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Abstract The aim of this work is to analyze the remeshing
procedure used in the particle finite element method (PFEM)
and to investigate how this operationmayaffect the numerical
results. ThePFEMremeshing algorithmcombines theDelau-
nay triangulation and the Alpha Shape method to guarantee
a good quality of the Lagrangian mesh also in large defor-
mation processes. However, this strategy may lead to local
variations of the topology that may cause an artificial change
of the global volume. The issue of volume conservation is
here studied in detail. An accurate description of all the situ-
ations that may induce a volume variation during the PFEM
regeneration of the mesh is provided. Moreover, the crucial
role of the parameter α used in the Alpha Shape method is
highlighted and a range of values of α for which the differ-
ences between the numerical results are negligible, is found.
Furthermore, it is shown that the variation of volume induced
by the remeshing reduces by refining the mesh. This check
of convergence is of paramount importance for the reliabil-
ity of the PFEM. The study is carried out for 2D free-surface
fluid dynamics problems, however the conclusions can be
extended to 3D and to all those problems characterized by
significant variations of internal and external boundaries.
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1 Introduction

The particle finite element method (PFEM) is a numeri-
cal strategy specifically designed for those problems where
severe changes of topology occur, such as free surface
fluid dynamics [8,10,19,24,41], granular flows [4,43], non-
linear solid mechanics [6], fluid-structure interaction (FSI)
[15,21,38,44], or thermal coupled problems [1,32,36].

In the PFEM the mesh nodes are treated as particles and
they move according to the Lagrangian equations of motion
transporting their momentum together with all their physi-
cal properties. Nodes motion produces the deformation of
the finite element mesh that needs to be rebuilt whenever a
threshold value for the distortion is reached. The remesh-
ing procedure is one of the most characteristic points of the
PFEM [18]. This operation is performed via an efficient com-
bination of the Delaunay tessellation [12,40] and the Alpha
Shape (AS) method [11]. On the one hand, the Delaunay
triangulation ensures the most homogeneous discretization
for a given cloud of points. On the other hand, the AS tech-
nique allows the detection of the physical boundaries of the
domain (free-surface contours, rigid boundaries or fluid-solid
interfaces). The AS procedure performs an elemental control
driven by a pre-defined parameter α. Once the mesh is gener-
ated, the differential problem is integrated over the newmesh
in the classical FEM fashion.

The PFEM remeshing strategy guarantees a high level dis-
cretization creating the proper conditions for the accurate
solution of the FEMproblem at each time step. However, this
operation has some drawbacks that may affect the numeri-
cal results. For instance, the perturbation of the equilibrium
configuration caused by the elimination or the creation of
elements, may worsen the quality and the convergence of
the numerical solution. Furthermore, these local modifica-
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tions may globally produce a variation of the volume of the
computational domain.

The mentioned drawbacks of the PFEM remeshing can be
seen as the price to pay in order to gain all the benefits that
this Lagrangian technique can give. In [22] the advantages of
the PFEM with respect to standard meshless methods have
already been highlighted. In a more general sense, the PFEM
is an extremely versatile strategy and it has been used to solve
complex and challenging problems that other methods can
handle with difficulty, as for example simulations of tunnel-
ing [7], forming processes [34] or melting of polymers [29].
In all these situations the PFEM has proved to cope excel-
lently all the difficulties related to the complex geometries
and/or to different physics.

The PFEM remeshing is here analyzed for free-surface
incompressible fluid problems, but the findings of this work
can be applied to any problemwhere major changes of exter-
nal boundaries are encountered. The Lagrangian treatment
of free-surface fluids is particularly critical due to the high
distortions towhich the Lagrangianmesh undergoes. In these
cases, an extensive remeshing is required to ensure a good
discretization at each computation step. Furthermore, for
incompressible materials the issue of volume conservation
is crucial. The conjunction of these two aspects makes free-
surface fluid problems the ideal framework for testing the
PFEM remeshing. In this work, the authors decided to focus
on the 2D analysis essentially because it allows a better visu-
alization of themechanisms of volumevariation associated to
the PFEM remeshing than the 3D case. However, extension
of the same ideas to three dimensional analysis is straight-
forward.

