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Abstract In this work, we develop a computational model
for the simulation of problems wherein granular materials
interact with thin flexible rods. We treat granular materi-
als as a collection of spherical particles following a discrete
element method (DEM) approach, while flexible rods are
described by a large deformation finite element (FEM)
rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod
contacts are fully permitted and resolved. A simple and effi-
cient strategy is proposed for coupling the motion of the two
types (discrete and continuum) of materials within an itera-
tive time-stepping solution scheme. Implementation details
are shown and discussed. Validity and applicability of the
model are assessed by means of a few numerical exam-
ples. We believe that robust, efficiently coupled DEM–FEM
schemes can be a useful tool to the simulation of problems
wherein granular materials interact with thin flexible rods,
such as (but not limited to) bombardment of grains on beam
structures, flow of granular materials over surfaces covered
by threads of hair inmany biological processes, flowof grains
through filters and strainers in various industrial segregation
processes, and many others.
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1 Introduction

The motion of granular materials is observed in a myriad
of natural processes and engineering applications, ranging
from the flow of cosmic dust and rock sliding to piles of
grains and fine powders, from mounds of sand and construc-
tion materials to compact agglomerates of high added-value
in the pharmaceutical, chemical, food, and microelectronics
industries. Granular materials interacting with thin flexible
rods, in particular, may be observed in many such processes,
like the bombardment of grains on beam structures [1–3],
the flow of grains over surfaces covered by short threads of
hair in many biological processes [4,5], the flow of grains
through filters and strainers in various industrial segrega-
tion processes [6–8], and many others. The study of these
processes is a complex task involving the motion and defor-
mation of discrete- and continuum-like materials, always
with multiple localized phenomena (mainly contacts) and
often involving different physics, which invariably requires
the use of computational models. In the last decades, the
possibilities opened by the evolution of computer hardware
and the advancement of computational methods, especially
the discrete element method (DEM) and the finite element
method (FEM), have allowed the development of robust sim-
ulation tools. None of these tools, however (at least to the
authors’ knowledge), is aimed specifically at the model-
ing of granular materials when they interact with flexible
rods.

Many different types of models exist to study the behavior
of granular materials and the motion of granular flows. The
most commonly known are based either on DEM descrip-
tions [9–16] or the SPH formalism [17–20] (though lately
this latter has become more popular to the study of fluid
flows), to cite just a very few. On the other hand, the model-
ing of thin flexible rods has beenmade possible in a consistent
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manner since the late 1980s or early 1990s, with the appear-
ance of several geometrically (or kinematically) exact rod
formulations, and their related FEM implementations (see
e.g., [21–27]).

In this context, the purpose of this work is to develop an
efficient computational model for the simulation of granular
materials interacting with thin flexible rods. We treat these
materials as a collection of spherical particles following the
DEM formulation of [28,29], whereas the deformation and
motion of flexible rods are described by the continuum-like
large deformation FEM rod model of [23,30,31]. The two
types of materials (discrete and continuum) are allowed to
interact via contact/collision forces. A simple, efficient strat-
egy is proposed for coupling the motion of these materials
within a time-stepping iterative solution scheme. Implemen-
tation details are shown and discussed.We validate themodel
and illustrate its applicability by means of a few numerical
examples.

We remark that the DEM formulation adopted in this
work is aimed at the simulation of particle systems wherein
rotational motion is relevant, either locally or globally.
This encompasses (but is not restricted to) granular mate-
rials, granular flows, and granular compacts. In cases where
the particles are small enough so that the effect of their
rotations with respect to their center of mass is unimpor-
tant to their overall motion, a translation-only model (e.g.,
[32–34]) may be more appropriate. For an early history
of the discrete element method, we refer the reader to
[9,13,15] and [16], and references therein; for reviews on
the modeling of granular media, see e.g., [11,14]; and for an
overview on the modeling of flexible rods, see e.g., [26] and
[27].

The paper is organized as follows. In Sect. 2, we describe
briefly the DEM formulation that we adopt, including the
force terms that represent the interactions of the particles
with neighboring rods. In Sect. 3, we describe (also briefly)
the rod model that we use, including a contact formulation
that allows for contact between rods. In Sect. 4, we present
our rod-to-grain contact model. In Sect. 5, we present our
coupled FEM-DEM solution strategy, including an algorith-
mic overview (we emphasize that this is one of the major
contributions of our work). In Sect. 6, we show examples of
numerical simulations to validate our model and illustrate its
applicability, and in Sect. 7, we draw some conclusions and
discuss ideas for futurework. Throughout the text, plain italic
letters (a, b, . . . , α, β, . . . , A, B, . . .) denote scalar quanti-
ties, boldface lowercase italic letters (a, b, . . . ,α, β, . . .)

denote vectors, and boldface italic capital letters (A, B, . . .)

denote second-order tensors in a three-dimensional Euclid-
ean space. The (standard) inner product of two vectors is
denoted by u · v, and the norm of a vector by ‖u‖ =√
u · u.

2 Brief description of the dem model

We treat granular materials as a collection of particles form-
ing a discrete dynamical system within a DEM approach,
wherein each particle interacts with the others and the sur-
roundingmedia (including neighboring structures and solids,
such as rods and rigid walls) via a combination of grav-
ity forces, drag forces, near-field (attractive and repulsive)
forces, and contact and friction forces due to touching and
collisions. Time evolution of the system follows the laws of
classical dynamics, the equations of which are solved via a
numerical (time-stepping) integration scheme. The particles
are allowed to have both translational and rotational motions.
For the sake of simplicity, but without any loss of generality,
we consider here only spherical particles. Themodel summa-
rized in what follows is a slight generalization of the model
presented in [28,29].

