylinder filled by grains which are sheared by a bumpy bot-
tom and submitted to a vertical pressure which is applied at
the top. Regimes differing by their strain localization features
are observed. They originate from the competition between
dissipation at the sidewalls and dissipation in the bulk of the
system. The effects of the (i) the applied pressure, (ii) side-
wall friction, and (iii) angular velocity are investigated. A
model, based on the purely local μ(I )-rheology and a mini-
mum energy principle is able to capture the effect of the two
former quantities but unable to account the effect of the lat-
ter. Although, an ad hoc modification of the model allows to
reproduce all the numerical results, our results point out the
need for an alternative rheology.

Keywords Granular flow · Torsional shear flow · Shear
localization · Discrete element method · Minimum energy
principle

1 Introduction

The rheology of granular materials is relevant to many indus-
trials applications (grain transport and storage) and to natural
events (avalanches, mudslides…). Several geometries have
been used to probe the rheology of granular systems (inclined
plane, shear cell, confinedgravity-drivenflows…)but, the full
description of 3D flows remains challenging.
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In this work we present discrete element simulations of
a wall-bounded three-dimensional dense granular flow. The
flowconfiguration studied in this paper,which can be referred
as torsional shear flow, is a rather classical one in rheometry,
whichwas rarely used for studying granularmaterials. It con-
sists in a cylindrical geometry filled by the studied system,
where the bottom wall rotates and the upper and cylindri-
cal wall are fixed. In this work the flow is at fixed normal
stress, i.e., the upper wall is free to move vertically under
the action of the imposed normal force and the reaction of
the particles contained in the cylinder. This configuration is
interesting because simple velocity profileswere obtained for
viscous and viscoelastic fluids, and therefore it is tempting to
consider it as a granular rheometer. On the other hand, sec-
ondary flows were already observed for newtonian fluids in
this geometry, and it is therefore interesting to see if they can
develop also for granular flows. As it will be clear in the fol-
lowing, this configuration displays shear localization. Shear
localization is a fundamental property of granular systems.
Examples of configurations displaying such a phenomenon
are the vertical chute flow [1–3], the cylindrical Couette cell
[4], and the different types of split-bottom shear cells [5–9].
Such configurations are an important benchmark for granu-
lar flow modeling, and are therefore precious for evaluating
the performance of the different rheologies proposed in the
Literature. A large body of work in the last decade has been
devoted to the so-called μ(I ) rheology [4,10]. While this
rheology seems to work well (and should be probably bet-
ter referred to) as an empirical, macroscopic scaling law, its
colinear extension to 3D [11] was shown to have some draw-
backs for complex flows, particularly when approaching the
quasistatic regime of flow [6,12,13]. These problems seem to
be related to the local nature of the μ(I ) rheology and moti-
vated research on nonlocal models of granular flows such as
fluidity-basedmodels [14–17] andmodels inspired by kinetic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-016-0143-2&domain=pdf
http://orcid.org/0000-0001-9757-4489


4 Comp. Part. Mech. (2018) 5:3–12

theories [18–20]. Themain objective of this work is therefore
to characterize the granular flow in such a configuration and
to discuss a simple modeling. So, a particular focus will be
given on the kinematics of the flow and on the flow regimes
as a function of the main system parameters.
The outline of this paper is the following.Webegin this article
with a brief description of the flow configuration and of the
numerical methods used (Sect. 2). We then report in Sect. 3
the velocity profiles obtained under several conditions. Sec-
tion 4 is devoted to the exploitation of the data and investigate
how they canbemodeled. Finallywepresent our conclusions.

2 Flow configuration and simulation method

Numerical simulations are performed using the nonsmooth
contact dynamics method [21], as implemented in the
LMGC90 open source framework [22].

