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Abstract The discrete element method (DEM) is a numer-
ical method that has achieved general acceptance as an
alternative tool to model discontinuous media, with a wide
range of practical applications. Given that spheres are not
always a suitable shape for DEM simulations, other particle
shapes need to be used. However, for shapes different from
spheres, there are not many advancing front packing algo-
rithms, which are, in many cases, the best algorithms that
allow obtaining an appropriate initial set of particles for a
DEM simulation. This lack of advancing front packing algo-
rithms for shapes different from spheres is mostly due to the
difficulty of solving the problem of placing a mobile particle
in contact with other two (in 2D) or three (in 3D) particles.
In this paper, a new method for solving the problem of the
particle in contact is proposed, and it is compared with the
well-established wrappers method. It is shown that the new
proposed method is a promising alternative for spherocylin-
ders. For other shapes the formulation of the new method
is shown to be correct, but it was clearly outperformed by
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the wrappers method and the efficiency of the proposed for-
mulation needs to be improved by optimizing the solution
procedure.
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1 Introduction

The discrete element method (DEM) is a numerical method
that has achieved great recognition as an alternative tool to
model discontinuous media. Several professional [1,2] and
free software [3–5] are available for this purpose. Practical
applications to a wide range of problems may be found in
the recent literature [6–26]; however, most of them assume
spherical particles. Spheres are simple to code and easy to
use, but in many cases they cannot capture the basic dynamic
mechanisms and therefore do not provide the most adequate
geometric model for the particles. For instance, an individ-
ual disk (or sphere) will always roll down over a rough slope;
however, a generic particle, such as a cluster of disks, may
stay in static equilibrium, slide or roll, depending on the
slope angle, the tangential friction coefficient, and the particle
shape [27]. Particle types other than disks or spheres used in
DEM include: clusters of spheres [1–3,28,29], which enable
to model a wide range of different shapes, polyhedra [30],
ellipses and ellipsoids [27], superquadrics [31] and sphero-
cylinders [32], among others.

When DEM began to be applied some years ago, one
of its major problems was the cost of obtaining an initial
set of particles with a high volume (area) fraction, which
is defined as the ratio of solid volume (area) to the total
volume (area). Most of the initial applications used some
kind of dynamic algorithm, in which a loose packing of non-
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Pseudocode 1 General steps that are common to all advancing front packing algorithms

1. Initialize the packing (usually with two or three particles).

2. Generate or select the particle to be packed.

3. Select an active front and determine the position at which the particle just touches the particles in the front.

4. Check if the particle at this position overlaps with any existing particles.

5. If no overlap occurs, accept the new particle and return to step 2 for the next particle. Otherwise go to step 6.

6. Reject the position and repeat step 3 for another active front.

overlapping particles is generated at random positions, and
later the particles are rearranged by imposing some loading
and boundary conditions [33–37]. Dynamic algorithms are
computationally costly because they require a previous DEM
simulation. Hence it was necessary to develop constructive
packing methods, which are characterized by the sequen-
tial placement of particles at their final positions [38–45].
The class of constructive methods includes “advancing front
algorithms”.

An advancing front is a group of particles in the surround-
ings of the evolving system of particles under generation. A
group of previously placed particles lie inside the advancing
front, while new particles are placed in contact with the outer
particles of the front. The packing usually starts with a set
of two or three particles at any given position, or one or two
particles in contact with the walls defining the domain (walls
are also considered particles in this context). These particles
comprise the initial advancing front. Then a new particle is
generated or chosen from a repertory of particles to be added
to the packing. Next, the new particle is placed at a posi-
tion that just touches other particles in the advancing front.
Then the advancing front is updated and the process contin-
ues. Pseudocode 1 summarizes the basic steps of a generic
advancing front algorithm [40].

In order to carry out step 3 of Pseudocode 1, the prob-
lem of placing a particle in contact with others must be
solved (see Sect. 3). In this sense, some authors state that
a higher local density is achieved if each new particle added
to the media is placed in contact with other two existing
particles in the two-dimensional (2D) case [41]. In the analo-
gous three-dimensional (3D) case, the contact involves other
three existing particles. For spherical particles of equal size,
Kepler’s conjecture [46] is the solution for a maximum
global volume fraction. Apollonius circle problem [47] is
also related to placing particles in contact, but it is not exactly
the problem that is solved further in this paper using mini-
mization.