Let the system be consisted of NP particles of mass mi ,
radius ri , and rotational inertia ji = 2

5mir2i (i = 1, . . . , NP).
Let us denote the position vector of a particle by xi , the veloc-
ity vector by vi , and the spin vector by ωi , as depicted in
Fig. 1. The rotation vector relative to the beginning of the
motion is denoted by αi , whereas the incremental rotation
vector (rotation vector relative to two consecutive config-
urations at discrete time instants, see [28] and [35]) by
α�
i .
We denote the total force vector acting on particle i by f toti

and the total moment (with respect to the particle’s center)
bymtot

i . From the Euler’s laws, the following equations must
hold for each particle at every time instant t :

mi ẍi = f toti ,

ji ω̇i = mtot
i , (1)

where the superposed dot denotes differentiationwith respect
to time. The total force vector is made up of several force
contributions as follows

f toti = mi g + f dragi + f nfi + f coni + f frici + f stri , (2)

where g is the gravity acceleration vector, f dragi is the drag
force vector (standing for viscous effects of surrounding flu-
ids on the motion of the particle), f nfi are the forces due to
near-field interactions with other particles, f coni the forces
due to mechanical contacts (or collisions) with other parti-
cles and/or rigid walls, f frici the forces due to friction that
arise from these contacts or collisions, and f stri the forces
applied by neighboring structures (which are due, e.g., to
contact or collision with these structures). The total moment
vector, in turn, has contributions only from the friction forces
and neighboring structures, which means that all other forces
are assumed to be central forces, i.e., they act with no eccen-
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Fig. 1 Motion of a particle.
Point P is a point on the
particle’s surface
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tricity relative to the center of the particle, such that

mtot
i = mfric

i + mstr
i , (3)

wheremfric
i is shown later in Eq. (16) andmstr

i is the moment
applied by neighboring structures.

We adopt standard expressions for the force contributions
in Eq. (2). The drag force, for example, is given by

f dragi = −cF(vi − vF) , (4)

where cF is a damping parameter depending on the viscos-
ity of the surrounding fluid and vF is the (local) velocity of
the fluid. The forces due to near-field interactions with other
particles, on their turn, are given by

f nfi =
NP∑

j=1, j �=i

f nfi j ,

f nfi j =
(
κ1

∥∥xi − x j
∥∥−λ1 − κ2

∥∥xi − x j
∥∥−λ2

)
ni j , (5)

where f nfi j is the near-field force between particle i and parti-
cle j , in which the κ’s and λ’s are scalar parameters dictating
the intensity of the force for the pair {i, j} (κ1 and λ1 are
related to the attractive part of the force, whereas κ2 and λ2
to the repulsive part), and ni j is the unit vector that points
from the center of particle i to the center of particle j , i.e.,

ni j = x j − xi∥∥x j − xi
∥∥ , (6)

which is referred to as the pair’s central direction. The forces
due to contact/collisions with other particles and/or rigid

walls are described following Hertz’s elastic contact theory
(see e.g., [36]), according to which

f coni =
NC∑

j=1

f coni j ,

f coni j = 4

3

√
r∗E∗δ3/2i j ni j + d∗δ̇i jni j , (7)

where f coni j is the contact force between particle i and particle
(or wall) j and NC is the number of particles (and/or walls)
that are in contact with particle i . Here,

r∗ = rir j
ri + r j

and E∗ = Ei E j

E j
(
1 − ν2i

) + Ei

(
1 − ν2j

)

(8)

are the effective radius and the effective elasticity modulus
of the contacting pair {i, j} (with Ei , E j ; and νi , ν j as
the elasticity modulus and the Poisson coefficient of i and j ,
respectively),

δi j = ∥∥xi − x j
∥∥ − (

ri + r j
)

(9)

is the geometric overlap (or penetration) between the pair in
the pair’s central direction, δ̇i j is the rate of this penetration,
and

d∗ = 2ξ

√
2
√
r∗E∗m∗δ1/4i j (10)

is a damping constant that is introduced to allow for energy
dissipation in the pair’s central direction. This constant is
taken following the ideas of [37], wherein ξ is the damping
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ratio of the collision (which must be specified) and m∗ is the
effective mass of the contacting pair, i.e.,

m∗ = mim j

mi + m j
. (11)

We note that, in case j is a rigid wall, Eqs. (8) and (11)
are considered with r j → ∞, E j → ∞ and m j → ∞,
implying that they collapse to

r∗ = ri , E∗ = 1 − ν2i

Ei
and m∗ = mi , (12)

with the overlap being computed through δi j = di j − ri ,
where di j is the distance between the center of particle i and
wall j .

The forces due to friction are given by assuming that the
friction coefficients of all contacting pairs are small enough
such that a continuous sliding (with an opposing dynamic
friction force and a corresponding moment) is to be expected
during the entire duration of a contact/collision. By continu-
ous sliding, we mean that there is to be no sticking between
particles and between particles and walls. This assumption
is not valid in the general case, but is acceptable for par-
ticles (and walls) of very smooth surface, like glass beads
and some types of metallic spheres—precisely the types of
particles we will consider in our examples. Thus, although a
stick-slip model could be adopted without difficulties1 (fol-
lowing e.g., the scheme recently proposed by [28], which is
based on [38]), here we write

f frici =
NC∑

j=1

f frici j ,

f frici j = μd

∥∥∥ f coni j

∥∥∥ τ i j , (13)

where f frici j is the friction force between the contacting pair
i and j , μd is the coefficient of dynamic friction for the pair
and

τ i j = v j,τ − vi,τ∥∥v j,τ − vi,τ
∥∥ (14)

is the tangential direction of the contact (or sliding direction),
which is the direction of the tangential relative velocity of i
and j , obtained with

vi,τ = vi − (vi · ni j )ni j
v j,τ = v j − (v j · ni j )ni j (15)

(subscript “τ” above stands for tangential direction).

