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Abstract This paper presents a new computational tech-
nique for predicting the onset and evolution of fracture in a
continuum in a simple manner combining the finite element
method (FEM) and the discrete element method (DEM).
Onset of cracking at a point is governed by a simple dam-
age model. Once a crack is detected at an element side in
the FE mesh, discrete elements are generated at the nodes
sharing the side and a simple DEM mechanism is consid-
ered to follow the evolution of the crack. The combination
of the DEM with simple 3-noded linear triangular elements
correctly captures the onset of fracture and its evolution, as
shown in several examples of application in two and three
dimensions.

Keywords Discrete elements · Finite elements · Fracture
mechanics · FEM–DEM technique

1 Introduction

The development of a fracture within a continuous medium
is a topic of much interest in the strength analysis of brittle
and ductile materials. One of the most recent methodolo-
gies to simulate the fracture process is the discrete element
method (DEM) [8,13,23–29]. However, the inherent diffi-
culty for calibrating the material parameters in the DEM, as
well as the need for a large number of discrete elements
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for solving practical problems, questions its effectiveness
for large-scale fracture mechanics analysis, even though the
qualitative results of theDEM for predicting fracture patterns
are pretty good.

Much research has been invested in recent years in the
development of the finite element method (FEM) for model-
ing the onset and propagation of cracks in frictional materials
[4–6,9,11,14–16,18–20]. However, FEM procedures for
crack prediction use sophisticated element formulations and
often require to remesh in the vicinity of the possible cracks
paths [7,11,16].

The approach followed in this paper uses the FEM to
model a continuum whose fracture is described by means
of discrete elements when it appears. The FEM–DEM tran-
sition is done without remeshing. Although several of the
ideas on which this paper is based have been studied previ-
ously [12,17,30], the current development has enabled a new
and promising approach to solving the problem of fracture
propagation in a continuum.

The paper describes the basis of the simple FEM–DEM
procedure proposed. The method extends a well-defined
crack opening methodology termed element elimination
technique (EET) [12,17,30] that creates discrete elements
at the crack lips. Onset of cracking at the midpoint of the
element sides is governed by a standard single parameter
damage model. This is followed by the removal of the side
and the generation of a discrete element at the nodes sharing
the side. Some important aspects inherent to the formula-
tion here presented guarantee the good results obtained like
a smoothed stress field, mass conservation, and the use of
a simple algorithm to ensure the post-fracture contact. The
FEM–DEM approach proposed is applied to a collection of
benchmark problems in two (2D) and three (3D) dimensions
which evidence the good performance of this numerical tech-
nique.
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2 Analogy between dem and fem

The main feature of the DEM versus the FEM is its ability to
generate a fracture in any direction by selectively breaking
the bonds between the individual discrete elements. A time
explicit integration scheme and the adequate definition of the
DEM material parameters at the contact interface between
the discrete elements are the key ingredients of most DEM
procedures.

Despite the many advantages of the DEM, the material
parameters used at the contact interface between discrete ele-
ments are not able to represent properly all the properties of
a continuous domain. Additionally, and perhaps most impor-
tantly, the simple law that defines the crack appearance at the
contact interface of discrete elements is not comparable to
the sophisticated failure criteria used in fracture mechanics.
As a consequence despite recent progress in this field [23],
it is difficult to define the stress state on a continuum via the
cohesive bonds of discrete elements.

On the other hand, the FEM defines correctly the stress
state in a continuum, which facilitates the implementation of
a variety of constitutive equations and failure criteria, allow-
ing to model in a easy way the linear and non-linear behavior
of a wide number of materials.

In view of above facts the question arises: Is there anyway
to define conditions at the particle interface in the DEM so
that they yield the same displacement field as in the FEM?.
Figure 1 shows that the answer is yes for 3-noded linear
triangles. The stiffness matrix of a linear triangular element
can be defined using Green’s theorem in terms of integrals
along the element sides [10,21,22]. The integration over each
element side i j yields the stiffness that each cohesive link
must have in the DEM.

In this way, the stiffness required by a cohesive link in
the DEM to represent a continuum via the FEM can be

defined. However, if both approaches are identical, what is
the advantage of using discrete elements?. Obviously, the
finite element formulation is more complete and flexible.
The displacement field is defined over the entire domain.
Even more, the stress field in the FEM is more accurate and
easier to obtain. It is also possible to prove convergence and
stability for the numerical solution. However, there are dis-
tinct features in the DEM that make it a powerful numerical
technique for modeling multifracture situations in materials
and structures.