The problem of placing a particle in contact with other
two (in 2D) or other three (in 3D) fixed particles has been
solved using a direct approach, for some types of particles,
as part of advancing front packing algorithms. Such direct
approach is briefly explained in Sect. 3.1, and the types of

particles mentioned above are circles [41,48], polygons [49],
ellipses [49], and spheres [50]. The solution of the problem
can be not unique, as will be seen in Sect. 3.

Even for simple shapes such as ellipses, the previously
mentioned direct approach can be very difficult to apply,
given the complexity of the analytical expressions that have
to be obtained. That is why an alternative procedure based on
minimization is presented in Sect. 3.2, together with a com-
parisonwith the direct approach, for several types of particles
used in DEM.

Optimization techniques have been used as an auxiliary
tool in the process of packing particles for DEM. For exam-
ple, the position and dimension of particles can be modified
iteratively in order to decrease the empty space in the domain,
and in order to eliminate the gap between the domain bound-
ary and the particles [51].Also, the remaining heterogeneities
in the packing can be removed, even without modifying the
shape or dimensions of particles [38]. However, to the best
of the authors’ knowledge, optimization has never been used
before by other researchers in order to place a particle in
contact with other two (in 2D) or other three (in 3D) fixed
particles.

2 Advancing front particle packing algorithm

Let G be a sub-domain of the physical space Rn (n = 2 for
2D or n = 3 for 3D) that should be filled with a dense set
of particles whose dimensions r̃ follow a given distribution.
The dimensions, for instance, correspond to r̃ = r where r
is the radius in case the particles are disks or spheres, and
r̃ = (a, b) when the particles are ellipses having semi-axis a
and b, respectively.

Alternative versions of advancing front algorithms have
been proposed [38–41,45], differing on details in each step
of Pseudocode 1. The specific advancing front algorithm in
2D used by the authors, based on their previous work [42–
44] is described in Pseudocode 2. This pseudocode, when
adapted to 3D, may become more complex in practice, but
remains essentially the same.

Step 2 of Pseudocode 2 is illustrated in Fig. 1, for the
particular case of disks. Sub-domain G is represented by the
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Pseudocode 2 Detailed steps of advancing front packing algorithm in 2D

Input: Bounding geometry (of finite area)

Output: set of par�cles

Step 1) (Ini�aliza�on)

Create two ini�al tangent par�cles 1, and 2

≔ { 1, 2}

= { 1, 2}

Step 2)
̃ ≔ set of parameters that define the next par�cle except for its center

While ≠ ∅

Step 2.1) (Defini�on of local front)

0:= select par�cle of at random
: = all neighbor par�cles of 0

Step 2.2)
For all ∈

Step 2.2.1)
If ( 0, , , , ̃) ≠ ∅

:= any element of ( 0, , , , ̃)

: = ⋃
:= ⋃
̃ ≔ set of parameters that define the next par�cle except for its center

Go to step 2.1

Step 2.3)

:= − { 0}

Step 3) End

surrounding square box in bold black lines. The complete set
of particles, represented by black and gray disks at a given
time step of the procedure, is memorized in a set E . The
most external particles of the packing comprise the present
global advancing front and are represented by the dark disks
in Fig. 1a. These particles are memorized in a set Cext which
is initialized with two tangent particles Cext := {p1, p2}, in
Step 1. The initial particles are generally positioned at the
center or at a corner of the domain defined by the bounding
geometry, G. Then the new particle pnew is generated (or
chosen from an initial pool) with defining parameters r̃ as
represented in the lower right corner of Fig. 1a. In order to

select the position of pnew, a particle p0 ∈ Cext is selected
at random as pointed by the arrow in top right Fig. 1b, or in
Fig. 1c in the following iteration of the example. This particle
p0 is a candidate to be tangent to pnew. The next task within
substep 2.1 of the pseudocode is to find a local advancing
front, defined by the sub-set V ⊇ E with existing particles
in the neighborhood of p0. Neighbor particles are in contact
with p0 or at distance not greater than the gap necessary to
accommodate the new particle. These particles are marked
with a little star in Fig. 1b, c.