1 The only drawback would be an increase in computer time, since the
stick-slip criterion would need to be checked at every iteration of the
(time-stepping) solution scheme.

The forces applied by neighboring structures, f stri , are
supposed to be known (given). In effect, they have to
be obtained from the deformation of the structure, which
requires the solution of the corresponding initial boundary
value problem in a separate (but coupled) scheme. Section 5
ahead outlines how we do this in our model.

The moment generated by the friction forces with other
particles and/or rigid walls (relative to the center of the par-
ticle) is given by

mfric
i =

NC∑

j=1

r
C j
i × f frici j , (16)

where r
C j
i = rini j is the vector that connects the center of

particle i to the contacting point C j with particle (or wall)
j . The moment applied by neighboring structures, in turn, is
supposed to be known (given) (as for f stri , it follows from
the deformation of the structure).

Numerical integration of Eq. (1) provides the time evo-
lution of the particles’ motion. This is done here following
the integration algorithm proposed in [28], which has both
implicit and explicit versions, and remarkably does not
involve any system matrix in either case. For the sake of
conciseness, it will be omitted here. We refer the interested
reader to the abovementioned reference.

3 Brief description of the rod model

This section provides only an outline of the rod model used
in this work, and its related contact formulation. Only the
basic kinematical quantities are shown, along with a few
variables that are needed subsequently in Sect. 4. Detailed
expressions and derivations are omitted, and the reader is
referred to appropriate references wherever necessary.

3.1 Rod kinematics

We describe flexible rods following a geometrically exact
theory, discretized and solved by the finite element method.
Each cross section is considered as a rigid body undergo-
ing large displacements and finite rotations. Warping is not
considered. The rotation field is parameterized using the so-
called Rodrigues rotation vector α, which, if θ = θe is the
classical Euler rotation vector (with θ as the magnitude of
the rotation and e as the unit rotation axis), reads as α = αe,
with α = 2 tan (θ/2). The rotation tensor then reads as

Q = I + 4

1 + α2

[
A + 1

2
A2

]
, (17)

with A = Skew(α). Since we want to allow for arbitrarily
large rotations, tensor Q may present singularities at θ =

123



Comp. Part. Mech. (2017) 4:229–247 233

Fig. 2 Rod kinematics.
Reference (left), current
(middle), and next (right)
configurations (taken from [30])

±π . To avoid this, we make use of an updated-Lagrangian
description. Figure 2 shows the adopted configurations and
corresponding kinematical quantities. Therein, z is the posi-
tion vector of points of the rod axis, x the position vector of
points of the cross sections, and u the displacement vector of
points of the rod axis. Superscripts “r ,” “i ,” and “i + 1” are
used to refer to the different configurations,with “r” referring
to the reference, “i” to the current, and “i+1” to the next (still
not achieved) configurations; symbol “�” refers to incremen-
tal quantities between configurations “i” and “i + 1.”

Based on the above, and assuming the rod comprises a
linear elastic material, the rod formulation (strains, stresses,
constitutive equation, weak form, and related tangent oper-
ator) is derived. Since our focus in this work is not on this
derivation, we will omit it here and refer the interested reader
to [23,31] and [30]. Finite element implementation of the
model using two- and three-node Lagrangian isoparametric
elements within a Newton iterative scheme, along with an
implicit Newmark [39] time integration algorithm for solu-
tion of the rod’s dynamics, is also shown therein.

3.2 Contact between rods

Arodmodel that is intended to be sufficiently generalmust be
able to describe multi-rod systems wherein rods may touch
other rods aswell as experience self-contact. For this purpose,
we adopt here a rod-to-rod contact formulation, based on the
one proposed in [39]. This latter, in turn, is based on the semi-
nal ideas of [40] and [41], who were pioneers (to the authors’
knowledge) on the modeling of contact between beams. By
looking at the FEM mesh of each rod, one can identify pairs
of finite elements that are candidates to develop contact inter-

action. The formulation described next is to be understood in
the context of pairs of elements, and follows amaster–master
approach for each such pair. Accordingly, each element axis
is considered as a 3D curve dependent on a single convective
coordinate ζi (i = element number). To resolve a contact pair,
the solution of aminimum distance problem is required, aim-
ing at finding the two convective coordinates associated with
thematerial points that are candidates to contact. Themaster–
master approach refers to this kind of model (in other words,
it refers to contact models that focus on determining two can-
didate points, as opposed to others that would elect one of
the elements as a master entity and the other as a slave one,
the latter having a set of pre-defined candidate points—the
so-called “master–slave” contact approach, widely used e.g.,
in surface-to-surface contact formulations). We also assume
that the rods are of circular cross section (this is suitable
to the kinds of problems we are interested in this work, but
more general models allowing for other types of cross sec-
tions are also possible). Following the notation introduced in
Fig. 3, one can write a parameterization for the axes of two
approaching finite elements as (see also Fig. 3)

zi+1
1 (ζ1) = zi1(ζ1) + u�

1 (ζ1) ,

zi+1
2 (ζ2) = zi2(ζ2) + u�

2 (ζ2) . (18)

Here, for simplicity, we assume that the axes are straight
curves and, by using the coordinates of their end points

at the next (unknown) configuration, namely,
[
N i+1

A

]

1
and

[
N i+1

B

]

1
for rod 1, and

[
N i+1

A

]

2
and

[
N i+1

B

]