In the PFEM solution of incompressible fluids the mass
conservation is affected by two different error sources, one
associated to the numerical treatment of the governing equa-
tions and the other produced during the regeneration of the
mesh [33]. The first mass variation source is experienced not
only in PFEM but also in standard FEM. It may depend on
various aspects as the iterative solver, the temporal discretiza-
tion or the stabilization procedure. Several publications have
already been dedicated to this crucial issue, as [9,23,33,39].
In this paper, this first source of volume variation is not ana-
lyzed and all the attention has been devoted to the second one
because directly related to the PFEM remeshing procedure.
The aim of this work is to study in detail the mechanisms that
during the remeshing step may vary the global volume (thus
the mass) and to check if it is possible to limit their effect.
The final purpose is not a validation of the method (for which
[24] or [17] can be seen), but a critical investigation of the
PFEM remeshing procedure and the check of its convergence
with respect to the mass conservation issue.

The paper is organized as follows. In the next section, the
basic characteristics of the PFEM are presented. Then, the
principal drawbacks of the PFEM are listed. In the follow-

Fig. 1 Essential steps of the PFEM. a Previous mesh. b Cloud of
points. c Delaunay triangulation. d New mesh

ing section, the issue of mass and volume conservation is
analyzed and the typical mechanisms that induce a volume
variation during the remeshing are described with the help of
a numerical example. Finally, the dependence of the volume
variation on the parameter α of the AS method is studied
and the convergence of the method is verified on different
examples.

2 Essentials of the PFEM

Basically, the PFEM can be described as a Lagrangian FEM
inwhich the quality of the discretization is guaranteed at each
time step by a remeshing strategy based on the Delaunay
tessellation and the Alpha Shape method.

The first step of the method is the check of the mesh
distortion. If the mesh used in the previous step is too dis-
torted, all the simplices of the discretization are erased (Fig.
1a, b). At this stage, the whole domain is represented by a
cloud of points, or particles, that store all the information
about physics, geometry, and kinematics (Fig. 1b). Over this
distribution of points the first trial mesh is generated using
the Delauany triangulation (Fig. 1c). In general, the Delau-
nay tessellation generates a convex figure which does not
respect internal and external physical boundaries. The detec-
tion of the correct domain contours is performed by the AS
techniquewhich eliminates all those simplices that are exces-
sively large or overly distorted (Fig. 1d).

With the AS method each simplex built by the Delaunay
triangulation is tested by comparing its circumradius re to the
mean mesh size h. The parameter α is used for establishing
which elements are erased or not according to the following
criterion

i f re > αh → erase the e − element (1)
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After the Delaunay tesselation and the AS check, the new
mesh with the correct (internal and external) boundaries can
be used for the Finite Element solution.Note that at this point,
the desired FEM strategy can be chosen. In fact, the PFEM
does not impose any restriction on computational algorithms
(e.g. time integration, unknown variables, solution scheme).
Moreover, the same procedure applies for different physics
(e.g. fluid mechanics, solid mechanics or thermal problems)
without any distinction.

3 Drawbacks associated to PFEM remeshing

If on the one hand thePFEMremeshing ensures a high quality
of the FEMmesh also in large deformation problems, on the
other hand it is associated to some drawbacks that require an
accurate analysis.

First of all, the remeshing increases the computational
time. In previous works it has been found that the time
required for the remeshing depends almost linearly on the
number of nodes but it grows slower than the time required for
the solution of the discrete governing equations [30]. More-
over, the remeshing causes the loss of the connectivities of the
previous discretization (see Figure 1b), consequently addi-
tional time is required to build the space operators defined
by the differential problem (matrices and vectors).

Furthermore, the elimination of the elements of the pre-
vious mesh does not allow the storage of historical variables
at element level. So that, for analyses in which the histori-
cal information is required (e.g. non-linear solid mechanics
or computational plasticity), a data-transfer technique to
recover element information must be added [5].