The next substep 2.2 comes once p0 and one of its neigh-
bors p have been determined in the previous substep 2.1. Step
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Fig. 1 Step 2 of Pseudocode 2, for the particular case of disks. Particles
in contact with p0 or at distance not greater than the gap necessary to
accommodate the newparticle, aremarkedwith a little star. a configura-
tion of a given step with Cext in dark and new particle pnew represented

in the lower right corner of the square; b random selection of front
member p0 ∈ Cext; c rejection of front member p0 (now in gray color)
and selection of new front member p′

0 ∈ Cext; d final position of pnew
tangent to p′

0

2.2 is a vital part of the algorithm and is based on a function
that generates the setW of all possible new particles, in con-
tact with p0 and p (the entire Sect. 3 is dedicated to this
issue). The rules set by this function are explained after the
next paragraph, but it is conjectured that there exist at most
two possible positions when particles are convex. If setW is
empty then particle p0 is removed from the advancing front
Cext and a new element p′

0 ∈ Cext is randomly selected as
pointed by the arrow in Fig. 1c. If setW is not empty, one of
its elements is chosen randomly and added to the packing.
In the example of Fig. 1d such element is marked with a tri-

angle. Then the advancing front and total set of particles are
updated and the process continues until the whole domain is
filled.

It is important to notice that, in Pseudocode 2, the advanc-
ing front Cext, which contains the external particles of the
media, is completely determined by the initial assignment
Cext := {p1, p2} of step 1; by the assignment Cext :=
Cext

⋃
pnew of step 2.2.1, which takes place whenever a

new particle is added to the media; and by the assignment,
Cext := Cext − {p0} of step 2.3, which takes place when-
ever it is not possible to place a new particle in contact with
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particle p0. This way of defining Cext may eventually leave
some “external” particles in the interior of the media, as can
be seen in Fig. 1, but they will be removed as soon as they
are selected in substep 2.1, because it will not be possible to
place another particle in contact with them.

In order to define the setW of Pseudocode 2, let p1 and p2
be two particles already placed in the sub-domain G. Then
W (p1, p2,G, V, r̃) is defined as a set of particles (or the
empty set) such that: (a) they are determined by parameters r̃
except for their position; (b) they are in outer contact with p1
and p2 simultaneously; and (c) they are completely contained
in G and do not overlap with any element of V . It can be said
that this setW (p1, p2,G, V, r̃) has at most two elements, as
can be seen in Sect. 3. A new way to calculate such elements
is presented in the next section.

Finally, somewords about the complexity of Pseudocode2
should be said. It has been proven that it has a complex-
ity of order O (n), where n is the total number of particles.
The interested reader can verify the derivation of this result
in [42]. The comparison of Pseudocode 2 with respect to
dynamic methods, for the case of spheres, can also be seen
in the latter reference.

3 Construction of a particle in contact with others

Let p [c] denote a particle in R
n such that c ∈ R

n is a point
with the property that any rotation or translation applied to
p [c] must also be applied to c and vice versa. Now consider
the following problem:
Placing a particle in contact with others

Let p1, . . . , pn be n fixed particles inRn (n ∈ {2, 3}), and
let pmob [c] be another particle that must be translated, with-
out making rotations, in such a way that pmob [c] be in outer
contact with all the particles pi simultaneously, i = 1, n,
without overlapping with any of them. Find the points c
that satisfy this condition. From now on, particle pmob [c]
will be referred to as the “mobile particle”, in order to sim-
plify the terminology, despite it is not actually moving. The
phrase “without making rotations” can be better understood
by looking at Fig. 4. The mobile particles there, Emob [c] and
Smob [c], change their positions but preserve their inclination,
in such a way that they are not rotated.

It has been verified in practice that in the general case, the
problem of placing a particle in contact with others has at
most two solutions when particles p1, . . . , pn and pmob [c]
are convex and are close enough to each other (Fig. 2a). This
can degenerate to only one solution when the mobile particle
fits exactly in the gap between the fixed particles (Fig. 2b).
Obviously, there is no solution when p1, . . . , pn are apart
from each other by a distance greater than the larger Feret
dimension of the particle to be placed (Fig. 2c).

Fig. 2 Number of solutions for the problem of placing a particle in
contact with others

In the case of spherical particles and clusters of spheres it is
possible to develop an analytical solution for the problempro-
posed above based on the concept of wrapper’s intersection
[38,52,53], explained in the following Sect. 3.1. However,
the analytical procedures may become too cumbersome in
the case of polyhedra and there is no analytical solution for
particleswith general shape.An alternativemethodology that
may be eventually generalized for these cases is explored in
Sect. 3.2. The two solutions are compared when possible.