As already introduced, the torsional shear flow configu-
ration (sketched in Fig. 1) is a cylinder (radius R = 12d,
variable height H ) filled with a granular material, where the
bottom boundary is rotating, while a normal force is applied
by the top wall. The top and bottom walls are bumpy, while
the cylindrical wall is smooth but frictional. Gravity acts
on the system along z. The top wall cannot move on the
x- and y- directions but is free to move in the z-direction,
simply according to the balance between its weight, the
externally applied force and the force exerted by the grains.
Simulationswere performedwith N = 10, 000 slightly poly-
disperse spheres (uniform number distribution in the range
0.9d − 1.1d) interacting through perfectly inelastic colli-
sions and Coulomb friction (μp = 0.5). Each bumpy wall
was composed of 100 spheres with the same properties of the
particles. The coefficient of restitutionhas nearly no influence
on dense granular flows due to the presence of enduring con-
tacts [23]. Consequently, we chose perfectly inelastic grains
to maximize dissipation and thus save computation time.

Ω
Fig. 1 Sketch of the torsional flow configuration. Grains fill a cylindri-
cal vessel with smooth but frictional sidewalls. The bottom and upper
walls are made bumpy by gluing grains on their surfaces. A vertical
force Fz is applied to the latter wall which is free to move vertically
according to the applied forces. On the contrary, the former wall only
rotates at an angular velocity Ω

Interactions of particleswith the flatwalls were also perfectly
inelastic and frictional (with a coefficient of friction μpw).

We performed several simulations varying the angular
velocity of the bottom bumpy wall Ω , the force applied
to the upper bumpy wall Fz, and the particle wall fric-
tion coefficient μpw. The first two parameters can be made
dimensionless for example by considering a particle Froude
number Ω̃ = ΩR/

√
gd and the ratio between the total

force mass exerted by the top wall and the weight of the
grains, F̃ = Mg+Fz

Nmg where m is the average particle mass,
and M = 100m is the mass of the top wall. In particu-
lar, the investigated ranges correspond to μpw = 0 − 0.3,
Ω̃ = 0.12 − 2.4, F̃ = 0.2 − 100. We did not perform
everypossible permutationof the three variables butwechose
some representative sets of the couple (Ω̃, F̃) and varied the
wall friction coefficient for each set. Table 1 resumes the
sets chosen. In order to understand to which flow regime our
simulations belong to, it is useful to introduce a dimension-
less number, the inertial number, defined as I = γ̇ d/

√
p/ρ

[4,10], where γ̇ is the shear rate and p is a pressure, while
ρ is particle density. However, in our simulations the shear
rate is an increasing function of the radial coordinate, so will
be the inertial number. Shear localization and the presence
of stress profiles will also induce z variation of I . In order to
compare simulation sets we therefore define a characteristic
inertial number Ic by considering the average shear rate at
r = R, ΩR/H , and the theoretical pressure at mid-height,
(F̃ + 1/2)Nmg/(πR2). Ic may give a coarse estimate of the
expected maximum value of I for each set. From Table 1
we can conclude that our simulations lie in a range of inertial
number from 0 (for r = 0) to 10−1, which corresponds to the
quasistatic and dense regimes of flow. Set 6 in Table 1 was
explicitly chosen because, if the behavior of the system was
described by this characteristic inertial number, decreasing
the rotational velocity by one order of magnitude should be
the same as increasing the pressure by two orders of magni-
tude (i.e., set 1 would behave like set 6).

Table 1 Sets of Ω̃ and F̃ used
in the simulations

Set Ω̃ F̃ Ic

1 0.12 0.2 2 × 10−3

2 0.24 0.2 4 × 10−3

3 1.2 0.2 2 × 10−2

4 2.4 0.2 4 × 10−2

5 1.2 8 6 × 10−3

6 1.2 100 2 × 10−3

For each set the wall friction
coefficient was varied in the
range μpw = 0 − 0.3. The last
column displays an estimate of
the global inertial number for
each set
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In the contact dynamicsmethod, the choice of the time step
is not related to the elasticity of the particles but to the other
characteristic times of the system. Three characteristic times
may be defined: the characteristic time related to gravity,√
d/g, the characteristic time related to particle velocities,

d/V , and the characteristic time related to pressure, d√
p/ρp

where ρp = 6m
πd3

is the particle density. The time stepmust be
chosen smaller than such characteristic times. For estimating
the extremal values of the characteristic times we considered
the maximum expected velocity of the particles (ΩR) and

the pressure at the bottom wall ( (F̃+1)Nmg
πR2 ). Given that our

simulations were performed in the dense regime of flow, the
characteristic time related to pressure is the controlling one
and spans in the range 2 × 10−2−−2 × 10−1. The time step
was therefore chosen as Δt = 2 × 10−4 for all the simula-
tions. Each simulation was performed in parallel (OpenMP)
on four cores (2.7Ghz) for approximately 30 days. The time
needed for reaching a stationary state (determined by the
kinetic energy evolution) was nearly independent on system
parameters, and we found Tss ≈ 10

√
d/g. The convergence

rate was lower when increasing pressure and when decreas-
ing the velocity, given that the relative number of long lasting
contacts was higher in those cases.