3 From fem to dem

The DEM is a very powerful tool when it is used for analysis
of granular materials. Its main advantage when applied to
a continuous domain is its capability for predicting random
cracking paths, which is useful for reproducing correctly the
fracture behavior of materials such as soils, rocks, ceramics,
and concrete, among others [23–28]. Thus, the rationale of
the FEM–DEM approach proposed in this work is to apply
the DEMmethodology for modeling the onset and evolution
of a crack to the standard FEM formulation. The direct appli-
cation of the FEM (or the DEM) using the stiffness matrix
described in Figure 1 holds as long as no cohesive link is
removed. The problem arises when there is a need to remove
(or break) a cohesive link, coinciding with an element side.
The stiffness matrix of a finite element is obtained as the bal-
ance of internal forces of the element. Hence by eliminating
the stiffness contributed by a link, the forces between the two
nodes involved are unbalanced which affects the entire finite
element mesh, or all neighboring particles in the DEM. The
right way to eliminate the cohesive bond is by calculating the
stiffness loss associated to the removal area. In other words,
the initial stiffness of the element is reduced by eliminating

Fig. 1 a Equivalence between
a linear triangle and a cohesive
link of three disks in the DEM.
b Stiffness matrix for the linear
triangle computed as the sum of
three stiffness matrices
involving the side nodes only
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Fig. 2 Equivalence between
the stiffness matrix of a linear
triangle with a broken bond in a
side and a cohesive link in the
DEM

the area between the two nodes sharing the broken side and
the centroid of the element, as shown in Figure 2.

The stiffness of the element zone to be eliminated is a
function of the original element area (or volume in 3D) and
is easily found in terms of the displacements of the element
centroid (which coincides with the integration point in linear
triangles). Thus, for a broken bond at a side i j , the stiffness
matrix linking nodes i and j to be eliminated is

K i j = 1

3
K (e) (3)

where K (e) is the full stiffness matrix for the 3-noded
triangle.

Once the side i j (and the corresponding element area) is
removed, the remaining stiffness of the element is

K̂
(e) = K (e) − K i j (4)

4 Failure due to accumulated damage

In order to eliminate properly a cohesive bond, it is neces-
sary to define a failure criterion. Many references can be
found on this subject [4–6,9,11,14–16,18–20]. However,
it is important to note that cohesive bonds are assumed to
be placed at the element sides and not at the integration
point within the element. Recalling that the stress field is
discontinuous between elements, a smoothing procedure is
needed to evaluate the stresses at the element edges and,
subsequently, the failure criteria chosen at the edges. The
smoothing procedure selected is the key point to have an
accuracy stress field. In our work, we have followed the
superconvergent patch recovery (SPR) method proposed by
Zienkiewicz, and Zhu [32] which overcomes the need to
add stabilization terms to the stress field as in alternative
procedures [4–6]. The failure criterion chosen is based on
the standard single parameter damage model, typically used
for predicting the onset of fracture in concrete and ceramic
materials [6,14,15,18–20]. The damage model is summa-
rized below.

4.1 Computation of the remaining stiffness for an
element

In this work, a standard single parameter damage model is
used. The constitutive equation at the element center is there-
fore simply written as

σ = (1 − d̃)Dε, (5)

where

d̃ = 1

3
(d1 + d2 + d3)

is the average damage parameter for the element, with di
(i = 1, 2, 3) being the damage parameters at the midpoint
of the i th element side.

The stiffness of a damaged 3-noded triangular element can
be therefore be written as

K (e) = (1 − d̃)K (e)
0 = K 0 − K̂

(e)
, (6)

where K (e)
0 is the stiffness of the undamage element and the

damaged stiffness matrix for an element K̂
(e)

is computed as

K̂
(e) = 1

3
(d1 + d2 + d3)K (e)

o . (7)

A key issue in this approach derives from analyzing in
detail Eq. (7). As it can be seen in Fig. 3, when an element has
two fully damaged edges according to Eq. (7), the damaged
stiffness is one-third of the original one. However, the fact
is that a crack has already appeared within the element and,
therefore, when two sides of an element are fully damaged,
the whole element can be considered to be as fully damaged
as well.

Consequently, the remaining stiffness matrix for a dam-
aged element is computed as

K̂
(e) = di + d j

2
K (e)

o (8)
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Fig. 3 Three-noded triangle with two sides damaged. Effect on the
adjacent triangles sharing the damaged sides

Fig. 4 Limit damage surface in the principal stress space (σI , σI I ) and
uniaxial stress–strain curve for the damage model of Eqs. (5) and (9)

where di and d j are the two maximum values of the damage
parameters for the three element sides.

4.2 Damage evolution model

In our model, damage is assumed to initiate at the element
mid-sides once the stress field satisfies the Mohr–Coulomb
criterion. This is schematically shown in Fig. 4 for a 2D stress
state.

The evolution of the damage variable d at the midpoint
of the element sides is defined by the following exponential
function

d(δ̄) = 1 − 1

δ̄
exp {A(1 − δ̄)} (9)

where δ̄ = (1 − δ) and δ is the “distance” between a stress
point and the yield function. Figure 4 shows an schematic
representation of δ for three different stress points S1, S2, S3.
Note that for points laying on the yield surface δ = 0 and,
hence, δ̄ = 1, and d(1) = 0. On the other hand, d(∞) = 1,
as expected.