3.1 Wrappers intersection method for placing a particle
in contact with others

Let pfix be a fixed particle and pmob [c] be a mobile particle.
The locus defined by all points c such that pfix and pmob [c]
are in outer contact, will be called wrapper.

In two dimensions, if the fixed and mobile particles are
circles with radii equal to rfix and rmob, respectively, then
the corresponding wrapper is obviously a circle with radius
rfix +rmob (Fig. 3a). When the two particles are described by
polygons, the wrapper is a polygon with twice the number
of sides of the fixed one (Fig. 3b). Similar geometries are
generated in the three-dimensional case.

The method of wrappers intersection in R
n , for translat-

ing a mobile particle pmob [c] in such a way that it is in
outer contact with other fixed particles p1, . . . , pn , without
overlapping, consists of finding the loci described by c when
sliding pmob [c] around each of the fixed particles, then find-
ing the intersections of these loci, and finally translating c to
make it coincide with these intersections. It is important to
notice that the choice of c is irrelevant as long as its position
remains unchanged with respect to particle pmob [c].

Figure 3a shows an example of a mobile circle Cmob [c]
of radius rmob placed in contact with the fixed circles C1 and
C2, of center (radii) equal to c1 (r1) and c2 (r2), respectively.
In this case, the point c is taken as the center of Cmob [c], and
it can be seen that the wrappers obtained by sliding Cmob [c]
around C1 and C2 are the circles C ′

1 and C
′
2, concentric with

C1 and C2, respectively, and having radii equal to r1 + rmob

and r2 + rmob, respectively. The solution of the problem are
the circles C31 and C32. Similarly, Fig. 3b shows the case of
the fixed squares P1 and P2, which yield the wrappers P ′

1 and
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Fig. 3 Particle in contact with
other two, with its position
obtained by the wrappers
intersection method. a Case of
circles; b Case of polygons

Fig. 4 Examples of wrappers.
a Ellipses; b Spherocylinders

P ′
2 after sliding the mobile triangle Pmob [c] around them. In

this case, the solution is the triangles P31 and P32. Notice
that Pmob [c], P31, and P32 are all identical except for their
position.

Despite the simplicity of wrappers in Fig. 3, other cases
can be quite complex. Consider, for example, the wrapper E ′
formed by the center c of an ellipse Emob [c], when sliding
it around another ellipse E0 in horizontal position, centered
at the origin of coordinates. It can be seen in Fig. 4a that the
wrapper E ′ is not even an ellipse in the general case. The
points (xc, yc) ∈ E ′ are given by expression

(xc, yc) = (a cos θ + uλ, b sin θ + vλ) , (1)

where a and b are positive constants, θ ∈ [0, 2π) and u, v,
and λ depend on θ (see [40] for more details).

The wrapper S′ corresponding to a fixed and a mobile
spherocylinders S0 and Smob [c], respectively, is not defined
straightforwardly either. It consists of a set of line segments
and circumference arcs interleaved, which is more complex
than just a spherocylinder. The analogous wrappers in 3D for

ellipsoids and spherocylinders are even more complicated,
let alone finding their intersection for placing the mobile
particle in contact with the fixed ones. Greater difficulties
are expected for other shapes such as clusters of circles or
spheres, polyhedra, etc. In some of these cases, the theory
explained in the next section can be an alternative.

3.2 Potential minimization method for placing a particle
in contact with others

The method corresponding to this section uses an optimiza-
tion approach to solve the problem of the particle in contact.
In some cases, it can be easier to apply than wrappers inter-
section because it only requires the definition of a continuous
function ω (p1, p2) for a pair of particles (p1, p2) such that:

ω (p1, p2)

{≤ 0 if p1 ∩ p2 �= ∅
> 0 otherwise

(2)

Function ω (p1, p2) is a measure of the gap between the
surfaces of the two particles. Condition (2) implies that p1
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Fig. 5 Group of disks and particle size distribution. a packing generated with wrappers; b packing generated with minimization; c Cumulative
histogram of disks’ diameters d versus number of particles n of the packing generated with minimization

and p2 are in outer contact without overlapping if and only
if ω (p1, p2) = 0. Function ω is usually not unique. Explicit
formulas for functionω (p1, p2)will be given in next sections
for the cases of disks, ellipses, and superquadrics in 2D and
for the cases of spheres and spherocylinders in 3D.

