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Abstract We discuss a constitutive law for modeling rate-
dependent granular flows that has been implemented in
smoothed particle hydrodynamics (SPH).Wemodel granular
materials using a viscoplastic constitutive law that produces
a Drucker–Prager-like yield condition in the limit of vanish-
ing flow. A friction law for non-steady flows, incorporating
rate-dependence and dilation, is derived and implemented
within the constitutive law.We compare our SPH simulations
with experimental data, demonstrating that they can capture
both steady and non-steady dynamic flow behavior, notably
including transient column collapse profiles. This technique
may therefore be attractive for modeling the time-dependent
evolution of natural and industrial flows.

Keywords Granular media · Particulate flow · Smoothed
particle hydrodynamics

1 Introduction

Many natural and industrial processes involve flow of gran-
ular media such as soils, sands, powders, and pulverized
brittle materials. Examples of such processes include land-
slides, debris flows, bulk food transport, and ballistic impact
of ceramics. These processes typically involve large defor-
mations from a reference state and flow rates that vary from
quasi-static to dynamic. Numerical models that can accu-
rately simulate these flow features are essential as predictive
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tools. However, the lack of well-established rheological rela-
tions spanning flow-rate regimes has historically limited the
development of such models.

Dry granular materials exhibit solid-like, liquid-like, or
gas-like behavior depending upon their environment and
excitation [1]. Numerical and experimental studies have
established basic constitutive laws for a variety of geome-
tries [2–5] and flow-rate regimes, from quasi-static [6,7] to
rapid [3]. Jop and colleagues [5] proposed a constitutive law
for steady-state granular flows that captures behavior across
these regimes and in a variety of configurations [4,8]. To date,
this constitutive law provides the most unifying framework
for granular flows and has been adopted for modeling both
steady and non-steady processes such as impact cratering and
granular column collapse [9,10].

Mesh-free methods have recently gained popularity for
modeling granular materials. Several authors [11,12] have
used the material-point-method (MPM) to model granular
flows, demonstrating the ability of this technique,with appro-
priate constitutive laws, to capture a wide range of flow-rate
regimes. Others [13–15] have employed SPH for granular
materials, capturing both quasi-static and dynamic regimes
withmodels ranging fromclassical plasticity to fluid-like vis-
coplasticity. Viscoplastic formulations have also been used
with the finite-element method [16] for modeling granular
column collapse.

In this paper, we employ a simple viscoplastic constitu-
tive law to simulate steady-state and non-steady granular flow
behavior in a variety of geometries. We adopt the viscoplas-
tic stress tensor proposed by [5] and use continuum energy
balance to derive a non-steady dilatancy term.We implement
the resulting constitutive law in Smoothed Particle Hydrody-
namics (SPH) and test it in 3D dynamic scenarios to illustrate
that the method captures both steady and non-steady gran-
ular flow behavior. Most notably, the method captures the
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transient profiles of a collapsing 3D granular column as well
as scaling laws for final heights and lengths. Because the
present paper tests the proposed constitutive framework in a
variety of challenging flow environments, the technique may
be attractive for modeling the full time-dependent evolution
of geophysical and industrial flows in the future.

The layout of this paper is as follows. Section 2 outlines
the balance and constitutive laws used to model granular
materials. Section 3 discusses the SPH framework and the
algorithm implemented in simulations. Section 4 presents
three examples that demonstrate the ability of the method
to model rate-dependent flows down inclined planes, capture
column collapse scaling, and predict the non-steady dynamic
structure of flows down inclined planes. Section 5 offers a
discussion of future work and concluding remarks.

2 Balance and constitutive laws

This section details the balance and constitutive laws used to
model granular materials.

2.1 Balance laws

The governing balance law we solve is the equation of
momentum balance given by

∇ · σ + ρb = ρa, (1)

where σ is the Cauchy stress tensor, ρ is density, b is a body
force, and a is material acceleration.

2.2 Constitutive law

We adopt a viscoplastic stress tensor used in [5] for steady-
state modeling of granular flows

σ = −p I + (μp + c)D
|D| , (2)

where p is pressure, I is the identity tensor, μ is friction, c
is cohesion, D = ∇v + (∇v)T is the strain rate tensor, and
|D| = ( 12 D : D)1/2 is the second invariant of the strain rate
tensor. The second term in Eq. (2) can be identified as the
shear stress τ . While the effective viscosity, (μp + c)/|D|
diverges in the quasi-static limit, we avoid singularities by
using |D| + ε in numerical calculations, where ε is a small
parameter described below. Following the discussion in [5],
a material having this stress tensor only flows in accordance
with a Drucker–Prager-like yield condition when

|τ | > μs p + c, (3)

where μs is a coefficient of static yield.
We adopt an equation of state relating the pressure p to

the density ρ in the granular material. This equation of state
takes the form [17]

p =
⎧
⎨

⎩

κ
[(

ρ
ρ0

)γ − 1
]

ρ ≥ ρ0

0 ρ < ρ0,
(4)

where ρ0 is the loosest packing density of the granular mate-
rial, and κ and γ are parameters that can be chosen to ensure
an appropriate bulk modulus and scaling of p with ρ. For
example, we choose γ = 3/2 in this paper to ensure a
pressure–density relationship consistent with that found at
the jamming transition for granular solids in [18]. Parameter
κ is then constrained by the desired bulk modulus for the
material through the relationship

K = ρ
dp

dρ
=

⎧
⎨

⎩

3
2κ

(
ρ
ρ0

)3/2
ρ ≥ ρ0

0 ρ < ρ0.
(5)

We note that introducing weak compressibility, in an addi-
tion to being necessary for determining the stress field in the
material, also significantly reduces pressure oscillations that
would otherwise occur near static conditions (e.g., also see
[15]).