Averaging method An averaging technique is needed to
obtain estimates of continuum-like variables such as velocity,
solid fraction, stresses from their discrete counterparts. Sev-
eral frameworks have been proposed in the literature [24–28];
recent works have highlighted the effect of the coarse-
graining length [29] and the subtleties behind the calculation
of kinetic terms [28]. In this work, we report results on
azimuthal velocity profiles. In order to compute such pro-
files, several snapshots of particle positions and velocities
were extracted from the simulations at different times. Due
to the axial symmetry of the flow geometry, averages were
computed with respect to a grid in the (r , z)-plane; for each
grid point the average velocity was computed by the space–
time weighted average [25,28] :

v(x, t) =
∫ ∞
−∞

∑
p wpm pvpdt ′

∫ ∞
−∞

∑
p wpm pdt ′

, (1)

wheremp and vp are respectively themass and velocity of
particle p, andwp = w( xp x, t ′ − t) is a weighting function.
As for the latter, due to the existence of a stationary state,
the time average was performed as a simple average of the
space-weighted averages; for space averaging, on the other
hand, a Heaviside step function around the grid point with
diameter equal to one particle diameter was chosen. This
corresponds to performing averages on toroidal volumes. A
similar averaging procedure was already discussed by [30].
When dealing with such a complex averaging domain, it is

important to remember that the mass is not evenly distributed
in the radial dimension: therefore the average velocity has to
be referred not to center of the torus but to its gyration radius.

3 Results

In the following we will focus on the kinematics displayed
by the torsional shear cell, and in particular we attempt a
characterization of the shear localization features of this flow
configuration. A full characterisation of the system in terms
of the other variables (stresses, fluctuating energy balance,
wall fields) will be given elsewhere. It has to be noted that an
analysis of wall friction and wall slip in a similar geometry
has recently appeared [31].

Autosimilarity of the profiles Figure 2 displays velocity pro-
files along z for different values of the distance from the
axis of symmetry r , for the reference case μpw = 0.3,
Ω̃ = 1.2, F̃ = 0.2. As expected, due to the torsional motion,
the azimuthal velocity of the grains depends on r . However,
when rescaled by the azimuthal velocity of the bottom wall
for the same r , which is Ωr , velocity profiles nearly col-
lapse on the same curve, which corresponds to a localization
near the bottom wall, and an exponential decay. From the
bottom inset of Fig. 2 we can see that the velocity profile,
when rescaled by Ωr , indeed displays a small dependence
on r , due to the fact that the cylindrical wall slightly slows
down the particles. In particular, the shear bandwidth slightly
decreases with r near the cylindrical wall. This effect is how-
ever quite small and decreases when decreasing wall friction
(not shown).We can therefore conclude that velocity profiles
are nearly autosimilar with respect to r and can be written as
vθ (z) = Ωr f (z), where f (z) is a similarity function.

Effect of wall friction Figure 3 shows the effect of the wall
friction coefficient (between flowing particles and the cylin-
drical wall) on the flow profiles, for Ω̃ = 1.2, F̃ = 0.2. For
the sake of simplicity, due to the nearly autosimilarity of the
profiles, the profiles displayed in the Figure correspond to
the average of the rescaled velocity profiles, vθ/Ωr . As said
above, profiles display shear localization with an exponential
decay. However, the localization pattern depends strongly on
wall friction. For zero to low values of the wall friction coef-
ficient, shear is localized near the top wall, while for strong
friction shear is localized near the bottom wall. For interme-
diate values of the wall friction coefficient, a more uniform
velocity profile prevails. It can be shown that the velocity
profile is a combination of exponentials, of the form

vθ = Ωr
αz/d−H/d − βH/d−z/d

αz0/d−H/d − βH/d−z0/d
, (2)
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Fig. 2 Azimuthal velocity profiles for different r values, for the ref-
erence case μpw = 0.3, Ω̃ = 1.2, F̃ = 0.2. Insets (top) line–log plot
displaying exponential profiles, (bottom) normalized velocity profiles.
Velocity profiles are exponential and autosimilar