2
for rod 2 (see

Fig. 3, right side), we write the following expression for their
parameterization:
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Fig. 3 Contact of two approaching rod finite elements. The minimum distance problem (left) and the parameterization of the elements’ axes as
straight curves (right) (taken from [39])

zi+1
1 (ζ1) = 1

2
(1 − ζ1)

[
N i+1

A

]

1
+ 1

2
(1 + ζ1)

[
N i+1

B

]

1
,

zi+1
2 (ζ2) = 1

2
(1 − ζ2)

[
N i+1

A

]

2
+ 1

2
(1 + ζ2)

[
N i+1

B

]

2
,

(19)

with ζi ∈ (−1,+1). A minimum distance problem between
zi+1
1 and zi+1

2 is then addressed, seeking for the contact-
candidate material points ζ1c and ζ2c on the finite elements’
axes. Accordingly, the following orthogonality relations are
enforced [40]:

(
zi+1
1 − zi+1

2

)
· zi+1

1 ,ζ1
= 0 ,

(
zi+1
1 − zi+1

2

)
· zi+1

2 ,ζ2
= 0 , (20)

where notation “a,b” stands for the derivative of “a” with
respect to “b.” Introduction of (19) into (20) yields ζ1c and
ζ2c, which in turn must be tested to ensure they fall within
the range −1 to +1 (a value out of range means that no con-
tact will play a role for the pair of elements considered).
With these points, and with the radii R1 and R2 of the cross
sections, we define a normal gap function as given below:

gn = ‖zi+1
1 (ζ1c) − zi+1

2 (ζ2c)‖ − (R1 + R2) . (21)

Contact happens only when this gap has a negative value.
In such case, the contact adds a contributionW rr

c to the poten-
tial energy of the rods to which the elements belong (this is
done using a penalty parameter), which in turn implies a cor-
responding term in the weak form of the model as follows

δW rr
c = εngnδgn , (22)

where εn is the penalty parameter and “δ” stands for vari-
ations or virtual quantities (superscript “rr” above refers to
rod–rod interactions). The detailed expression of (22), along

Fig. 4 Contact involving the tip of a rod and another rod

with implementation aspects, can be found in [39,42]. A dis-
cussion on how to include friction between the rods can also
be found therein (in our work, we do not consider such fric-
tion). Normal damping between the rods may be included as
well, but we do not consider it here.

Solution of theminimum distance problem and evaluation
of the normal gap function are necessary to decidewhether or
not the contact happens for the pair of elements considered.
These operations, however, can be computationally expen-
sive if not performed in a rational way. In our scheme, we
speed up the decision by identifying a priori the pairs of
elements that are candidates to touch each other, and then
perform the operations only over these candidates. This is
achieved via a simple (but effective) geometric search around
each element of each rod, within a proximity region given by
the so-called pinball sphere (see [43]).

Remark 1 A special situation, to which we draw the atten-
tion of the reader, occurs when the contact involves the tip
of a rod (see Fig. 4). In such case, contact may happen even
if the orthogonality relations (20) are not fulfilled. To handle
this, we perform a special check as follows: if ζ1c or ζ2c are
out of the expected range, and the finite elements to which
they belong are at either ends the rod, an arbitrary value, say
ζ1c = 0 and/or ζ2c = 0, is adopted, emulating a node-to-
node contact situation. The gap function is then evaluated
in the usual way and, in case of penetration, the contact is
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addressed. This helps to avoid losing contact detectionswhen
the beginning of the contact takes place at the tip of one of
the rods, or even at both. Once the contact is established, the
rods may experience deformation and thereby the orthog-
onality relations (20) turn to be verifiable, thus leading to
the above presented rod-to-rod contact model. If, on the con-
trary, the rods separate from each other, the contact condition
is switched off. Other possibilities to handle such situation
are possible, e.g., the creation of two simultaneous contact
models, (a) the one presented above and (b) a node-to-node
one, with one of the nodes being the tip of the rod and the
other a given node of the other rod.

Remark 2 Self-contact (i.e., contact of a rod with itself) can
be included in this model with minor modifications. In such
case, multiple contact points must be allowed, instead of
only two as in the master–master approach described above.
Details on how to handle this situation are presented in [39].
Self-contact may show up e.g., in the deformation of very
long flexible rods, which may be susceptible to loop forma-
tion.

4 Contact between grains and rods

The interaction between grains (particles) and rods is mod-
eled here following a very simple strategy. Since the rods
are assumed to be of circular cross section, each one may
be treated as a set of spheres (with same radius as the rod’s
cross section) whose centers lie along the rod axis. In the
FEM mesh that discretizes the rod, each node is the cen-
ter of a sphere. By using a sufficiently fine mesh, the spheres
overlap and eventually reproduce an approximate cylindrical
shape. Figure 5 illustrates the strategy. This is an approxima-
tion to the rod’s geometry adopted only for contact purposes,
i.e., for detection of the contacts of the rods with grains or
particles. It is very practical since these turn to be essentially

Fig. 5 Contact of grains with a rod. The rod is represented by several
overlapping spheres, the centers of which are lying on a node of the
FEM mesh

the contacts of spheres. It must be said, though, that such
strategy may introduce artificial “ridge-like” patterns on the
rods’ surface, which in turn can affect the detection and eval-
uation of the contacts. Mesh refinement clearly resolves such
issue. The downside is that it leads us to work with exces-
sively fine meshes only for geometrical reasons. The FEM
solution of the rod’s deformation does not need such level of
mesh refinement, and the strategy turns to be not optimal in
terms of computational efficiency. Yet, we consider it very
useful due to its simplicity and easiness of implementation.
One may think of it as a “first approach” model of many
more elaborate models, for instance one with an exact cylin-
drical description for the geometry of the rod, or even a more
general approach, considering non-circular cross sections.
This will obviously require more complex contact detection
schemes, such as the one described in Sect. 3.2, for which
the solution of a minimum distance problem is invariably
necessary.