We next derive a friction law for the evolution of μ dur-
ing steady-state and non-steady flow. The derivation mirrors
that of classical stress–dilatancy relationships [6] and friction
laws for non-steady granular shear flows [19]. Considering a
granular material undergoing deformation at a rate D, energy
balance requires that

ρė = 1

2
σ : D − ∇ · q + ρs, (6)

where e is specific internal energy, q is heat flux, s is the
rate of energy generation or decay by sources and sinks. The
factor of 1

2 in Eq. (6) accounts for the difference between the
definition of D in [5] and the classical definition. The strain
rate tensor can be decomposed into volumetric and deviatoric
components as

D = tr(D)

3
I + Ds, (7)

where Ds = D− tr(D)I/3. Substituting Eqs. (2, 7) into Eq.
(6), noting that D : I = tr(D), and solving for μ yields

μ = ρė + ∇ · q
p|D| − ρs

p|D| +
1
2 tr(D)

|D| . (8)

During steady-state flow, granular materials are observed
to deform at constant volume [5,6] and time-averaged inter-
nal energy, making the first and third term in Eq. (8) equal
to zero. At steady-state, −s is therefore the rate of steady-
state energy dissipation and the term −ρs/(p|D|) can be
interpreted as the steady-state friction coefficient μss . The

123



Comp. Part. Mech. (2017) 4:119–130 121

steady-state friction coefficient depends on strain rate, evolv-
ing from a static value μs at low strain rates to a peak value
μp at the highest strain rates. In our model, we therefore
adopt an empirical form for μss , given by [7]

μss = μs + μp − μs

D∗/|D| + 1
, (9)

where D∗ represents the scale of rate-strengthening. The
steady-state friction can be rate-strengthening or rate-weak-
ening depending upon the values of μs and μp, but is
typically observed to be rate-strengthening in dry granular
flows [2,4,5]. The friction law can be seen as a simplifica-
tion of the one proposed in [5], in which D is replaced by
the inertial number I and a pressure term is therefore incor-
porated into the equation. We choose to ignore pressure and
use D since it, or mean velocity, is frequently used in the
granular flow and flash-weakening literature with favorable
results [7,20]. We also find favorable results in the present
paper, suggesting that the variables contained in Eq. (9) are
sufficient for the class of problems that we simulate. We
also use D because, despite smoothing of the pressure field
by the introduction of weak compressibility in Eq. (4), we
still expect some spurious oscillations near quasi-static con-
ditions that may affect the pressure field, and therefore I .
Indeed, these oscillations in particle motion are responsible
for the creeping flow observed when the material is in an
apparently quasi-static state (noted in Sect. 3.3 and also in
[15] using a similar model). We discuss extensions of classi-
cal SPH that may alleviate these oscillations in Sect. 5.

The third term in Eq. (8) is a form of dilation rate [21]
which we denote β. We adopt the modified version

β =
1
2 tr(D)

|D|
|D|
η

exp

(

1 − |D|
η

)

, (10)

where η represents a scale of dilatancy decay with strain
rate (analogous to the model used in [7], where dilatancy
rate decays with shear strain). This modified form for β

ensures recovery of μ = μss at critical state and steady-
state, as expected, and again avoids any effects of spurious
oscillations in the velocity field. We use η = 0.35s−1 in the
examples throughout this paper and discuss other values in
Sect. 5. We restrict β to the range 0 ≤ β ≤ μss . The upper
bound on β is often foundwhen enforcing non-negative plas-
tic dissipation for Drucker–Prager-like plasticity laws. The
lower bound reflects values used by [7] and may be relaxed
to −μss in the future.

We ignore the first term in Eq. (8) in the present work,
assuming with insight from past work [19] that it is only
relevant for faster flows than those considered here. The full
friction coefficient considered in this work is therefore

μ = μss + β, (11)

and is consistent with those forms widely used in soil
mechanics and other work [6–8,21]. This form allows us
to capture the rate and dilation-dependent nature of granular
materials across a range of flow rates.

3 Smoothed particle hydrodynamics

This section briefly describes SPH and its use for implement-
ing the constitutive laws presented in this paper.