Once the gap function ω has been chosen, the solution to
the problem of placing a particle in contact with others can
be obtained by solving the following optimization problem:

minimize |ω (p1, pmob [x])| + · · · + |ω (pn, pmob [x])|
subject to x ∈ R

n

(3)

Condition (3) means that a particle is in simultaneous outer
contact with other two particles in 2D (or three in 3D) when
the sum of the gaps is minimized (in this case the minimum
should be zero). Since two solutions for problem (3) are being
searched in most cases (see Fig. 2), such problem has to be
solved twice each time in practice, with an additional restric-
tion that indicates which solution is being searched. Such
restriction is based on the fact that the centers of the two
solution particles usually lie on different half-spaces defined
by the centers of the fixed particles. In the 2D case, the half-
spaces are the half-planes determined by the line joining
the centers of the two fixed particles, while in the 3D case
the half-spaces are determined by the plane containing the
centers of the three fixed particles. In order to solve the mini-
mization problem the authors used the Nelder–Mead method
[54] already validated and included in a commercial soft-
ware for the 2D cases, and the same method available in a
free C++ library [55], for the 3D cases. This method was ini-
tially chosen because it requires relatively few evaluations to
reach the global minimum, and does not require derivative
information of the objective function. More details about the
optimization process are given in Sect. 3.3.

3.2.1 Circles or spheres

For any two circles or spheres p1 and p2, ω (p1, p2) can be
defined by the equality

ω (p1, p2) = ‖c1 − c2‖2 − (r1 + r2)
2 , (4)

where c1 and c2 are the coordinates of centers of the particles
and r1 and r2 their radii, respectively. It is possible to verify
that expression (4) satisfies (2).

In order to check the proposed function and minimization
procedure, the authors present the case of packing a square
box with 40 unit side with disks whose radii follow a random
continuous uniform distribution in the interval [1, 2]. The
notation U [a, b] will be used for the random continuous
uniform distribution in the interval [a, b].

Figure 5a shows the final packing of 195 disks using the
wrappers technique described in [40]. The average placing
time using this direct approach was 40.94 particles per sec-
ond. The result using minimization is shown in Fig. 5b and
this final configuration of 191 disks was achieved at a placing
rate of 0.037 particles per second. So, it can be seen that in
the case of disks, the direct approach is much faster than the
minimization technique used. The area fraction in both cases
is very high: 80.01% for the packing of Fig. 5a and 82.00%
for the packing of Fig. 5b.

A histogram showing the cumulative diameter distribution
d versus the number of particles n of the latter packing is
shown in Fig. 5c. It can be seen that it corresponds to the
distributionU [2, 4]. The histograms corresponding to all the
other packings in the paper are omitted since they are almost
identical to this one. By the way, one of the advantages of
Pseudocode 2 is that the prescribed particle size distribution
remains unchanged. This is because, for example, in the case
of disks, if a random radius r has been generated from the
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Fig. 6 Group of clusters.
a packing generated with
wrappers; b packing generated
with minimization

prescribed distribution, no other radiuswill be generated until
a disk of radius r has been added to the packing.

3.2.2 Clusters of disks

The expression ω (p1, p2) for a pair of clusters of disks
or spheres, p1 and p2, is also relatively simple. It can be
defined as the minimum of the evaluations of the expression
(4) applied to all pairs of disks or spheres comprised in the
clusters p1 and p2:

ω (p1, p2) = min
{
‖c1i − c2j‖2 − (

r1i + r2 j
)2 : i

= 1, n1 and j = 1, n2
}

(5)

where c1i is the center of the i-th disk or sphere comprised
in the cluster p1, c2j is the center of the j-th disk or sphere
comprised in p2, and n1 and n2 are the number of disks or
spheres comprised in clusters p1 and p2, respectively. The
radii r1i and r2 j have an analogous definition.

The procedure is tested for clusters formed by two disks
each, with circumscribed radii distribution U [1, 2]. The
aspect ratio of all clusters is 2/3. Figure 6a shows a packing
of 65 clusters obtained with the direct geometric approach,
while Fig. 6b shows a packing of 38 clusters obtained with
the minimization procedure using a commercial program.
Both packings are inside a square of side 20 units. Again the
direct approach was much faster, achieving a placement rate
of 9.05 particles per second against only 0.023 particles per
second using minimization.