A frictionless sphere-to-sphere contact model is then
invoked, as described below. The normal gap function g is
defined as a function of the positions of the spheres’ centers
at the next configuration, xi+1

1 and xi+1
2 , and the spheres’

radii, r1 and r2:

g =
∥∥∥xi+1

1 − xi+1
2

∥∥∥ − (r1 + r2) (23)

(for the sake of simplicity, here we omit the indices related
to the rod node number and the particle number, and use “1”
to refer to the rod’s sphere and “2” to refer to the particle’s
sphere). Contact occurs if g assumes a negative value for
any two spheres 1 and 2, meaning that there is penetration
between the bodies. In such case, the physical constraint of
impenetrability is imposed by means of a penalty parameter
εn , in the sameway as done for rod-to-rod contacts in the pre-
vious section. Accordingly, the contribution of each contact
pair to the potential energy of the rod is

W gr
c = 1

2
εng

2 (24)

Fig. 6 Coupling of GIRAFFE and PSY
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(with superscript “gr” standing for grain-rod interactions),
and the corresponding term on the rod’s weak form is

δW gr
c = εngδg , (25)

with

δg = n ·
(
δxi+1

1 − δxi+1
2

)
, (26)

wherein

n = xi+1
1 − xi+1

2∥∥∥xi+1
1 − xi+1

2

∥∥∥
. (27)

Likewise, the contact force on the particle is

f con,gr2 = εngn , (28)

which in the dynamics of the particle, enters the force f stri
of Eq. (2). In case there is friction between the particle and
the rod’s surface, a friction force would need to be com-
puted,which in turnwould generate a correspondingmoment
that enters mstr

i of Eq. (3). As said above, however, here we
assume a frictionless model for this type of contact.

Linearization of (25) (indicated by symbol �) provides
the contribution of the contact on the tangent operator of the

rod, which is needed within the Newton scheme for solution
of the rod’s deformation. The result is as follows:

�(δW gr
c ) = εn�gn ·

(
δxi+1

1 − δxi+1
2

)

+ εng�n ·
(
δxi+1

1 − δxi+1
2

)
, (29)

wherein the first term on the right-hand side reads as

εn�gn ·
(
δxi+1

1 − δxi+1
2

)
= εnn ⊗ n

(
�xi+1

1 − �xi+1
2

)

·
(
δxi+1

1 − δxi+1
2

)
, (30)

and the second term as

εng�n ·
(
δxi+1

1 − δxi+1
2

)

= εn
g∥∥∥xi+1

1 − xi+1
2

∥∥∥
(I − n ⊗ n)

(
�xi+1

1 − �xi+1
2

)

·
(
δxi+1

1 − δxi+1
2

)
, (31)

with symbol “⊗” standing for dyadic or tensor product. We
can define a factor f by

f = g∥∥∥xi+1
1 − xi+1

2

∥∥∥
= 1 − (r1 + r2)∥∥∥xi+1

1 − xi+1
2

∥∥∥
. (32)

Fig. 7 Problem definition:
schematic side view (left) and
FEM model used in reference
solution (right). In this latter,
number of solid elements is
1650 for the rod and 3659 for
the particle (both with linear
shape functions)
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Fig. 8 Validation results: evolution of the particle’s displacements (left) and translational velocities (right). For the reference solution, results refer
to the particle’s center of mass
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Fig. 11 Snapshots of the motion at selected time instants
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Equations (30), (31), and (32) lead to the expression of
the linearization as

�(δW gr
c ) = εn [ f I + (1 − f )n ⊗ n]

(
�xi+1

1 − �xi+1
2

)

·
(
δxi+1

1 − δxi+1
2

)
. (33)

We also include in the contact formulation a viscous dis-
sipation contribution. This is done with the aid of an extra
term δWd on the rod’s weak form, given by

δWd = cn(ẋ
i+1
1 − ẋi+1

2 ) · nδg , (34)

in which cn is a normal damping coefficient. This expression
can be developed into

δWd = cn(ẋ
i+1
1 − ẋi+1

2 ) · n
[
n · (δxi+1

1 − δxi+1
2 )

]
, (35)

and finally into

δWd =
[
δxi+1,T

1 δxi+1,T
2

]
cn

⎡

⎣
n ⊗ n −n ⊗ n

−n ⊗ n n ⊗ n

⎤

⎦

⎡

⎣
ẋi+1
1

ẋi+1
2

⎤

⎦ .

(36)

Equation (36) presents a clear damping contribution that
can be directly used to evaluate the contact (grain-to-rod)
damping forces in the Newmark time integration scheme.
A corresponding term within the Newton’s tangent operator
also follows.

5 Coupled DEM–FEM solution scheme

The models presented in the preceding sections were imple-
mented in our in-house codes PSY [44] (for DEM analysis
particle systems) and GIRAFFE [45] (for FEM analysis of
solids and structures). This section explains how we perform
the coupling between the two codes at every time step of our
solution scheme.

GIRAFFE is rendered as the “host” code, being respon-
sible for handling all the input data, such as all environment
conditions, forces, boundary conditions, initial conditions,
material properties, and solution parameters (i.e., time step
size, convergence tolerances). It performs time integration of
the rods’ FEM problem using a Newmark implicit scheme,
as mentioned in Sect. 3.1, and this includes solution of
the contacts between rods and detection of the contacts
between particles and rods. PSY, in turn, is called fromwithin
GIRAFFE and is used to compute the dynamics of the par-
ticles, which includes the contacts between particles with
themselves and also between particles and rigid walls. This
computation has to take into account the interaction forces

(and related moments) between particles and rods, whenever
they occur, i.e., the forces f stri and moments mstr

i of Eqs.
(2) and (3), respectively. These are passed from GIRAFFE
as arguments. In summary, before calling PSY, GIRAFFE
detects whether there are contacts between particles and rods
and, in case there are, the corresponding forces f stri and
moments mstr

i are passed to PSY. PSY, therafter, computes
the particles’ newpositions, velocities, and accelerations, and
passes these back to GIRAFFE.