3.1 Background and kernel function

SPH is a mesh-free numerical method that uses Lagrangian
particles of fixed mass to represent fixed mass regions of a
physical material. In this paper, SPH particles represent fixed
masses of granular media (not individual granular particles).
SPH particlesmove according to integration of the governing
balance, Eq. (1), and constitutive laws, Eq. (2). They retain
field quantities, such as density and stress, representing those
of the granular material at their location. Field quantities are
computed by a summation interpolant employing a kernel
functionW with smoothing length h [22]. We use the classic
cubic spline kernel in all summation interpolants [23]

W (r, h) = 1

h3π

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 3
2q

2 + 3
4q

3 0 ≤ q < 1

1
4 (2 − q)3 1 ≤ q < 2

0 q ≥ 2,

(12)

where q = r/h and r = |xa − xb| is the distance between
SPHparticles labeleda andb, as shown inFig. 1a. Somealter-
native kernels, including the spiky and double-humped cubic
varieties, have been tested but do not demonstrate superior
results for the examples presented here. Furthermore, Mon-
aghan [22] has noted that no kernel shows significantly better
results than the cubic spline for a wide range of problems.
The smoothing length h is chosen as 1.2 times initial parti-
cle spacing [22], although similar results are found when h
is 1.5 times initial particle spacing. The smoothing length is
held constant during all simulations. Evolving the smooth-
ing length with density is common in SPH simulations but is
only necessary in simulations of highly compressible gases
(e.g., see [24]); the granular materials modeled here do not
undergo significant density changes for ρ > ρ0 that would
require smoothing length evolution.

Several monographs describe SPH in detail [22,25]. Here,
we merely state that classical SPH has a number of attractive
properties as a numerical method, including zero intrinsic
dissipation, exact conservation of mass, momentum, energy,
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Fig. 1 a Cartoon of SPH cubic
spline and lengths r and h. b
Illustration of artificial boundary
particle velocities
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and entropy. In the present paper, SPH also allows us to
easily capture large deformation and material fragmentation
without expensive remeshing ormesh-refinement procedures
required in grid-based approaches. All simulations are per-
formed in amodified version of LAMMPS [26] and therefore
benefit from that code’s MPI architecture for parallel com-
puting and periodic boundary conditions.

3.2 Density

Density is computed using the basic SPH equation with a
Shepard filter applied at each time step. For a particle a, we
first compute

ρ̄a =
∑

b∈N
mbW (r, h) (13)

where mb is the mass of SPH particle b and N is the set of
neighbors of particle a. We then apply the Shepard filter [22]
to obtain

ρa = ρ̄a
∑

b∈N
mb
ρ̄a

W (r, h)
. (14)

This filter corrects particle deficiencies near free surfaces and
boundaries. We note that we have also employed the more
common free surface density formulation proposed in [17]
with nearly identical results to those presented in this paper.

3.3 Equation of motion

To update SPH particle locations, we evaluate Eq. (1) using
SPH interpolants for each particle

aa = ρa
∑

b∈N

(
σ a

ρ2
a

+ σ b

ρ2
b

+ Πab I

)

· ∇W (r, h) + b (15)

where σ is given by Eq. (2) and Πab is an artificial viscosity
discussed below. In evaluating σ in Eq. (2), the strain rate

tensor Da = ∇va + (∇va)
T must be calculated using

∇va =
∑

b∈N

mb

ρb
(vb − va) ⊗ ∇W (r, h). (16)

The value of pa used in σ a is obtained from applying the
equation of state (4) directly to the densityρa computed using
Eq. (14). The value of μ used in σ a is computed from Eq.
(11), using Da . As noted previously, to avoid a singularity in
Eq. (2), we use |D| + ε, where ε = 0.01h2 is a small num-
ber, rather than |D| in the denominator. As in [15], we also
observe grain motion once an apparent quasi-static condi-
tion is reached. However, this grain motion is several orders
of magnitude slower than that found during dynamic condi-
tions (e.g., those during column collapse in Sects. 4.2, 4.3).
Future extensions discussed in Sect. 5 may be able to allevi-
ate any spurious oscillations that cause grain motion in the
quasi-static limit.

The artificial viscosity Πab in Eq. (15) is commonly
adopted to avoid spurious oscillations around shock fronts
in hydrodynamic simulations [27] and is used in other SPH
simulations of granular media [15]. We adopt [15,27]

Πab = −α
hc̄ab
ρ̄ab

vab · rab
r2

, (17)

where α is a dimensionless parameter set to 0.004 throughout
this paper, c̄ab is the average sound speed at particles a and
b, ρ̄ab is the average density of particles a and b, vab =
va − vb, and rab = ra − rb. The wave speed of a particle
a is computed as ca = √

∂p/∂ρ. We have found the use
of artificial viscosity to have a minimal affect on the results
in this paper, likely because significantly more viscosity is
introduced through the constitutive law in the formof friction.

3.4 Boundary conditions

SPH ghost particles [28] are used to represent solid bound-
aries, as shown in Fig. 1b. The slip condition of interior
particles past boundary particles can be tailored from a no-
slip to a frictional-slip condition. In either case, boundary
particles are given an artificial velocity when interacting
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with interior particles to simulate a smooth velocity gradient
across the boundary [13,28]. In particular, interior particle a
will observe boundary particle b to have a velocity

vb = (1 − χ)va + χvw, (18)

where vw is an imposed boundary velocity and χ =
min(χmax, 1.0 + db/da). The value of χmax is set to 1.5,
consistent with past work [13,28]. The lengths db and da are
shown in Fig. 1b. This fictitious velocity for boundary par-
ticles b is used in all calculations of stress and strain rate at
particle a.