Another drawback is related to the boundary definition
performed by the AS method. The check performed accord-
ing to Eq. (1) highlights the crucial role of the parameter α in
the PFEM remeshing algorithm. Different values of α may
give different configurations, as shown in Fig. 2.

For α1 > α2, the mesh obtained with α1 (Fig. 2b) accepts
a larger number of elements from the Delaunay discretiza-
tion than the one given by α2 (Fig. 2c), especially in the
free-surface zone. On a extreme level, the mesh given by
the Delaunay triangulation remains unchanged for extremely
large values of α. On the other hand, for excessive small val-
ues of α, the AS method eliminates all the simplices created
by the Delaunay tessellation. Specifically the lowest admis-
sible α parameter is the one that corresponds to an equilateral
triangle, α = 1/

√
3. In 3D the minimum value for α is

larger because, for a regular tetrahedron the ratio between
the cirucmradius r and the minimum edge length is

√
3/8

[42]. One of the objectives of this work is to verify whether
there is a range of values of α for which the numerical results
do not change significantly.

At global level, local changes of topology due to the AS
scheme may produce the lack of preservation of the volume.

Fig. 2 Alpha Shapemethod applied over the sameDelaunay triangula-
tion (α1 > α2). a Delaunay triangulation. b Alpha Shape (α1). c Alpha
Shape (α2).

In fact, if the sum of the volume of the erased elements is
different than the one of the new simplices, the overall vol-
ume of the analysis domain is not conserved, leading also to
possible mass oscillations.

The PFEM remeshing may also affect the solution accu-
racy because it induces non-physical modifications in the
computational domains. The elimination of elements, the
creation of new ones or just a change of connectivity, cause
local perturbations of the equilibrium reached at the previous
time step. Nodal values ensuring equilibrium on the previ-
ous mesh, may not guarantee equilibrium at the beginning
of the new time step on the new discretization. These effects
can produce a deterioration of the convergence or spurious
oscillations of the pressure field.

This paper analyzes essentially the issue of volume con-
servation and the dependence on the parameter α while other
drawbacks will be considered in future publications.

4 Analysis of mass conservation

As introduced in Sect. 1, the study of mass conservation is
performed on free-surface fluid-dynamics problems. For a
continuum, incompressible, homogeneous fluid filling the
domain Vt , the equations of motion can thus be written as:

ρ
Du
Dt

= ∇ · σ + ρb in Vt × (0, T ) (2)

∇ · u = 0 in Vt × (0, T ) (3)

where u = u(x, t) is the velocity, σ = σ (x, t) the Cauchy
stress tensor, ρ(x) is the fluid density, b(x, t) the external
body forces, D/(Dt) denotes the total time derivative and
(∇·) is the divergence operator computed with respect to the
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current configuration x. The problem (2)-(3) has to be sup-
plemented with appropriate initial and boundary conditions
and suitable constitutive equations.

A standard Galerkin finite element approach has been
applied to discretize problem (2)–(3). A mixed velocity-
pressure stabilized method proposed and validated in [33]
is here applied. Details on the numerical formulation are out
of the scope of this paper and can be found in [33]. Under the
hypothesis of incompressible flow, density can be considered
constant and mass variation is perfectly equivalent to volume
variation [45]. Consequently, from now on, the study will be
focused on volume variation.

Typically, two sources of volume variation can be iden-
tified: the first is related to the numerical solution of the
governing equations and the second is associated to the
remeshing technique.

Mass conservation equation is solved in standardfinite ele-
ment spirit and consequently, the inaccuracy of the numerical
solver can affect the total mass conservation. The accuracy
of the numerical solver depends on different parameters: the
order of interpolations, themean element size, the integration
scheme and the time step increment. Moreover the original
implementation of the PFEMfor fluid-flow is based on equal-
order interpolation scheme. So that, a stabilization technique
should be used to guarantee the respect of LBB compatibil-
ity condition [3]. The stabilization terms have the effect of
relaxing the incompressibility constrain and this may affect
the mass preservation. Depending on the consistency of the
stabilization procedure and the convergence capabilities of
the method, the FEM solution may lead to a variation of the
total mass and therefore of the total volume. The volume
variation due to inaccuracy of the numerical scheme and due
to the partial fulfillment of the incompressibility constrain is
here called �V num .