Fig. 3 Average normalized azimuthal velocity profiles as a function
of wall friction, for Ω̃ = 1.2, F̃ = 0.2, and different values of the wall
friction coefficient: μpw = 0, 0.1, 0.13, 0.15, 0.2, 0.3

where α and β are dimensionless parameters. Note that
0 < α, β < 1; z0 is needed for fitting because the velocity
profilemay equalΩr slightly above the bottomwall position.
z0 is of order of half a particle diameter. The change in the
localization pattern with wall friction was already discussed
in a similar geometry [31], and remains an interesting aspect
which needs to be explained.

Effect of confining pressure Figure 4 shows the effect of
the normal force applied to the top wall on the flow pro-
files, for Ω̃ = 1.2, and three different values of the wall
friction coefficient. As the wall friction coefficient, confine-
ment pressure has a strong effect on velocity profiles: for
negligible wall friction, increasing the normal force widens

Fig. 4 Average normalized azimuthal velocity profiles as a function
of applied pressure, for Ω̃ = 1.2, and three different values of the wall
friction coefficient, and three different values of the force applied to
the top wall : F̃ = 0.2 (solid lines), F̃ = 8 (dashed lines), F̃ = 100
(dot-dashed lines)

the top localized shear band. We can imagine that for very
large confinement pressures and no wall friction the veloc-
ity profiles will become linear. On the other hand, for larger
values of the wall friction coefficient, increasing the normal
force induces a strengthening of the bottom localization pat-
tern with a decrease in the shear band width. Similarly, [6]
reported a decrease in the shear band width when increasing
gravity in a split-bottom cell.

Effect of angular velocity Figure 5 shows the effect of the
rotating velocity of the bottom wall on the flow profiles, for
F̃ = 0.2, and three different values of the wall friction coeffi-
cient. Surprisingly, in the range of velocities considered here,
the driving speed has little effect on the shape of velocity pro-
files. This is a feature common to other granular flows, such as
for example the vertical chute flow [1–3], where the shape of
the velocity profile does not depend onflowrate. [32] reported
numerical simulations for a 2d annular Couette cell display-
ing constant shear band width in the quasistatic limit and
increasing shear band width when approaching the inertial
regime. Given the nature of our configuration and the range
of I studied, nearly all the flow is in the quasistatic regime,
so this is probably the reason for the independence of the
velocity profiles on the angular velocity. On the other hand,
[9] solved the μ(I ) rheology for the split-bottom cell with
free surface and found that the theory predicted an increas-
ing shear band width. This has not been tested against data
to our knowledge, so it is difficult to judge about a possi-
ble contradiction, especially considering that our geometry
is different inmany aspects from Jop’s one. There’s definitely
a strong need for investigation on the effect of velocity on
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Fig. 5 Average normalized azimuthal velocity profiles as a function
of angular velocity of the bottom wall, for F̃ = 0.2, and three different
values of the wall friction coefficient

shear bands in many flow configurations, in view of the fact
that shear bands are an important benchmark for granular
flow theories.

It is useful at this point to resume themain results obtained
from the simulations. For the range of parameters considered,
we have found:

– nearly autosimilar and rate independent azimuthal veloc-
ity profiles: vθ/Ωr = f (z) seems to depend only slightly
on r and Ω .

– for low friction and lowpressure, velocity profiles display
a plug flow with shear localization near the top wall

– for high friction, velocity profiles display shear localiza-
tion near the bottomwall, with the development of a creep
zone far from the shear band.

– for negligible friction and high pressure we seem to tend
to a fully sheared situation.