A more detailed description is as follows. At every time
step, the FEMsolutionwithinGIRAFFE treats all particles as
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Fig. 12 Time histories of the coordinates (top) and velocities (middle)
of the particle, and reactions at the clamped base of the rod (bottom)
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fixed geometric entities in space, with positions given from
the previous (converged) time step. Then it computes the
reaction forces and moments at the surface of the rods neces-
sary to keep the particles fixed at these positions, whenever
they make contact with the rods. The opposite of these reac-
tions are f stri and mstr

i , which are then passed to PSY for the
DEMsolutionof theparticles at the beginningof thenext time
step. The result of such coupling leads to displacements and
rotations experienced by the particles during each time step,
which in turn lead to possible new contacts and new reac-
tion forces and moments to keep them at their new positions.
Algorithmically, in the FEM solution of the rods, we treat the
particles that are in contact with rods as if theywere imposing
prescribed displacements on the rods. One may summarize
this as follows: everything occurs for the FEM routines as
if we moved a set of points by a known time-series of pre-

scribed displacements (a “displacement-controlled” solution
approach). The key-point is that this displacement series is
evaluated as a particle dynamics problem at the beginning of
every time step (more precisely, at the beginning of the first
iteration of theNewton’smethod), the forces andmoments of
which being a function of the reactions supplied by the FEM
model at the time step considered. The process is repeated
until the desired end time is achieved. Figure 6 provides an
outline.

Remark 3 The time-step size for the FEM solution does not
need to be the same as for the DEM solution. Indeed, depend-
ing on the physics of the problem at hand, each may be
solved with its own time increment, allowing for a more
efficient (and/or more accurate) solution whenever neces-
sary. For dense systems (i.e., systems of several particles

Fig. 13 Problem definition.
Isometric view (top), top view
(middle), and side view
(bottom). The jet comprises
NP = 60 grains randomly
generated within a planar
rectangular region of
dimensions 0.7m × 0.08m
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and rods), though, it is recommended that the same time
step be adopted, in order not to miss any possible new con-
tacts that are formed as the system evolves. In other words,
the expected frequency of contacts between rods and parti-
cles shall dictate whether to use the same or different time
steps.

6 Numerical examples

In this section,weprovide examples of numerical simulations
to validate our coupled DEM–FEM computational model,
and also to illustrate its applicability. Selection of appropri-

ate time step sizes is crucial in order to capture the systems
dynamics (with its multiple contacts and collisions) in an
accurate and efficient way. Here, we select �t according to
the duration tc of a typical contact/collision for the problem
at hand, using the following guideline:

tc ∼= 2.87

[
(m∗)2

r∗(E∗)2vrel

]1/5
⇒ �t ≤ tc

20
, (37)

where vrel is the relative velocity of a typical contacting pair
in the pair’s central direction immediately before the con-
tact/collision is initiated. This is based on Hertz’s contact
theory [36] and ensures that at least twenty time steps are

Fig. 14 Snapshots of the motion at selected time instants (top) and details at t = 0.005513 s (bottom). Bottom left shows the rods and the particles
and bottom right only the rods (particles omitted). Total simulation time is 0.05 s

123



Comp. Part. Mech. (2017) 4:229–247 241

used for a typical contact/collision. Hertz’s theory is also
used to select appropriate values for the penalty parameter
εn in the rod-to-rod and rod-to-particle contacts. Accord-
ingly, we compute the Hertz’s contact stiffness for a typical
contacting pair by means of equation (7)2, assuming an aver-
age penetration of 5 % of the pair’s effective radius, and
transform the obtained value into an equivalent linear spring
model of stiffness εn . The normal damping coefficient cn
(of Eq. (34)) is selected following a similar procedure, by
considering Eq. (10) for a typical contacting pair (with a
given damping ratio ξ and an average penetration of 5 %)
and then taking the resulting value of d∗ as cn . We adopt
the same time step for the FEM and DEM solutions in all
examples that follow. Other data (common to all examples)
are:

• Drag force parameters: cF = 0.005 Ns/m and vF = 0;
• Near-field forces parameters: κ1 = κ2 = λ1 = λ2 = 0;
• Convergence tolerance within Newton iterations of the
FEM solver: TOLF,D = 10−8 in examples 1 and 2 (for
both the unbalanced forces and incremental displace-
ment/rotation vectors), and TOLF = 10−8 and TOLD =
10−6 in example 3 (for the unbalanced forces and incre-
mental displacement/rotation vectors, respectively).