Note that mass variation �V num depends strongly on the
numerical method and the stabilization chosen, and it can be
experienced in all the approaches based on the weak imposi-
tion of themass conservation equation [35]. The lack of mass
preservation is particularly evident inLagrangian framework,
because volume variation is immediately observed [2], but it
can occur in all the standard Eulerian or ALE approaches.

On the other hand, the second source of volume variation
is connected to the remeshing technique used to recreate the
connectivity between elements. From one step to another, the
Delaunay triangulation coupled with the AS scheme can cre-
ate new elements or remove others (see Sect. 2). At the end of
the remeshing step a volume variation, here called �Vrem ,
can be observed. This source of volume variation is charac-
teristic of the PFEM and is independent on the governing
equations and the physics of the problem.

Thus, the total volume variation can be computed by
summing up the two contributions previously described
as

Fig. 3 Solution scheme for volume volumes calculation

�V = �V num + �Vrem (4)

Figure 3 helps to understand how the two contributions
are computed.

Starting from volume V n , the fluid solver is applied, sub-
sequently mesh nodes are moved according to the velocities
and a new volume is obtained V̄ n+1. At this stage, if themesh
is too distorted, a remeshing technique is applied and a new
volume V n+1 is obtained. Hence, the two contributions are
computed as follows

�V num = V̄ n+1 − V n �Vrem = V n+1 − V̄ n+1 (5)

It is important to recall that the two sources of volume
variation cannot be considered uncorrelated. The variation
of volume generated by remeshing may affect the variation
due to the numerical scheme. In fact, the remeshing induces a
perturbation of the equilibrium through the creation and elim-
ination of elements, and consequently affects the fulfillment
of the incompressibility constrain. Viceversa, the variation
due to the inaccuracy of the solver, can lead to inaccurate
position of the nodes and, therefore, influence the final vol-
ume of the domain.

Both sources of mass variation are important and must be
seriously considered when an analysis of mass preservation
is performed. However, the study of �V num has not been
included in this paper because it has been already presented in
[33] and [14] for the same Lagrangian FIC-stabilized PFEM
used in this work and all the attention has been devoted to
the analysis of �V rem .

4.1 Mechanisms of volume variation induced by
remeshing

With the help of a numerical example, the typical mecha-
nisms that induce volume variations are here described. A
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Fig. 4 Dam break against a rigid step. Initial geometry

Table 1 Dam break against a rigid step. Problem data

L 0.146 m

H 0.048 m

D 0.024 m

Viscosity 10−3 Pa s

Density 103 kg/m3

proper understanding of these situations is essential in order
to design the right countermeasures to reduce their effects.
The collapse of a water column against a rigid obstacle pre-
sented in [16] has been chosen as reference problem, because
it induces all the typical situations of volume variation caused
by the remeshing. The initial geometry and problem data are
given in Fig. 4 and Table 1.

During the advancement of the water column two mech-
anisms of volume variation are recognizable. If no slip
conditions are considered, the only way the flow can advance
is by creating a new element composed by the nearest free-
surface node and the next wall particle, as shown in Fig. 5a,
b. The area of the new elements, highlighted in Fig. 5b, repre-
sents an increase of total volume induced by the remeshing.

While the wave front is advancing, the height of the
water column is decreasing. This dual situation produces the
elimination via the AS of those elements composed by the
free-surface nodes located at the top of the column and the
highest wall particles (see Fig. 6a, b).

The elongation of the free-surface boundaries may also
represent a source of volume variation. In fact, if the mesh is
not refined enough, some boundary elements may not fulfil
the AS criterion due to the excessive stretching of their free-
surface edge. The elimination of those elements causes the
formation of artificial waves at the free-surface, as shown in
Fig. 7.