To enforce a no-slip boundary condition, artificial stresses
can be applied to boundary particles as described in [13,27]
and used in [15]. In this case, an interior particle a will
observe boundary particle b to have stress σ b = σ a when
the particles interact. To enforce a frictional-slip boundary
condition, as is done throughout this paper unless otherwise
noted, σ b is merely computed using Eq. (2) with a bound-
ary friction coefficient μb in the place of Eq. (11). In this
way, interior particle a will observe boundary particle b to
have a shear stress lower than that in the case of a no-slip
boundary, thereby facilitating slip. In practice, this boundary
friction coefficient may also be rate-dependent as illustrated
in the examples below. To enforce a slip condition interme-
diate between no-slip and frictional-slip, σ b can be set to a
weighted average of σ a and the value computed using Eq.
(2).

The ρ0 value for boundary particles is often set to a value
of approximately 1 % below the that of interior particles
to avoid penetration of interior particles into the boundary.
An alternative approach, adopted in so-called XSPH, is to
use a modified particle velocity [29]. However, the approach
used here achieves the same objective without unnecessar-
ily smoothing particle dynamics. In problems with higher
relative velocities of two materials, XSPHmay be necessary.

3.5 Time integration

We use a Velocity Verlet time integration scheme. This sym-
plectic integrator has been shown to conserve momenta and
energy, making it particularly attractive with SPH [22]. The
basic approach involves computing an intermediate velocity

v
n+1/2
a = vna + ana

2
Δt, (19)

where ana is evaluated using Dn
a and σ n

a computed with parti-
cle positions xna , where all superscripts represent time steps.
SPH particle positions are updated by

xn+1
a = xna + v

n+1/2
a Δt. (20)

The final updated velocity at time step n + 1 is computed by

vn+1
a = v

n+1/2
a + an+1

a

2
Δt, (21)

where an+1
a is evaluated using quantities Dn+1

a and σ n+1
a

computed with particle positions xn+1
a .

The time step Δt is chosen to satisfy a Courant condition,
a limit imposed by maximal forces, and a viscous diffusion
condition as discussed in [28,30]. These conditions amount
to

Δt ≤ min

(

0.25
h

ca
, 0.25

h

| f a |
, 0.125

h2ρa
μa pa + ca

)

, (22)

where the last condition emerges from the viscous condition
discussed in [28,30]. Some trial-and-error may be necessary
to ensure satisfaction of the second condition of Eq. (22).

4 Examples

This section illustrates three examples of the constitutive law
and numerical method described above. The first example
demonstrates the ability of the rate-dependent friction coef-
ficient to produce non-zeroflowprofiles at various inclination
angles. The second example illustrates that the constitutive
law and numerical method produce column collapse runout
and height scaling consistent with experiments. The third
example demonstrates that the constitutive law and numeri-
calmethod accurately capture the transient profiles of column
collapses down inclined planes. This range of problems
involves a variety of flow rates, highlighting the versatility
of the proposed modeling framework and suggests its via-
bility for modeling the full evolution of geophysical flows.
All simulations are performed twice, once with dilation, β,
included in the friction coefficient (μ = μss + β) and once
with dilation excluded (μ = μss), illustrating how this term
influences our results.

4.1 Example 1: infinite inclined plane flow

Inclined plane flows are a classical test of granular media’s
flow rheology. Experiments in this flow configuration have
been used to derive rate-dependent frictional parameters [5],
study Bagnold-type velocity profiles, investigate boundary
slip, and examine non-local and finite-size effects [4,31].
An essential feature of dry granular materials flowing down
inclined planes is their ability to reach a steady-state velocity
profile for a range of inclination angles. This characteristic
is the signature of rate-dependent steady-state friction and
distinguishes the liquid-like flow regime of granular media
from Newtonian rate-independent fluids. In this example,
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Fig. 2 a Initial geometry of the
infinite inclined plane flow
simulations showing SPH
particles representing the
granular material overlaying
SPH boundary particles. b
Steady-state profiles for
inclination angles θ = 15◦
through θ = 27◦. c Mean
velocities illustrating the
approach to steady-state. d
Mean velocities at the onset of
flow. e Pressure as a function of
depth at t = 30 s
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we test the ability of our constitutive framework to pro-
duce a steady-state velocity profile for a range of inclination
angles.