Furthermore, in several instances the minimization of
expression (3) was not achieved, and several particles inside
the domain could not be surrounded by others, therefore a few
particles were misplaced, thus producing an invalid packing.
In theory, for any particle shape, expression (3) can always
be used to solve the problem of the particle in contact stated

in the beginning of Sect. 3. However, despite the only differ-
ence between expressions (4) (for disks) and (5) (for clusters
of disks), being the min operator, the Nelder–Mead method
used by authors did not succeed in finding the global min-
ima for all instances of (3) when the particles are clusters of
disks. So, in this respect, more research is needed in order to
find suitable optimization methods calibrated with appropri-
ate parameters, and used with better initial points.

3.2.3 Ellipses in 2D

The expression of ω (p1, p2), for any two elliptical particles
p1 and p2 can be given by

ω (p1, p2) = min
t∈[0,2π[ P1 ( p̃2 (t)) (6)

where p̃2 (t) ∈ R
2, with t ∈ [0, 2π[, is a parametric repre-

sentation of p2, and P1 (x) = 0, for x = (x, y) ∈ R
2, is a

cartesian representation of p1. P1 (x, y) and p̃2 (t) are given
by the following expressions, respectively:

P1 (x, y) = A1x
2 + B1y

2 + C1xy + D1x + E1y + F1,

(7)

p̃2 (t) = Mθ2

(
a2 cos t
b2 sin t

)

+ c2, (8)

where A1, B1, a2, and b2 are positive real numbers,
C1, D1, E1, F1 ∈ R, c2 ∈ R

2, and Mθ2 is a matrix repre-
senting a rotation of angle θ2 with respect to the origin of
coordinates in 2D.

Expression (6) was derived from the known fact that
P1 (x) < 0 (P1 (x) > 0) if and only if x lies inside (out-
side) P1, and that P1 (x) = 0 if and only if x lies over P1.
There are other alternatives for evaluating (6) using Lagrange
multipliers [27].

123



Comp. Part. Mech. (2017) 4:165–179 173

Fig. 7 Packing of ellipses generated with wrappers

One initial packing of 77 ellipses inside a square of side 20
units, was obtained with the direct approach (Fig. 7). Such
ellipses have an aspect ratio equal to 0.5, and their major
semi-axis follow the distribution U [1, 2]. Due to numeri-
cal complications in the computational implementation of
expression (6), some solutions were lost, which resulted in
large gaps between the particles and the lower part of the
domain boundary. The packing took 1647 s to be gener-
ated. On the other hand, the minimization approach was so
slow and inaccurate for ellipses, that a simple instance of two
ellipses in contact with other two (Fig. 13d) took 3484.8 s to
be generated.

3.2.4 Superquadrics

Another case of preliminary application of the potential
minimization method will be shown with superquadrics.
In mathematics, the superquadrics or super-quadrics (also
superquadratics) are a family of geometric shapes defined by
formulas that resemble those of ellipsoids and other quadrics,
except that the squaring operations are replaced by arbitrary
powers. The canonical equation for a superquadric [56] in
two dimensions is given by the following expression:

f (x, y) =
∣
∣
∣
x

a

∣
∣
∣
α +

∣
∣
∣
y

b

∣
∣
∣
β − 1 = 0, (9)

with α, β > 0. Depending on the values of α and β, different
shapes can be obtained. Figure 8 shows three examples.

One also has that f (x, y) < 0 for points inside the curve,
f (x, y) = 0 for points lying on the curve, and f (x, y) > 0
for points outside the curve. Taking advantage on this prop-
erty of f , the function ω applied to two superquadrics can
be defined analogously to the case of ellipses, by taking the
minimum evaluation of all the points of one of them into

Fig. 8 Several shapes can be obtained depending on values of α and β

in (9). a sharp superquadric; b ellipse; c rectangle-shaped superquadric

the cartesian equation of the other. This idea has been pre-
viously used in other works in order to, for example, check
the intersection of two ellipses [27]. There also exist dis-
tance calculation methods [57,58] that can be used in order
to evaluate function ω applied to two superquadrics.