Fluid drops can also produce a variation of the total vol-
ume. In particular,when a particle separates from the domain,
an element is removed (Fig. 8a, b). On the contrary, some
new elements are created to allow the reinsertion of a parti-
cle which comes close enough to the bulk. (Fig. 9a, b). Note
that the same applies also to the detachment and reinsertion
of a group of elements.

Fig. 5 Mechanism of volume gain due to remeshing. Advance of the
wave front. a Before meshing. b After meshing

Fig. 6 Mechanism of volume loss due to remeshing. Recede of a fluid
volume. a Before meshing. b After meshing

In the PFEM, the definition of the contact surfaces is auto-
matically performed by the AS technique and in general, can
lead to a volume increase. Examples are given in the contact
with rigid walls (see Fig. 10), the contact between two fluid
streams or when two free-surface boundaries are joined (Fig.
11).

Note that all the mechanisms of volume variation pre-
sented for this 2D problem have their correspondent mech-
anism in 3D. For example, in Fig. 12 the same mechanism
presented for the 2D case in Fig. 10 is provided.
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Fig. 7 Mechanism of volume loss due to remeshing. Formation of
artificial waves. a Before meshing. b After meshing

Fig. 8 Mechanism of volume loss due to remeshing. Formation of a
free particle. a Before meshing. b After meshing

To better appreciate the creation of the new elements on
the solid boundaries, the central section of the 3D domain
of Fig. 12 is represented in Fig. 13 highlighting in red the
elements created by the 3D remeshing.

All these situations are intrinsically connected to the
method and cannot be completely removed, in 2D as in 3D.
However there exist some ad hoc strategies that can be used
to reduce their effects. For instance, the use of a penalized
parameter α for the free-surface elements [13], a local refine-
ment of the free boundaries, or a specific treatment of the
contact elements [37]. Nevertheless the aim of this work is
to analyze the PFEM in its general and standard formulation.
Hence, these local strategies will not be taken into considera-

Fig. 9 Mechanismof volume gain due to remeshing. Free particle rein-
sertion. a Before meshing. b After meshing

Fig. 10 Mechanism of volume gain due to remeshing. Impact of a fluid
stream with a boundary. a Before meshing. b After meshing

tion. Despite this, it will be shown that just the use of a proper
values for the parameter α and the mesh refinement can be
enough to control and keep limited the volume variation due
to the PFEM remeshing.

5 Numerical examples

In this section, four numerical examples are studied to find a
range of values of α for which the volume variation induced
by the PFEM remeshing is limited and the numerical results
do not change too much. Moreover, the convergence of the
method with respect to the mesh size is tested. First, the same
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Fig. 11 Mechanism of volume gain due to remeshing. Union of free-
surface boundaries. a Before meshing. b After meshing

Fig. 12 3D mechanism of volume gain due to remeshing. Impact of a
fluid stream with a boundary. a Before meshing. b After meshing

dam break with obstacle of Fig. 4 is analyzed to show the
dependence of the volume conservation on α and to select a
good value of α for the volume conservation issue. With this
value of α, the convergence of the PFEM with respect to the
mesh size in terms of volume conservation is studied for a
standard dam break, for an impact of a fluid volume against
a rigid wall and for the mixing of a viscous fluid.

All the numerical examples are studied using an uniform
mesh. However, Eq. (1) shows that the extension to hetere-
ogeneous meshes is straightforward. The only complication

Fig. 13 3D mechanism of volume gain due to remeshing. Impact of
a fluid stream with a boundary, central section of Fig. 12. a Before
meshing. b After meshing

associated to these cases is that the element size h is not fixed
but it must be computed locally.

5.1 Water dam break against a rigid step

The collapse of awater columnagainst a rigid step (Fig. 4) has
been solved for different values of α and with a fixed mean
mesh size h = 0.005m. The total duration of the analysis is
2 s and a time step �t = 0.0005s has been used.