The geometry of the inclined plane flow simulations is
shown in Fig. 2a. A bulk of granular material measuring
10cm in the x dimension, 15cm in the z dimension, and
5cm in the y dimension is modeled with periodic boundaries
in the x and y dimensions. The total number of SPH particles
is 750 in the interior of the flow and 250 in the boundary. We
have found this number sufficient to provide smooth contin-
uum fields. Despite being small, this number does not reduce
the number of particles in the support domain of a single
particle below that which is typical for evaluating functions

Table 1 Model parameters used in infinite inclined plane flow simula-
tion

ρ0 (kg/m3) μl μh D∗ (s−1) c (Pa) μb κ (Pa) γ Δx (m)

1550 0.268 0.557 15 0 μ 105 1.5 0.01

and their derivatives [22]. The material and boundary are
rate-dependent with μl = 0.268 (φ = 15◦), μh = 0.557
(φ = 30◦), and D∗ = 15 s−1. Other parameters are listed in
Table 1. Inclination angles from θ = 12◦ through θ = 33◦ in
increments of 3◦ are simulated by rotating the gravity field
with respect to the global coordinate frame at time t = 0s.
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Steady-state flow velocities, obtained by averaging SPH
particle velocities binned at various heights and extrapolating
as necessary to z = 0, are shown in Fig. 2b for simulations
using θ = 15◦ through θ = 27◦. Solid lines represent sim-
ulations with μ = μss and symbols represent simulations
withμ = μss +β. These two types of simulation give nearly
identical results at steady-state, as expected. Only inclina-
tion angles 15◦ < θ ≤ 30◦ result in non-zero steady-state
flow profiles. Results for θ = 15◦ are shown to illustrate that
there is no flow (tomachine precision) unless θ > tan−1(μs).
Results for θ = 30◦ approach a steady-state but over very
long times and are therefore not shown. Results for θ > 30◦
donot approach a steady-state but experience unboundedpar-
ticle accelerationwith time. It is clear that the constitutive law
and numerical method capture the ability of rate-dependent
granular materials to reach a steady-state velocity profile for
a range of inclination angles.

Flow profiles in Fig. 2b appear to be nearly linear except
for slight deviations at the boundary and at the free surface.
Thenon-zerovelocity gradient at the free surface is consistent
with experimental findings (see [4] and references therein).
We do not expect Bagnold velocity profile in the current work
since Eq. (9) relatesμss to |D| rather than the inertial number
I [4]. Extending Eq. (9) to relate μss to I and examining
of how this changes the precise shape of the flow profile is
reserved for future work. Flow profiles also notably display
boundary slip. We have verified that boundary slip is nearly
eliminated by using a no-slip, rather than a frictional-slip,
condition, as described in Sect. 3.4.

Figure 2c illustrates the mean velocity v̄x of all SPH par-
ticles in the flow direction as a function of time. All results
for θ ≤ 30◦ approach a constant mean velocity. Figure 2d
illustrates the same results at the beginning of the simula-
tion. It can be observed that simulations employing dilation
in the friction coefficient (μ = μss +β) exhibit lower veloc-
ities at the onset of flow. This partial suppression of initial
particle acceleration is expected: any volumetric expansion
caused by initial motion will increase μ, thus decreasing the
flow rate. At later times, simulations both with and without
dilation are in excellent agreement. The time at which sim-
ulations come into excellent agreement is a function of both
inclination angle and the parameter η in Eq. (10).

Figure 2e illustrates the vertical pressure σzz at steady-
state (t = 30 s) compared with the analytical curve σzz =
ρ0g(h − z). For clarity, only simulations with μ = μss + β

are shown in symbols. Simulations with μ = μss exhibit
nearly identical results. The simulations show a monotonic
vertical pressure increase with depth in close agreement with
the analytical curve. The observed deviations are expected:
overburden pressure will cause ρ > ρ0 and the rotated grav-
ity field will cause lower gz as inclination angle is increased.

4.2 Example 2: column collapse scaling

4.2.1 Scaling laws

An important test geometry for the flow of granular materials
is the collapse of a granular column on a flat surface. This test
establishes the relationship between the initial aspect ratio
of the column, a = H0/L0, and final runout and slumped
height, usually in the form of scaling laws such as

H0

H
∼ λ1a

α1 and
L − L0

L0
∼ λ2a

α2 , (23)

where λ1, λ2, α1, and α2 are constants [10,11,32–38]. To
accurately predict the dynamics of processes such as land-
slides, granular avalanches, and dam-break scenarios, any
model for granular materials should, as a first test, be able
to produce scaling laws that are consistent with experimen-
tal findings. In this example, we test our model’s ability to
accurately produce such scaling laws by modeling column
collapses on flat surfaces and comparing the scaling laws
with experimental findings from [32].

The geometries of column collapse simulations are shown
in Fig. 3. We use two geometries, reflecting the grit (sand)
and glass bead experiments reported in [32]. The grit, shown
in Fig. 3a, is confined to a 9cm by 10cm (into the page)
chamber. Initial heights H0 vary and employ anywhere
from 400 to 12,000 interior SPH particles. These condi-
tions reflect the “wide slot” experiments on grit reported
in [32], except that our simulations use half their width
and instead employs periodic boundary conditions (into the
page) to capture the quasi-two-dimensionality of the test.
The glass bead specimen is confined to a 2.5cm by 10cm

Fig. 3 Initial geometry of a
grit (sand) and b glass bead
simulations. These geometries
reflect those of [32] for the
compared results

(a) (b)

Interior
Boundary

Interior
Boundary

noitalumisssalGnoitalumistirG
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Table 2 Model parameters used
in the column collapse
simulations