The implementation of this particle construction method
does not work properly yet, and the high computational
cost makes practical applications almost impossible for now.
Figure 13 shows two examples. For sharp superquadrics
(Fig. 13e), the minimization algorithm failed in the upper
solution, while for squared superquadrics (Fig. 13f), the
minimization algorithm failed in the lower solution. The
generation time of the two sharp and rectangle-shaped
superquadrics were 462.78 and 1401.1 s, respectively.

3.2.5 Spheres

This and the following section are about bodies in 3D, and all
the packings shown in them were generated with implemen-
tations in C++, unlike packings shown in previous sections,
which were all obtained from implementations in a commer-
cial command interpreter.

Equation (3) used for disks in 2D also applies for spheres
in 3D. Two preliminary sphere packings were generated
(Fig. 9), with radii following theU [1, 2] distribution, inside
cubes of side equal to 40 units. As expected, following the
results obtained with disks, the direct approach also outper-
forms minimization in the case of spheres. The generation
speed with the direct approach was more than 20 times faster
than with minimization. The volume fraction in the packing
obtained with the direct approach in Fig. 9a is 58.9%, while
the volume fraction in the packing obtained in Fig. 9b with
minimization is 60.1%. Both values of volume fraction can
be considered high for the radii distribution adopted [42].

3.2.6 Spherocylinders

A spherocylinder is a capsule-like body determined by a
line segment and a positive real number called radius, and
is defined as the set of all points that lie at a distance from
the segment equal to or smaller than the radius. For this type
of particle, the potential minimization method is perhaps the
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Fig. 9 Group of spheres. a
packing of 1973 spheres
generated with wrappers; b
packing of 1945 spheres
generated with minimization

Fig. 10 Spherocylinder built in contact with other three using the
potential minimization method

most suitable in order to build the particle in contact. If p1 and
p2 are two spherocylinders defined by segments s1 and s2,
and radii r1 and r2, respectively, then the function ω (p1, p2)
can be defined by the following equality:

ω (p1, p2) = d1 (s1, s2)2 − (r1 + r2)
2 , (10)

where d1 (s1, s2) = inf {d (λ1,λ2) : λ1 ∈ s1,λ2 ∈ s2} is
the distance between segments s1 and s2 (a procedure for
calculating the distance between two line segments can be
seen in [59]), being d the usual distance in R

n . An example
of contacting spherocylinder pmob [c] obtained by solving
(3) after substituting ω by (10) can be seen in Fig. 10.

Given that for spherocylinders the wrappers were very
complicated to describe, especially in 3D, a preliminary com-
parison in 2D between wrappers and minimization (Fig. 11)
was carried out by approximating spherocylinders with clus-
ters of 4 disks each in the case of wrappers. In [45] the reader

can find approximations of some simple shapes with clus-
ters. A packing of spherocylinders in 3D was also obtained
(Fig. 12).

The two packings can be seen in Fig. 11. In both packings,
contained in squares of side equal to 20 units, the particles
have an aspect ratio equal to 0.5, and circumscribed radii fol-
lowing the U [1, 2] distribution. The packing of 73 clusters
(Fig. 11a), obtained by wrappers intersection, was generated
at a speed of 1.05 particles per second, while the packing
of 77 spherocylinders (Fig. 11b) obtained by minimization,
was generated at a speed of 0.0094 particles per second. This
suggests that if the generation of spherocylinders usingwrap-
pers was possible, it would be by far faster than generation
using minimization. However, as was already mentioned,
the formulation of wrappers intersection for spherocylinders,
especially in 3D, is not a trivial task. The area fractions of
the packings were equal to 77.21 and 82.20% for the cases
of Fig. 11a and b, respectively.

The packing of spherocylinders generated in 3D can be
seen in Fig. 12b. It comprises 5901 particles generated at a
speed of 3.90 particles per second, and is contained within a
cube of side equal to 40 units. This speed is so much higher
than the analogous speed in 2D, because in this case an effi-
cient implementation in C++ was used. Each particle has an
aspect ratio of 0.5, and the circumscribed radii of the particles
follow the U [1, 2] distribution. The volume fraction of the
packing, measured with respect to the circumscribed box, is
equal to 45.77%.