In Fig. 14 the results of the numerical simulations are
compared to laboratory tests [16] for three different values of
α and for two time instants (t = 0.2 s and t = 0.3 s). These
plots show that for each α a different solution is obtained
confirming that the choice of α affects the numerical results.
However, the differences are small and the dynamics of the
example is respected despite the use of a large range of α

(from 1.05 to 1.6).
Nevertheless, after the impact against the rigid boundaries

and the consequent formation of splashes, the results given
by different α start to diverge and, in particular, for large
values of α the resulting volume variation is extremely high.
Figure 15 shows the volume variation�Vrem obtained at the
end of the analysis (t = 2.0 s) for different values of α. The
graph shows that the conjunction of an analysis dominated
by splashes and impacts against the boundaries with the use
of large values of α on a relatively coarse mesh, may induce
a huge increase of volume. From the graph an almost lin-
ear dependence between α and �Vrem can be deduced. For
α ≤ 1.2, the final balance of volume variation is negative;
for α > 1.2 is positive. For values of α between α = 1.15
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Fig. 14 Water dam break against a rigid step. Experimental [16] and
numerical results for three different values of α at t = 0.2 s and t = 0.3
s. a t = 0.2 s, experimental. b t = 0.3 s, experimental. c t = 0.2 s,
α = 1.05. d t = 0.3 s, α = 1.05. e t = 0.2 s, α = 1.20. f t = 0.3 s,
α = 1.20. g t = 0.2s, α = 1.60. h t = 0.3 s, α = 1.60

and α = 1.25, the absolute value curve has a quite flat min-
imum zone for which �Vrem is lower than the 10 %. In
particular, for this problem the minimum (|�Vrem | ≈ 1%)
is reached for α = 1.2. Observe that this value is close to the
values suggested in previous works [20,28,30,31] according
to empirical considerations only.

It must be clarified that is not possible to determine uni-
versally the best value for α, a different example may give
a slight different minimum value, and hence this cannot be
among the objectives of the present study. However, it can
be shown that, although the results depend on α, there exists
a range of values of α for which the numerical results do not
change significantly.

Note also that the numerical example here solved is partic-
ularly critical for the issue of volume conservation. In simpler
problems (e.g. a steady fluid motion or at least with less

Fig. 15 Water dam break against a rigid step. Volume variation for
different values of α at t = 2.0 s

Fig. 16 Water dam break. Initial geometry

Table 2 Water dam break. Problem data

H 0.05715 m

L 0.05715 m

Viscosity 10−3 Pa s

Density 103 kg/m3

splashes) the range of acceptable values for α will be larger
than the one found for this case.

5.2 Water dam break

The collapse of a water column on a rigid horizontal plane
[25] is here studied varying the mesh size and keeping fixed
the value of α = 1.2. The initial configuration and the prob-
lem data are provided in Fig. 16 and Table 2, respectively.

This problem is useful to understand the phenomena
occurring during the advance of a fluid front over rigid
boundaries in the PFEM. In this test the increase of vol-
ume is exclusively produced by the mechanism of the wave
advancing (Fig. 5) while the loss of volume is given by the
mechanisms of wave retirement (Fig. 6) and by the formation
of artificial waves (Fig. 7).

Figure 17 shows the fluid configurations at t = 0.15 s
obtained with the coarsest (h = 0.006m) and the finest (h =
0.001m) meshes.

The graph of Fig. 18 plots the time evolution of volume
variation due to remeshing obtained using the coarsest and
the finest meshes.
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Fig. 17 Water dam break. Deformed configurations at t = 0.15 s
obtained with the coarsest and the finest tested meshes and α = 1.2. a
Coarsest mesh. b Finest mesh

Fig. 18 Water dam break. Time evolution of volume variation due to
remeshing obtained with the coarsest and the finest tested meshes and
α = 1.2

The graphs show that for both meshes the tendency is to
increase the volume, however a clear reduction of volume
gain is obtained by reducing the mesh size.