Material ρ0 (kg/m3) μl μh D∗ (s−1) c (Pa) μb κ (Pa) γ Δx (m)

Grit 1404 0.74 0.74 – 0 0.335 105 1.5 0.01

Glass 1450 0.456 0.456 – 0 0.263 105 1.5 0.005

Fig. 4 Simulated column
collapse scaling and best-fit
lines to Eq. (23) for simulations
excluding β in μ (a, b) and
simulations including β in μ (c,
d)
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chamber and also has variable initial heights H0 employing
anywhere from 800 to 1600 interior SPH particles. These
conditions also reflect the “wide slot” experiments on glass
beads reported in [32]. All other material properties are
described inTable 2. The grit and glass possess distinct loose-
packed densities, internal friction coefficients, and basal
friction coefficients, further challenging our constitutive law
with a variety ofmaterials and substrates.Wemodel the glass
with a finer particle spacing Δx = 0.005 m since these
materials are confined to an initially thinner slot than the
grit.

Figure 4a, b illustrates slumping and runout scaling,
respectively, for simulations using μ = μss and Fig. 4c,
d illustrates the scaling for simulations using μ = μss + β.
All scaling exponents are found by a least-squares fit of a
linear line to the data in logarithmic space. Only data with
a ≥ 1 are used for fitting for comparison with [32] (see Fig.
11 of that reference). Table 3 further compares the scaling
exponents α1 and α2 (values of λ1 and λ2 are not reported by
[32] but are said to be material-dependent).

Table 3 Scaling parameters found in column collapse simulations

Source α1 α2

SPH grit (μ = μss ) 0.54 0.75

SPH glass (μ = μss ) 0.64 0.71

SPH grit (μ = μss + β) 0.56 0.84

SPH glass (μ = μss + β) 0.63 0.75

[32] Grit 0.6 0.9 ± 0.1

[32] Glass 0.6 0.9 ± 0.1

The scaling laws found in all simulations closely agree
with experimental results of [32]. The observed deviation
is expected since boundary and initial conditions may not
be perfectly reproduced in the simulations. All simulations
including β inμ agree slightly better with experimental find-
ings than those excluding it. This agreement demonstrates
that the current modeling framework accurately captures the
scaling behavior of granular column collapses, thus mak-
ing it attractive for modeling the evolution of geophysical
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Fig. 5 a Column collapse
profiles with resolution
refinement. b Column collapse
profiles using a bulk modulus
varied over two orders of
magnitude. The reduced bulk
modulus matches experimental
results as well as the largest bulk
modulus
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processes such as landslides and granular avalanches. In Sec.
4.3 we explore this claim further by comparing non-steady
dynamics of a collapse process with experimental results.

4.2.2 Parametric study

Here, we briefly examine the sensitivity of the results of a
typical column collapse simulation to changes in bulk mod-
ulus and SPH resolution. The purpose of these simulations is
to establish (1) the accuracy (for certain problems) of using
a reduced bulk modulus to reduce computation time; (2) the
influence of resolution refinement on convergence of sim-
ulation results. We choose to test model sensitivity with a
column collapse simulation because column collapse has

y

x

z
v = 2 m/s

θ

L0 = 20 cm

H0 = 14 cm
W = 10 cm

Horizontal plane

Interior

Boundary

Fig. 6 Initial geometry of column collapses down inclined planes.
Sidewalls from [39] are modeled but not shown

been established above as a challenging test of the granular
flow rheology.All simulations use the grit properties reported
in Table 2 to model a column collapse with initial geometry
of 20cm in the x dimension, initial height of 13cm in the z
direction, and a width of 18cm in the y direction (modeled
with periodic boundaries). We choose these particular inputs
because experimental results for collapsed column profiles
are available in [32] (see Fig. 12 of that publication; their H0

is 12.7cm rather than 13cm).
Figure 5a illustrates results for varying initial particle

spacing (and mass accordingly to ensure initial conditions
of ρ = ρ0) while holding other parameters from Table 2
fixed. The finest resolution uses 299,520 interior SPH par-
ticles and the coarsest resolution uses 4680 interior SPH
particles. Since resolution is a function of particle mass in
SPH simulations of continua, this is equivalent to amesh con-
vergence test. Fig. 5a illustrates that progressive refinements
in resolution yield collapse profiles agreeingwith experimen-
tal results from [32]. The coarsest resolution uses the same
particle spacing employed in other examples in this paper
and provides nearly identical results to the finest resolution.

Figure 5b illustrates results for varying the bulk mod-
ulus in simulations. The bulk modulus used for examples
throughout this paper employs κ = 105 (see Eq. 4), making it
artificially lowwith the benefit of permitting larger time steps
and faster computation time. As shown in Fig. 5b, decreasing
the bulk modulus two orders of magnitude from this artifi-
cially low value does not improve or significantly change
results in this simulation, validating this choice. Similar tests
have been applied to the other examples presented in this
paper. We therefore believe that using an artificially low bulk

Table 4 Model parameters used
in the study of flow dynamics
down inclined planes

Simulation ρ0 (kg/m3) μl μh D∗ (s−1) c (Pa) μb κ (Pa) γ Δx (m)

S1 1550 0.435 μl – 0 0.18 105 1.5 0.01

S2 1550 0.435 μl – 0 0.18 105 1.5 0.01

S3 1550 0.435 0.68 15 0 0.18 105 1.5 0.01
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modulus can improve computation time without sacrificing
accuracy in problems where neither wave speed nor quasi-
static stiffness dominates the results.More research is needed
to determine a rigorous criterion for artificially reducing the
bulk modulus, which may benefit many numerical methods
beyond those discussed in this paper.