A tentative sketch of the regimes of our system as a function
of F̃ andμpw is given inFig. 6.Amore complete parametrical
study has to be performed in order to explore the limits of
such a regime map, and to characterize the transition zones
in detail. In the following we will try to see if a modeling
framework based on simple rheological considerations and a
least effort principle can predict the behaviors listed above.

4 Modeling

In the previous section we discussed numerical results con-
cerning the torsional shear flow of granular materials, with
a particular focus on the effect of wall friction, confining
pressure, and driving velocity. Results are interesting and

Fig. 6 Hypothetical flow regime map as can be drawn from present
results

provide a valuable benchmark for granular flow models. A
simple approach would be to solve the momentum balance
equations with the μ(I ) rheology [9,33]. Here we prefer to
adopt a more robust model, employing some of the infor-
mation coming from the μ(I ) rheology, but in the form
of a minimum energy principle. This is also motivated by
the fact that, as shown recently in a similar geometry [31],
boundary conditions for the velocity field and wall stresses
can be tricky for the smooth wall. It should be pointed out
here that our aim is to derive a model capable to repro-
duce qualitatively our numerical results and thus identify the
physical mechanisms which explain the different observed
regimes.

The rate of work transferred to the system by the rotat-
ing bottom wall can be divided in two contributions: (1)
the power needed to shear the material in the bulk, and
(2) the power needed to let the material slip at the cylin-
der wall. The first term, which corresponds to the so-called
“stress power” in fluid mechanics, is given, per unit vol-
ume, by Pbulk = σijeij, which is the contracted product
of the stress tensor σi j and the rate of deformation tensor
eij = 0.5(vi,j +vj,i). We briefly recall that using the classical
decomposition σij = −pδij + τij, where δij is the Kronecker
delta, p = 1/3σii the pressure, τij the deviatoric stress ten-
sor, the stress power becomes Pbulk = τijeij − pekk, and
that the second term disappears for isochoric motion. If, for
the purpose of deriving a minimum energy principle, we
assume colinearity of the stress-rate of strain relationship,
the stress power is simply given by Pbulk = |τ | |γ̇ |, where
|τ | = √

0.5(τijτij) is the norm of the deviatoric stress tensor,
and |γ̇ | = √

2(eijeij) is the shear rate as defined by Bird [34].
Let’s assume a simple scaling for stresses in granular flow,
i.e., the μ(I ) scaling [4,10]. This scaling law states that the
shear stress is proportional to the pressure via a dimension-
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less quantity μ, which is a function of the already discussed
inertial number I :

‖τ‖
p

= μ(I ) = μ0 + bI, (3)

whereμ0 andb arematerial constants. Introducing such an
expression,we obtain that the local, bulk stress power per unit
volume is Pbulk = μ(I )p |γ̇ |. Note that this scaling is purely
local: it correlates the stress at a given position to the shear
rate at the same position. Consequently, it cannot capture
the cooperative effects that prevail to describe the behavior
of granular materials in quasistatic flowing zones for which
the bulk stress/strain-rate behavior appears to vary with the
macroscopic geometry. As regards the second contribution
to the total power, it is straightforward to see that the rate of
work required to maintain steady slip at the cylindrical wall
per unit surface is given by Pwall = μwσrrvslip, whereμw is a
wall friction coefficient and vslip is the local slip velocity. If,
for the sake of simplicity, we hypothesize zero normal stress
difference, all the three normal stresses are equal, i.e., σrr =
σθθ = σzz = p, this term becomes Pwall = μwpvslip. Under
the assumptions detailed above, the total power transferred
to the system is therefore given by the sum of the two terms
respectively integrated on the volume and the wall surface,
that is

Ptot = Pbulk + Pwall

=
∫

μ(I )p |γ̇ | dV +
∫

μw pvslipdS. (4)

We will close our model by making the assumption that
the system selects the velocity profilewhich requires the least
total power [7,35]. The relevance of a least effort princi-
ple can be measured by the following reasoning. Due to the
presence of gravity, stresses are expected to increase with
depth, and therefore Pbulk is higher when shear is localized
at the bottom. On the other hand, Pwall is higher if shear is
localized near the top wall, because the plug flow zone con-
tributes largely to the power needed to let particles slide at
the wall, given that nearly all the particles at the wall slip
with a large velocity. Changing the system parameters may
change the relative balance of the two terms and therefore
the shear localization pattern.