For better visualizing the convergence in terms of mass
conservation, in Fig. 19 the volume variation is plotted for all
the testedmeshes separating the contribution of remeshing to
volume gain (wave advancing) and volume loss (wave retire-
ment). In particular, the dashed curve of Fig. 19 represents
the sum of only the positive variations of volume (

∑
�V rem ,

if �V rem > 0) while the continuous curve refers to the sum
of all the negative ones (

∑
�Vrem , if �V rem < 0).

The graphs show a clear convergence in terms of volume
preservation. Both volume losses and gains, that are due to
different volumevariationmechanisms, reduce progressively
with the mesh refinement. The graphs of Fig. 19 also confirm
the conclusion drawn from Fig. 18. In fact, the volume gains
are larger than the volume losses for all the tested meshes.

In conclusion, from this study it can be deduced that in the
initial phase of a dam break, the PFEM remeshing induces an
overall increment of volume, although this increase reduces
by refining the mesh. This means that the mechanism of

Fig. 19 Water dam break. Accumulated volume variation after 0.15 s
obtained for all the tested discretizations and α = 1.2

Fig. 20 Impact of a viscous fluid against a rigid wall. Initial geometry

Table 3 Impact of a viscous fluid against a rigid wall. Problem data

H 0.07 m

B 0.45 m

R 0.025 m

Viscosity 10−1 Pa s

Density 103 kg/m3

volume gain of Fig. 5 is prevalent with respect to the ones
responsible of volume loss (see Figs. 6 and 7), also for fine
meshes.

5.3 Impact of a viscous fluid against a rigid wall

In this test, a mass of viscous fluid falls into a fixed container.
The initial geometry and the problemdata are provided inFig.
20 and Table 3, respectively.

This example has been conceived to better understand the
interactionwithwalls (see Fig. 10). In this test, the fluidmass,
subjected only to the gravity force, falls down and collides
with the horizontal wall. When the fluid mass comes close
enough to the boundary, some elements are built between
the fluid surface and the rigid wall. These new elements
(highlighted in red in Fig. 21) can be considered as contact
elements and they are responsible for the total volume vari-
ation. However, differently from the contact domain method
[26,27], in which these elements are employed to detect the
contact surfaces and to compute contact forces, in this case
they are treated as standard fluid elements (with a physical
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Fig. 21 Impact of a viscous fluid against a rigid wall. Snapshots at
the contact instant for the three meshes. a h = 3mm. b h = 2mm.
c h = 1mm

Fig. 22 Impact of a viscous fluid against a rigid wall. Volume variation
on time for different mesh sizes

Fig. 23 Impact of a viscous fluid against a rigid wall. Snapshots at
the contact instant for the three different values of the parameter α.
a α = 1.1. b α = 1.2. c α = 1.4

meaning and the same constitutive relation of the fluid mate-
rial).

The problem has been solved for a fixed value of α = 1.2
and for three different mesh sizes. Figure 22 shows the vol-
ume variation for the three meshes. The final net increase of
the volume depends only on the elements created to manage
the contact and, as expected, decreases reducing the mean
mesh size. As in the previous example, a clear convergence
can be observed, showing that mass variation due to surface
contact can be controlled by reducing the typical mesh size.

It must also be observed that the typical dimension of
contact elements depends also on the parameter α. Larger
values of alpha generate larger contact elements. Figures 23
shows the comparison of the contact instant for three values
of alpha, where no significant differences can be observed.
Table 4 contains the final volume variation varying alpha for

Table 4 Impact of a viscous fluid against a rigid wall. Volume variation
due to the alpha parameter

alpha Volume variation (%)

1.1 4.02

1.2 4.31

1.4 4.36

R 

H 

H

B 

Fig. 24 Mixing of a viscous fluid. Initial geometry

Table 5 Mixing of a viscous fluid. Problem data

H 0.07 m

B 0.45 m

R 0.025 m

Viscosity 10−1 Pa s

Density 103 kg/m3

h = 3mm. It can be noticed that the alpha parameter does not
affect significantly the total mass in this particular situation.