4.3 Example 3: dynamics of flow down inclined planes

Granular flows down inclined planes reach higher veloci-
ties and strain rates than those on flat surfaces [20] and
are therefore a more challenging test of a modeling frame-
work’s ability to capture a wide range of flow-rate regimes.

Fig. 7 A comparison of the
dynamic profiles of column
collapses between SPH
simulations (symbols) and
experimental results of [39]
(lines). For clarity, three
symbols, spaced 0.01cm apart,
are plotted at z = 0cm beyond
the farthest extent of SPH
particles. a Results for SPH
simulations S1 excluding β

from μ with rate-independent
μss . b Results for SPH
simulations S2 including β in μ

with rate-independent μss . c
Results for SPH simulations S3
including β in μ with
rate-strengthening μss
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Numerical methods such as DEM can typically reproduce
scaling laws like those discussed in Sec. 4.2 but overestimate
the non-steady slumping rate and final runout of individual
collapse experiments [36]. To illustrate that our proposed
method accurately models these challenging flow environ-
ments, this example compares non-steady granular column
collapse profiles with those reported in [39].

We simulate glass beads in the initial geometry shown
in Fig. 6 for four inclination angles: θ = 0◦, 10◦, 16◦, and
22◦. The granular material is initially confined in an area
measuring 20cm in the x dimension and 10cm in the y
dimension, with an initial height of 14cm. A total of 2800
interior SPH particles are included in each simulation. The
sidewalls present in experiments are also explicitly modeled
but are omitted from the rendering for clarity. The simulated
material has μs = tan(23.5◦), where 23.5◦ is the internal
friction angle reported in [39]. Three simulations are per-
formed to underscore how dilation rate and rate-dependent
friction affect the results: (1) simulations S1 (see Table 4)
using μ = μss with rate-independent friction; (2) simula-
tions S2 using μ = μss + β with rate-independent friction;
(3) simulations S3 using μ = μss + β with rate-dependent
friction. Other model inputs are the same for all tests, as
reported in Table 4. All simulations use 2800 interior SPH
particles. The friction parameters used in simulations S3 for
the granular material reflect the average of those reported
in [5,16] for the same material. Simulations S3 also employ
rate-strengthening parameters for the basal friction coeffi-
cient (μbs = 0.18, μbh = 43, and D∗ = 15 s−1). For each
simulation, the wall restraining particle motion is moved
upward at 2m/s starting at t = 0 s to mimic experimental
conditions of [39].

Column collapse profiles are obtained by examining the
spatial extent of SPH particles in the x − z plane at vari-
ous times. Figure 7 compares profiles obtained from SPH
simulations (symbols) with those reported in [39] (lines) at
three times during each collapse. For S1 (Fig. 7a) where dila-
tion and rate-dependence are omitted, simulations agree with
experiments reasonably well at low inclination angles but
fail to match experiments at higher inclination angles. Most
notably, simulations S1 exhibit excessive slumping at the left
wall and over-predict runout. These deficiencies are the same
as those found by [16] using a similar viscoplastic constitu-
tive law in a finite-element framework.

Simulations S2 correct the excessive slumping problem,
particularly at early times, and reduce runout predictions,
suggesting that including β in the calculation of μ improves
early-time predictions of dynamics. However, at the high-
est inclination angles, simulations S2 continue to exhibit
excessive slumping and runout. Simulations S3 illustrate an
excellent agreement for slumping and runout in all simu-
lations. This remarkable agreement suggests that including
dilatancy and rate-dependence in the constitutive law is

necessary for modeling flow-rate regimes experienced by
columns collapsing down inclined planes. The close agree-
mentwith experimental results also suggests that themethod,
when properly calibrated,may be able to predict the full time-
dependent dynamics of geophysical events such as landslides
and avalanches, as well as similar industrial flows.

In light of these results, we suggest that the proposed
framework may also be used in the future to investigate the
3D pressure and velocity fields responsible for the observed
behaviors of granular flows. For instance, the framework
may shed light on the dynamics of avalanches over realistic
terrains, the basal pressures exerted by landslides on under-
lying soils (and their frequency spectrum), and the pressures
exerted within containing vessels during filling or transport.
We leave a thorough investigation of such phenomena for
future work.

5 Discussion and conclusion

To conclude, we have presented a constitutive law and mod-
eling framework for simulating the rate-dependent behavior
of granular flows. The proposed constitutive law captures
the steady-state and transient behavior of granular flows by
linking friction to strain rate and dilation. We have notably
demonstrated the ability of the constitutive law to capture
the transient profiles of a collapsing 3D granular column as
well as scaling laws for final heights and lengths. The SPH
implementation makes modeling arbitrarily large deforma-
tions simple and efficient. The framework may be used in
the future to study three-dimensional continuum fields in
geophysical and industrial granular flows.