6.1 Single particle interacting with a flexible rod

This is a very simple example with the aim to verify our
implementations. A spherical particle is bombarded against
a flexible cylindrical rod that is clamped at the base (point
A) and free at all other points, as shown in Fig. 7 (left
part). The particle has diameter φ = 0.02 m, mass den-
sity ρ = 1300 kg/m3, and elastic properties E = 10 GPa
and ν = 0.45, whereas the rod has cross-sectional diam-

eter φrod = 0.005 m, length L = 0.05 m, mass density
ρrod = 8000 kg/m3, and elastic properties Erod = 210 GPa
and νrod = 0.3. The particle is shot with initial translational
velocity v(0) = (0,−60, 0) [m/s], with the rod held still
in upright position. Gravity is not considered. The collision
is assumed to be perfectly elastic, in the sense that no nor-
mal damping (cn = 0) and no friction are considered upon
contact. Besides, the rod is considered as perfectly elastic,
meaning there is no structural damping during its defor-
mation. In order to have a reference solution, we analyzed
the problem with a commercial FEM software (ANSYS�),
whereby we discretized both the rod and the particle with
three-dimensional solid finite elements. Figure 8 provides
results of our simulation as compared to the reference solu-
tion. As it can be seen, excellent agreement is found. It is
worth mentioning that it takes roughly 20 seconds to run
our simulation on a standard desktop computer, whereas
for the reference solution it takes up to 10 minutes in the
same machine. We hope these results may be useful to other
researchers interested in benchmarking their codes. In both
simulations, the time step size is�t = 10−6 s and the contact
penalty parameter is εn = 1.41 × 107 N/m. The number of
rod elements (3-node elements) used to discretize the rod in
our simulation is 10.

Once the model is validated, we consider a second ver-
sion of the problem by including damping. We changed the
material properties of the particle to E = 210 GPa, ν = 0.3,
and ρ = 8000 kg/m3, and of the rod to Erod = 1 GPa,
νrod = 0.45, and ρrod = 1300 kg/m3, since these are the data
that we will use in the forthcoming example (the particle is to
resemble a steel ball and the rod a nylonbar).Accordingly,we
now assume the collision is highly dissipative, with normal
damping coefficient cn = 5.45 Ns/m (this value is selected
based on a damping ratio of ξ = 0.2). Friction is still not con-
sidered.We also include structural damping (i.e., damping on
the rod’s deformation), and to do this in a somewhat realistic

Fig. 15 Snapshots of the system at t = 0.010212 s including the coordinate system (SI units). Side view (left) and back view (right)
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Fig. 16 Problem definition. Total number of particles is NP = 3990 (sample 1) and NP = 4140 (sample 2)

Fig. 17 Snapshots of the sieving for sample 1 (same-sized grains) under shaking, at selected time instants. Total simulation time is 10.0 s
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Fig. 18 Snapshots of the sieving for sample 2 (grains’ size followingGaussian distribution) under shaking, at selected time instants. Total simulation
time is 10.0 s

way we assume a Rayleigh type of damping2 and perform
a simple calibration test prior to the simulation of the colli-
sion. The test is described in what follows. First, we impose

2 We remark that structural damping is a difficult aspect to be described,
there existing a multitude of possible models and related parameters,
all of which requiring some sort of calibration. Here we have chosen
the simple (and widely used) Rayleigh damping model, according to
which the damping constant (the constant that multiplies the velocity)
is a linear combination of the mass and the stiffness of the structure.
Its calibration is very straightforward and requires negligible compu-
tational effort, as described here. Accordingly, we assume a damping
ratio value (which may be measured in experiments) and proceed to
find the stiffness multiplier that gives the expected rate.

a damping ratio of ξrod = 0.2 in the Rayleigh expression,
leading to a stiffness multiplier of 2.55 × 10−4 s (the mass
multiplier is assumed to be zero). Then we run two simula-
tions on the rod (no particle) causing it to experience bending
deformations upon two applied triangular impulses, one of
low magnitude (leading to a small-displacements/rotations
situation) and another of very high intensity, both corre-
sponding to an applied force at the rod’s tip (point B) in the
y-direction. We monitor the y-position of the rod’s tip along
time. This permits quantifying and calibrating the damping
to a desired value. The results of the test are shown in Figs. 9
and 10. One can see that the expected damping is accurately
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reproduced in both situations (note an overdamping in Fig. 10
until the system achieves a small-displacement behavior—
approximately until 0.01 s).

With these data, we run the bombardment of the parti-
cle on the rod. The results obtained are depicted in Figs. 11
and 12. Therein, snapshots of the motion at selected instants
are shown, along with time histories of the particle’s posi-
tion, velocity, and the rod’s y-reaction at the clamped base.
One can see that the interaction between the particle and the
rod is appropriately captured, with the rod undergoing very
large deformations upon collision. The particle, in turn, is
deviated by the rod and acquires velocity in the z-direction,
with a significant decrease in the total kinetic energy. The
time step size adopted is �t = 1.25 × 10−6 s, the contact
penalty parameter is εn = 1.46 × 106 N/m and the number

of elements (3-node elements) used to discretize the rod is
10.

6.2 Motion of grains over a surface covered by rods

A jet of grains moves over a flat surface toward a region
covered by short thin rods, as shown in Fig. 13. The grains
are spherical with diameter φi = 0.02 m and mass density
ρi = 8000 kg/m3, resembling steel beads, whereas the rods
have diameter φrod = 0.005 m, length L = 0.05 m, mass
density ρrod = 1300 kg/m3, and elastic properties E = 1
GPa and ν = 0.45 (exactly like in the previous example),
resembling threads of nylon of synthetic grass. The rods
are clamped at the base. The jet moves with initial veloc-
ity vi (0) = (0,−60, 0) [m/s]. Gravity is not considered. At

Fig. 19 Snapshots of the sieving for sample 1 (same-sized grains) under gravity (no shaking), at selected time instants. Total simulation time is
10.0 s
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t ≈ 0.00063 s, the grains hit the rods and they all start to
interact. Figures 14 and 15 depict snapshots of the system as
obtained with our simulation. One can see that grain-to-rod,
grain-to-grain, and rod-to-rod contacts are fully captured and
resolved. Upon collision, the rods are seen to bend strongly
to give way to the grains, whereas the grains are diverted
slightly upwards (as expected), bouncing off the surface with
reduced kinetic energy. As in the previous example, colli-
sions are assumed to be highly dissipative, with damping
parameters cn = 5.45 Ns/m (for grain-to-rod contacts) and
ξ = 0.9 (for grain-to-grain contacts) (no damping for rod-
to-rod contacts). Friction is considered only between grains,
with μd = 0.2 (no friction between grains and rods nor

between rods with themselves). The penalty parameter (for
both grain-to-rod and rod-to-rod contacts) is εn = 1.46×106

N/m. The rods are discretized by 20 elements each. The time
step is �t = 1.0 × 10−6 s and the total simulation time is
t = 0.05 s.