Let’s try to develop the terms in Eq. 4. Numerical data
showed that velocity profiles were nearly autosimilar. It is
easy to show that, if vθ (r) is linear, the rate of deformation
tensor has only one nonnegligible component, eθ z = ezθ .
The shear rate therefore reduces to |γ̇ | = ∂zvθ = Ωr

∣
∣ f ′(z)

∣
∣,

where f (z) = vθ/(Ωr) is the similarity function defined in
Sect. 3. We assume that the pressure profile is a hydrostatic
one: p(z) = pH −ρg(z−H), where pH = (Mg+Fy)/S =
F̃ Nmg/S is the pressure applied by the top wall.

Considering that F̃ = pH S
Nmg , and defining the dimension-

less total power asP ′ = Ptot/(πR3HρgΩ), it can be shown
that the latter is given by:

P ′ = 2μw

H

R
Φ1 + 2

3
μ0Φ2 + 1

2
bΩ̃

(
d

H

)3/2

Φ3, (5)

where Φ1,Φ2, and Φ3 are three dimensionless functions
which are given by:

Φ1 = 1

H

∫ H

0

(
F̃ + 1 − z

H

)
f (z)dz, (6)

Φ2 =
∫ H

0

(
F̃ + 1 − z

H

) ∣
∣ f ′(z)

∣
∣ dz, (7)

Φ3 = H
∫ H

0

√

F̃ + 1 − z

H

∣
∣ f ′(z)

∣
∣2 dz. (8)

In the expression given above, one can respectively iden-
tify three terms: the wall friction, the static (yield stress), and
the dynamic contribution. It is easy to see that the dimension-
less power depends on 3 dimensionless material parameters,
μ0, μw, and b, on 3 system-dependent dimensionless num-
bers: F̃ , H/R, Ω̃ (d/H)3/2, and on the shape of the velocity
profile given by the dimensionless similarity function. For the
fitting proposed above for f (z), this means that P ′ depends
on α and β. The least effort principle corresponds then to
the assumption that the system selects the shear band width
and the localization pattern (i.e., the values of α and β) that
require the least effort. Given its nature of correcting para-
meter, the parameter z0 can be neglected in this optimization
procedure. In practice, having assumed a value for the para-
meters of the μ(I ) scaling, we numerically computed the
integrals Φ1, Φ2, and Φ3 and determined the values of α and
β which minimized the power. In the following we assume
μ0 = 0.42 and b = 2. which are compatible with the litera-
ture about the μ(I ) scaling.

Effect of wall friction Figure 7 displays profiles of the
normalized azimuthal velocity profile (i.e., the similarity
function f (z)) obtained with the optimization procedure for
Ω̃ = 1.2, F̃ = 0.2, and the same values of the wall friction
coefficient as in Fig. 3. It is clear that the model is effective in
predicting the effect of wall friction on the velocity profiles,
with a prevalence of top localization for low friction and of
bottom localization for high friction, passing through a more
uniform velocity profile for intermediate friction.

Effect of confining pressure Figure 8, when compared to
Fig. 4 shows how also the effect of pressure is well captured
by themodel: increasing pressure has the effect of decreasing
the shear band width for sufficiently high friction, while it
increases the shear bandwidth for negligible friction, tending
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Fig. 7 Average normalized azimuthal velocity profiles as predicted
by the minimum energy technique as a function of wall friction, for
Ω̃ = 1.2, F̃ = 0.2, and different values of the wall friction coefficient:
μw = 0, 0.1, 0.13, 0.15, 0.2, 0.3
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Fig. 8 Average normalized azimuthal velocity profiles as predicted by
the minimum energy technique as a function of confining pressure, for
Ω̃ = 1.2, three different values of the wall friction coefficient, and three
different values of the force applied to the top wall : F̃ = 0.2 (solid
lines), F̃ = 8 (dashed lines), F̃ = 100 (dot-dashed lines)

towards a fully sheared situation. Such a tendency is justi-
fied by the fact that for low friction Pwall is negligible and
only Pbulk determines the shear localization pattern. If the
confining pressure is very large, there is nearly no pressure
profile along z, and therefore no reason for shear localization.
Therefore the basic ideas behind the μ(I ) scaling, coupled
with a minimum energy principle, are able to account for the
dependence of shear localization on wall friction and confin-
ing pressure.