Future work may address possible shortcomings of the
proposed constitutive law and numerical method. In partic-
ular, a more reliable approach for achieving oscillation-free
pressure fields can be explored [27]. This will enable Eq. (9)
to employ I rather than D for consistencywith a broader class
of problems. Future work can also provide a more systematic
calibration of parameters, such as η in Eq. (10) or D∗ in Eq.
(9), to numerical or experimental results. This will enable
accurate modeling of geophysical and industrial events with
a variety of materials and substrates.

Acknowledgements Support by the Air Force Office of Scientific
Research Grant # FA9550-12-1-0091 through the University Center of
Excellence in High-Rate Deformation Physics of Heterogeneous Mate-
rials is gratefully acknowledged. This work was partially performed
under the auspices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under Contract DE-AC52-07NA27344.

References

1. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liq-
uids, and gases. Rev Mod Phys 68(4):1259

123



130 Comp. Part. Mech. (2017) 4:119–130

2. SavageSB,SayedM(1984)Stresses developedbydry cohesionless
granular materials sheared in an annular shear cell. J Fluid Mech
142:391–430

3. Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech
22(1):57–90

4. MiDi GDR (2004) On dense granular flows. Eur Phys J E
14(4):341–365

5. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense
granular flows. Nature 441(7094):727–730

6. Wood DM (1990) Soil behaviour and critical state soil mechanics.
Cambridge University Press, Cambridge

7. Andrade JE, Chen Q, Le PH, Avila CF, Evans TM (2012) On the
rheology of dilative granular media: bridging solid-and fluid-like
behavior. J Mech Phys Solids 60(6):1122–1136

8. Forterre Y, Pouliquen O (2008) Flows of dense granular media.
Annu Rev Fluid Mech 40:1–24

9. Jutzi M, Asphaug E (2011) Forming the lunar farside highlands by
accretion of a companion moon. Nature 476(7358):69–72

10. Lacaze L, Kerswell RR (2009) Axisymmetric granular col-
lapse: a transient 3d flow test of viscoplasticity. Phys Rev Lett
102(10):108305

11. Mast CM, Arduino P, Mackenzie-Helnwein P, Miller GR (2014)
Simulating granular column collapse using the material point
method. Acta Geotech 10(1):101–116

12. Dunatunga S, Kamrin K (2015) Continuum modelling and simu-
lation of granular flows through their many phases. J Fluid Mech
779:483–513

13. BuiHH, FukagawaR, SakoK,OhnoS (2008)Lagrangianmeshfree
particles method (SPH) for large deformation and failure flows
of geomaterial using elastic-plastic soil constitutive model. Int J
Numer Anal Methods Geomech 32(12):1537

14. Chen W, Qiu T (2011) Numerical simulations for large deforma-
tion of granular materials using smoothed particle hydrodynamics
method. Int J Geomech 12(2):127–135

15. Minatti L, Paris E (2015) A sph model for the simulation of
free surface granular flows in a dense regime. Appl Math Model
39(1):363–382

16. Ionescu IR, Mangeney A, Bouchut F, Roche O (2015) Viscoplas-
tic modeling of granular column collapse with pressure-dependent
rheology. J Non-Newton Fluid Mech 219:1–18

17. Monaghan JJ (1994) Simulating free surface flowswith sph. JCom-
put Phys 110(2):399–406

18. Zhang HP, Makse HA (2005) Jamming transition in emulsions and
granular materials. Phys Rev E 72(1):011301

19. Hurley RC, Andrade JE (2015) Strength of granular materials in
transient and steady state rapid shear. Proc Eng 103:237–245

20. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-
weakening in landslides on earth and on other planetary bodies.
Nat Commun 5:3417

21. Bolton MD (1986) The strength and dilatancy of sands. Geotech-
nique 36(1):65–78

22. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog
Phys 68(8):1703

23. Monaghan JJ, Lattanzio JC (1985) A refined particle method for
astrophysical problems. Astron Astrophys 149:135–143

24. Price DJ, Monaghan JJ (2004) Smoothed particle
magnetohydrodynamics-II. Variational principles and variable
smoothing-length terms. Mon Not R Astron Soc 348(1):139–152

25. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH):
an overview and recent developments. Arch Comput Methods Eng
17(1):25–76

26. Plimpton S, Crozier P, Thompson A (2007) LAMMPS-large-scale
atomic/molecular massively parallel simulator. Sandia Natl Lab
18:27–41

27. Randles PW, Libersky LD (1996) Smoothed particle hydrodynam-
ics: some recent improvements and applications. Comput Methods
Appl Mech Eng 139(1):375–408

28. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number
incompressible flows using sph. J Comput Phys 136(1):214–226

29. Monaghan JJ (1989) On the problem of penetration in particle
methods. J Comput Phys 82(1):1–15

30. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev
Astron Astrophys 30:543–574
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