5.4 Mixing of a viscous fluid

In this test, a volume of viscous fluid falls into a tank filled
with the same fluid. The initial geometry and the problem
data are given in Fig. 24 and Table 5, respectively.

As in the previous examples, the problem is solved for
α = 1.2 and for different mesh sizes (from h = 0.005m to
h = 0.0015m). This example is mainly characterized by the
mechanisms of Figs. 10 and 11. However, differently from
the first example, in this problem the amount of splashes is
reduced due to the high viscosity of the fluid considered. This
facilitates the study of the PFEM remeshing procedure.

Figure 25 shows that the dynamics of the problem is well
reproduced also for a coarse mesh. The curves of Fig. 26
are the volume variation on time obtained for four different
meshes. The results confirm quantitatively the convergence
tendency deducible from the previous pictures, showing that
volume variation tends to zero by reducing the size of the
mesh.

In Fig. 27 the numerical results obtained for three different
values of α at the end of the analysis (t = 1.5 s) are given.
The pressure contours (negative values for the compression)
are also plotted. The three results are almost identical despite
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Fig. 25 Mixing of a viscous fluid. Results for different meshes at three
time instants (α = 1.2). a t = 0.3 s, h = 5mm. b t = 0.3 s, h = 3mm.
c t = 0.3 s, h = 1.5mm. d t = 0.5 s, h = 5mm. e t = 0.5 s,
h = 3mm. f t = 0.5 s, h = 1.5mm. g t = 1.05 s, h = 5mm. h
t = 1.05 s, h = 3mm. i t = 1.05 s, h = 1.5mm

Fig. 26 Mixing of a viscous fluid. Volume variation on time for dif-
ferent mesh sizes and α = 1.2

the use of different values of α and this confirms that the role
of the parameter α is less crucial in this problem.

6 Conclusions

This paper has been devoted to study the PFEM remesh-
ing procedure and to analyze how this operation may affect
the numerical results. One of the key features of the PFEM
is the efficient solution of problems with severe changes of
the topology. Delaunay triangulation coupled with the Alpha
Shape method allows for a fast generation of a newmesh and
for a robust identification of the internal and external bound-

Fig. 27 Mixing of a viscous fluid. Results at t = 1.5 s for different
values of α. a α = 1.15. b α = 1.20. c α = 1.25

aries.However, this remeshing strategymay lead to undesired
topological modifications and to an overall volume variation.

The definition of the typical mechanisms that induce these
volume changes in the PFEM simulations is crucial to design
the optimum countermeasures. For this reason, in the first
part of the paper all these mechanisms have been described
and graphically illustrated. Their identification can definitely
be helpful to anyone wishing to carry out an analysis with
PFEM in the future. A free-surface benchmark problem, as
the water dam break against a rigid obstacle, has been used
to show how each one of these mechanisms may affect a
different phase of the analysis and induce volume variations.
The principal mechanisms have been clearly highlighted also
for the rest of numerical tests.

As expected, all the examples studied in this work con-
firm that there is a clear dependence between the parameter
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α of the Alpha Shape method and �V rem . It has been shown
that for values close to α = 1.2, the numerical results do not
change significantly and the variation of volume is accept-
able also for problems involving highly unsteady flows. The
range of α proposed in this work confirms the values used in
previous papers (e.g. [19,20,28,30,31]).

From the analysis of the collapse of a water column, it has
been found that the PFEM remeshing induces an increment
of volume during the first phase of the dam break, for all
the tested meshes. However, this volume variation reduces
progressively by refining the mesh. The convergence of the
PFEM remeshing in terms of volume preservation has been
verified also for all the other tests. These results show that,
despite the continuous remeshing, the PFEM works in the
spirit of the finite element ensuring better results when the
mesh size is reduced, at least in termsof volumeconservation.

In conclusion, it has been shown that, although the lack
of volume preservation is a intrinsic drawback of the PFEM
remeshing, it can be limited by using a proper value of α

and moreover it can be controlled and strongly reduced by
refining the mesh.
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