Effect of rotating velocity It is tempting to see if the method
predicts also the slight effect produced by the driving speed

0 5 10 15 20

z/dp

0.0

0.2

0.4

0.6

0.8

1.0

v
/Ω

r[
−]

Ω̃ = 0.12
Ω̃ = 2.4

Fig. 9 Average normalized azimuthal velocity profiles as predicted by
the minimum energy technique as a function of angular velocity of the
bottom wall, for F̃ = 0.2, and three different values of the wall friction
coefficient: μw = 0 (solid lines), μw = 0.15 (dashed lines), μw = 0.3
(dot-dashed lines). Only the two extreme value of the velocity used in
the simulations are shown for the sake of clarity

on the velocity profiles seen in Fig. 5. It is clear from Fig. 9
that themodel predicts a too strong effect of the driving speed
with respect to numerical simulations.

One could conclude that the dynamic term in Eq. 5 could
be ruled out, but in fact this term is needed in order to predict
a finite shear band width. An ad hoc expression is therefore
proposed here:

P ′ = 2μw

H

R
Φ1 + 2

3
μ0Φ2 + 1

2
bΩ̃m

(
d

H

)3/2

Φ3, (9)

in which the velocity dependency is reduced through an
exponent m < 1. The result obtained from the optimization,
with μ0 = 0.42, b = 2, and m = 0.05 is shown in Fig. 10.
For this parameter set the effect of the other system parame-
ters is recovered too. The optimization leads to a value of the
parameter m close to zero because experimental data do not
display an effect of the rotating velocity. However, the value
cannot be zero, otherwise the shear bands would vanish.

Unger et al. [35] used a variational approach to model the
shear band formation in the split-bottom cell. Their model
predicted shear bands of vanishing size. This is probably
related to the absence of the dynamic contribution in their
model. Due to the presence of the dynamic term our model
predicts a finite shear band width. However, an ad hoc cor-
rection is needed to limit the effect of Ω on the results. The
variational approach coupled with the μ(I ) scaling law is
thus unable to capture the noninfluence of the angular veloc-
ity of the bottom wall on the velocity profiles. This can be
supported a posteriori by thinking at the combined effect
of the rotating velocity and pressure. If the behavior of the
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Fig. 10 Average normalized azimuthal velocity profiles as predicted
by the modified minimum energy technique as a function of angular
velocity of the bottom wall, for F̃ = 0.2, and three different values of
the wall friction coefficient: μw = 0 (solid lines), μw = 0.15 (dashed
lines), μw = 0.3 (dot-dashed lines)

systemwas described only by the characteristic inertial num-
ber and the wall friction coefficient, as a simple dimensional
analysis could suggest, then wewould expect that decreasing
the rotational velocity by one order of magnitude should be
the same as increasing the pressure by two orders of magni-
tude. But it is evident that the rotating velocity has no effect,
while results are very sensitive to pressure, particularly for
low wall friction. This means that the global inertial number
and the wall friction coefficient are not sufficient for pre-
dicting the behavior of the system. It would be therefore of
interest to see if recent modelings of nonlocality in granu-
lar flows [14–20] are able to capture the full behavior of our
system. This will be the subject of a future paper.

Regimemaps With themodified formula for the stress power,
Eq. 9, we then look at the combined effect of some parame-
ters. Figure 11 displays the combined effect of pressure and
wall friction on the function:

Δ

H
= 1 − 2

H

∣
∣
∣
∣

∫ H

0
( f (z) − 1 + z/H)dz

∣
∣
∣
∣ , (10)

whichmeasures the distance from a linear velocity profile,
and can provide an estimate of the shear band rescaled by the
cell height H if the flow is localized at the top or at the bottom.
This regimemap displays the already discussed behavior: for
low values of both wall friction and applied pressure, shear
is localized at the top, while when increasing pressure the
range of wall friction implying a bottom localization widens.
From the regime map we can speculate that, for very high
wall friction and pressure, the model will probably predict
a vanishing shear band. This is unlikely, since in granular
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Fig. 11 Map of shear band width (rescaled by the cell height H ) as a
function of dimensionless pressure F̃ and wall friction coefficient μw,
for Ω̃ = 1.2. The bright zone corresponds to a completely sheared
material. The region at the left of the bright zone corresponds to top
localization, while the one at the right corresponds to bottom localiza-
tion

flows shear bands usually span several particle diameters. In
fact the model lacks information on clustering phenomena,
which set a lower bound for the shear band width.