6.3 Sieving of a granular material

In this example, we analyze the sieving of a granular material
by dropping a sample of grains of known granulometric dis-
tribution over a screen,which ismodeled as a grid of thin rods
as illustrated in Fig. 16. The screen (of sides L = 1.54 m) is
mounted on top of an empty box (of sides Lb = 1.4 m and

Fig. 20 Snapshots of the sieving for sample 2 (grains’ size following Gaussian distribution) under gravity (no shaking), at selected time instants.
Total simulation time is 20.0 s
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height Hb = 1.0 m), being fixed at the corners in the vertical
(i.e., z-) direction. The sample, in turn, has a cubic shape of
side Ls = 1.0 m. Gravity acts downwards with magnitude
g = 9.81 m/s2. The screen is set to shake horizontally in the
x-direction for 10 seconds, following a (sinusoidal) imposed
displacement of amplitude (peak-to-peak) 0.05 m and fre-
quency 4.0 Hz. Two different samples are considered: (1)
one consisted of same-sized grains of diameter φi = 0.05 m,
and (2) another whose grains’ diameter follows a Gaussian
distribution of mean φ̄ = 0.05 m and standard deviation
σφ = 0.005 m, truncated at three standard deviations from
φ̄ such that φi ∈ [0.035; 0.065 m] (this encompasses more
than 99 % of the distribution). Both are generated following
a random sequence addition procedure, with packing density
(ratio of grains’ volume to total cubic volume) of 0.25. The
rods of the screen are cylindrical with diameter φrod = 0.025
m, being evenly spaced at 0.077 m (distance between axes),
which allows avoid of e = 0.052 mfor the grains to pass. The
grains are assumed to be of ρ = 2000 kg/m3, E = 1 MPa,
and ν = 0.2, reproducing a soft material, whereas the screen
is of a metal with ρ = 8000 kg/m3, E = 200 GPa, and
ν = 0.3. Again, we assume the contacts to be highly dis-
sipative, with damping parameters cn = 17.6 N s/m for
grain-to-rod contacts, ξ = 0.9 for grain-to-grain contacts,
and ξ = 0.5 for contacts of the grains with the walls of
the box. Friction is considered only between grains (with
μd = 0.2) and between grains and the walls of the box (with
μd = 0.1) (no friction between grains and rods). The penalty
parameter used for grain-to-rod contacts is εn = 4.73 × 103

N/m. Figures 17 and 18 show snapshots of our simulation for
samples 1 and 2 respectively, at approximately the same time
instants. It is interesting to notice the evolution of the grains’
deposition. At the end of the simulation time, all particles
of sample 1 are seen to pass across the screen, as expected,
whereas for sample 2 nearly 5 % of the particles are retained,
in agreementwith the sample’s diameter distribution, the void
size of the screen and particles’ stiffness. We also performed
a second simulation, by not shaking the screen and instead
leaving the grains to pass solely under the action of grav-
ity. The corresponding results are shown in Figs. 19 and 20.
Notice the poorer sieving performance in this case. For sam-
ple 1, differences are not meaningful (except for the total
time required for sieving, which is higher as expected), since
the grains are all of smaller size than the screen’s voids. For
sample 2, however, besides the longer time needed for the
particles to pass, a much larger number of grains (10 %)
is seen to be retained, as a consequence of the small force
chains that are developed but not overcome by gravity, lead-
ing to localized clogging effects3. This illustrates how the
model presented in this work may be utilized to, e.g., opti-

3 Force chains also develop in the first simulation; however, by shaking
the sieve, the “temperature” (i.e., kinetic energy) of the particles is

mize sieving processes in industrial applications. A total of
2520 3-node rod elements was used to discretize the whole
screen. The time step used is �t = 10−3 s (with adaptivity
whenever needed).

7 Conclusions

Themain purpose of thisworkwas to present a computational
scheme for the simulation of problems wherein granular
materials interact with thin flexible rods. We wanted the
scheme to be simple and efficient, such that it can (1) be
easily implemented by researchers and engineers interested
in these problems and (2) allow for fast simulations with
which various natural and industrial processes may be stud-
ied. In this sense, grain-to-grain, grain-to-rod, and rod-to-rod
contacts are permitted in the model and resolved in a sim-
ple and efficient way. As it has been shown from simple
numerical examples, the scheme proved to properly couple
the motion of the two types of materials (discrete and contin-
uum), allowing for multiple contacts and complex collision
situations in a reliable way. As future steps to our work, we
may cite incorporation of a damage model for the rods (such
that theymay be broken or leave their supports upon collision
with the grains), incorporation of stick-slip phenomena in the
contacts (e.g., following the ideas of [35,38], and [28]), con-
sideration of other types of flexible structures (such as thin
plates and shells, which would allow for the simulation of
several other types of problems), and coupling the motion of
the grains and deformable structures with that of surround-
ing fluids. These developments are currently in progress in
our group. We believe that robust, efficiently coupled DEM–
FEM schemes can be a very useful tool to the simulation of
problems wherein granular materials interact with thin flexi-
ble structures, such as (but not restricted to) thin flexible rods.
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