For the sake of comparison, another packing of 4778
spherocylinders approximated with clusters was generated
(Fig. 12a). Given that in this case the generation speed with
wrappers was very slow, an approximate wrappers method
was implemented, producing a packing with a much less
volume fraction equal to 36.68%, but generated at the con-
venient speed of 172.30 particles per second. This packing is
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Fig. 11 Comparison between
wrappers and minimization in
2D spherocylinders. a packing
of spherocylinders
approximated with clusters of
disks and generated with
wrappers intersection; b packing
of spherocylinders generated
with minimization

Fig. 12 Comparison between
wrappers and minimization in
3D spherocylinders. a Packing
of 4778 spherocylinders
approximated with clusters; b
Packing of 5901 spherocylinders
generated with minimization

also contained in a cube of side equal to 40 units. It is interest-
ing that not only in this case, but also in all packings presented
in this paper, the volume fraction of packings obtained with
minimization is higher than the volume fraction of analogous
packings obtained using wrappers.

3.3 Performance of the optimization methods

Three global optimization methods were tested for several
types of particles, in finding the two global minima of prob-
lem (3). The methods were Nelder–Mead [54], Differential
Evolution [60], and Simulated Annealing [61]. The results
obtained with Nelder–Mead in a preliminary test in 2D with
circles, spherocylinders, clusters of three circles, ellipses,
sharp superquadrics, and squared superquadrics can be seen
in Fig. 13, where the points obtained during the iteration
process are joined in dashed lines. In this figure, all parti-
cles except for the circles, have aspect ratio equal to 0.5,

and circumscribed radius equal to 2 units. The initial points
of the optimization algorithm were set in the line bisect-
ing the segment joining the centers of the fixed particles. It
can be seen that one of the two solutions are incorrect for
the cases of ellipses and superquadrics (Fig. 13d, e, f). The
solutions for circles, spherocylinders, and clusters of three
circles (Fig. 13a, b, c) are not only correct, but were also
obtained in shorter times, as can be seen in Figs. 14 and
15. In these two figures, the lines represent, for each itera-
tion point, the time consumed in seconds (horizontal axis)
versus the distance to the converged solution (vertical axis).
The results obtained with Differential Evolution and Sim-
ulated Annealing were less accurate than those shown in
Fig. 13 for Nelder–Mead, and the solution times required
by the latter are shorter in all cases. Figure 16 shows the
time comparison for the case of spherocylindrical parti-
cles, for which the Nelder–Mead has the shortest times. The
same happens for the other particles but the corresponding
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Fig. 13 Solution of problem (3) with Nelder–Mead for circles (a), spherocylinders (b), clusters of three circles (c), ellipses (d), sharp superquadrics
(e), and squared superquadrics (f)

Fig. 14 Curves representing CPU time in seconds versus distance to
the solution, for the iteration points of the Nelder–Mead optimization,
for the cases of circles, spherocylinders, and clusters of three circles
shown in Fig. 13a, b, c

figures are omitted for the sake of brevity. Two curves corre-
spond to each legend entry in Figs. 14, 15, 16, because there
exist two solutions pmob [c] in each of the six subplots in
Fig. 13.

4 Conclusion

The problemof placing amobile particle in contactwith other
two (in 2D) or three (in 3D), as part of advancing front particle
packing algorithms in the context of DEM simulations, has
been little studied in the available literature. The geometric
solution of such problemonly exists for a few particle shapes,
and is only based on the direct approach.

In this paper, a new solutionmethod for the problem, based
on minimization, has been proposed, and some preliminary
comparisons with respect to the existing direct approach
have been carried out, for several particle shapes used in
DEM.
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Fig. 15 Curves representing CPU time in seconds versus distance to
the solution, for the iteration points of the Nelder–Mead optimization,
for the cases of ellipses, sharp superquadrics, and squared superquadrics
shown in Fig. 13d, e, f

Fig. 16 Curves representing CPU time in seconds versus distance to
the solution, for the iteration points of the spherocylindrical particles,
for the methods Nelder–Mead, Simulated Annealing, and Differential
Evolution shown in Fig. 13b

The minimization approach to build a mobile particle in
contact with other two (in 2D) or other three (in 3D) particles
has been applied to eight different shapes, and compared to
the direct approach whenever possible. For all of the shapes,
the correctness of the minimization formulation could be
observed. Moreover, for all packings obtained with mini-
mization, a higher volume or area fraction was obtained too.

For almost all cases analyzed herein the direct wrappers
approach was by far the most efficient. However, for the case
of spherocylinders, which have complex wrappers, the min-

imization approach can be a valid alternative. The efficiency
of the proposed approachmust be increased by improving the
optimization process, in order to obtain results of practical
value.
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