Figure 12 shows the combined effect of pressure and
driving speed for two different values of wall friction. It is
clear that (thanks to the presence of the exponentm in Eq. 9)
the driving speed has a slight effect on the shear band width
particularly for large pressures. The present numerical results
do not allow to say whether this effect is real or not. Both
experiments and simulations for a wider range of rotating
velocities of the bottom wall should be performed in order
to better understand the effect of the driving speed.

Though effective in replicating the numerical simulation
results, the optimization technique is based on an expression
for the total stress power which was modified ad hoc in order
to reduce the velocity dependence of the profiles. A more
sound theory is needed in order to better take into account the
effect of driving speed and the formation of clusters; however,
the present approachmay be helpful for designing new zones
of the parameter space to be investigated and for conceiving
experiments on the same flow configuration. An example of
this use is Fig. 13, inwhichwe plot the combined effect of the
depth H and of the wall friction coefficient on the shear band
width, for F̃ = 0.2 and Ω̃ = 1.2. It is clear that the model
predicts a strong effect of cell height, with top localization
for low H and low friction, bottom localization for large H
and strong friction, and a more uniformly sheared profile for
intermediate values of the product Hμw. This chart will help
us in designing the new simulations and the experiments to
be performed in order to study the effect of the cell height.
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Fig. 12 Maps of shear band width (rescaled by the cell height H )
as a function of dimensionless pressure F̃ and dimensionless rotating
velocity Ω̃ , for (top) μw = 0.05, (bottom) μw = 0.3. For the top
figure, the bright zone corresponds to a completely sheared material.
The region below the bright zone corresponds to toplocalization, while
the one above corresponds to bottom localization. For the bottom figure,
only bottom localization is present

5 Conclusions

Numerical simulations of the torsional shear flow of gran-
ular materials was shown to display shear localization. The
existence of shear localization, described by an exponential
velocity profile, was already reported in similar geometries.
For example, Orlando and Shen [36] studied a rapid granular
flow in an annular shear cell inwhich the bottomplate is rotat-
ing. They found a top localized shear flow for H ∼ 8− 12d,
and a more uniform shear profile for H ∼ 4−6d; by extrap-
olating their data on shear stress and stress ratio we guess
that F̃ < 1. That is a low pressure which, as shown above in
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Fig. 13 Map of shear band width (rescaled by the cell height H )
as a function of H/d and wall friction coefficient μw, for Ω̃ = 1.2
and R/d = 12. The bright zone corresponds to a completely sheared
material. The region at the left of the bright zone corresponds to top
localization, while the one at the right corresponds to bottom localiza-
tion

our simulations, coupled with a low wall friction coefficient,
could favor a top localization pattern. The original feature of
our results is that the localization pattern and the depth of the
shear zone are shown to depend on system parameters, with
a predominance of bottom localization for sufficiently large
values ofwall friction coefficient and appliedpressure.This is
important in viewof the application of a torsional shear cell as
well as an annular shear cell for rheological characterization
of granular flows. Recently, we reported [31] on wall forces
and on the localization pattern in a linear, periodic geom-
etry which shares some similarities with the configuration
studied in the present work and the one studied by Orlando
and Shen [36]. Compared to that somewhat ideal configura-
tion, the present study deals with a flow which can be simply
realized as an experimental setup and analyzed by means of
imaging techniques and force measurements. Future contri-
butions will deal with the analysis of such an experimental
setup. In that perspective, the present workwill be useful also
to determine the range of parameter space to be investigated
in order to study experimentally the shear localization in a
torsional shear flow.
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