In Eq. (9), the parameter A is determined from the energy
dissipated in an uniaxial tension test as [9,18]

A =
(
G f E

l̂( ft )2
− 1/2

)−1

(10)

where ft is the tensile strength, G f is the specific fracture
energy per unit area (taken as a material property), and l̂ is
the characteristic length of the fractured domain. This length
defines themaximumfinite element size [9,18–21]. From the
condition of A being positive, it is deduced that l̂ ≤ 2G f E

( ft )2
.

The damage model presented above is extremely simple
in comparison to more sophisticated constitutive models for
concrete and other frictional materials [4,14,15,18–20].

The experimental characterization of the model is also
simple, and the following material parameters are only
required: Young modulus, tension, and compression limit
strengths, and specific fracture energy per unit area obtained
from uniaxial tests.

4.3 Definition of the characteristic length

In order to define properly the fracture energy consumed
in breaking a side, the material volume assigned to the side
(V = 1

3 (A
e+Ae′

)t) can bemade equal to a rectangular prism
of dimensions l×h×t , where t is the prism thickness (Fig. 5).
Considering that fracture is governed by a critical value of
the maximum principal (tensile) stress σI, the prism volume
is defined as l̂ × ĥ × t where l̂ lays on the principal stress
direction. In this case, a smooth variation for l̂ is proposed
between h ≤ l̂ ≤ l. Therefore, l̂ is defined in terms of the
angle α given by the principal stresses direction and the side
i j (Fig. 5) as

l̂ = l − [1 − cos(2α)]

[
l − h

2

]
with h = Ae + Ae′

3l
(11)

Note thatwhen a side is damaged, it affects all the elements
that share the side, as shown in Fig. 3.

Remark The removal of a cohesive bond at a side does not
give an indication of the cracking direction. The fracture pat-
terns can be identified from the distribution of the broken
bonds at the element sides, as it is usually done in damage
models for frictional materials [9,14–16,18–20]

5 Generation of discrete particles

When a cohesive bond is fully removed (i.e., the side stiffness
is neglected), two discrete elements (or particles) are created
at the disconnected nodes. In our work, we have used circular
disks (for 2D problems) and spheres (for 3D problems) for
representing the discrete elements. Themass of each newdis-
crete element corresponds to the nodal mass in the FEM and
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Fig. 5 Characteristic length
definition at a side shared by
two elements. Equivalent
rectangular prism where fracture
is localized

its radius will be the maximum one that guarantees the con-
tact between the adjacent discrete elements without creating
any overlappings between them. Indeed, this is not the only
algorithm that can be used for generating discrete elements
[13] but it has been proved to be a very effective procedure,
as the main idea is to avoid that the new discrete elements
created generate spurious contact forces.

Once a discrete element is created, the forces at the con-
tact interfaces are used to define the interaction of the element
with the adjacent ones. These forces are due only to the con-
tact interaction in the normal and tangential directions. At the
contact point, the minimum radius of the particles in contact
are used to evaluate the contact forces [23].

In ourwork,wehaveused a local constitutivemodel for the
normal and tangential forces at the contact interfaces between
discrete elements as proposed in [23].

For 2D problems, the normal contact force Fn at a contact
point between two disks is given by

Fn = EoAεn = 2Eort

(
un

ri + r j

)
with r = min

(
ri ,r j

)
(12)

where un is the normal overlap between the two discrete
elements.

The tangential force Fs at the contact point is a function
of the relative tangential displacement us between the two
particles in contact, and is defined in a regularized way as
[23]

Fs = min

{
2rt

(
us

ri+r j

)
Eo

2(1+ν)

μFn
(13)

whereμ is the friction coefficient and ν is the Poisson’s ratio.
The extension of Eqs. (12) and (13) to the 3D case can be

seen in [23,31].
Some interesting facts are derived from this approach.

Since the number of discrete elements generated in an analy-
sis is only a fraction of the number of nodes in the mesh, the

searching algorithm for evaluating the contact interactions
between discrete elements does not consume much compu-
tational resources, as in the case of using discrete elements
only. Additionally, the generated particles undergo relatively
small displacements (due to the time increments used in the
explicit integration scheme chosen here) so the list of possi-
ble contact points does not require a constant updating.

6 Examples

Four examples are presented to demonstrate the good behav-
ior of the FEM–DEM approach described in the previous
sections. The first example is the 2D study of a normalized
tensile test in a concrete specimen. The second one is the 2D
analysis of a mixed-mode fracture benchmark in a concrete
beam. Next, an indirect tensile test widely used in concrete
and rockmechanics is analyzed in 2Dand3Dusing theFEM–
DEM technique proposed. Finally, we present an example of
compressive failure of a concrete specimen.

All the examples have been solved using an explicit
dynamic technique for the time integration of the govern-
ing equations for the FEM and for each individual particle,
as it is typically done in the DEM [23–29].

6.1 Normalized tensile test

The first example corresponds to the fracture analysis of a
flat concrete specimen under tensile stress. The geometry is
defined according to the norm D638 of the American Sec-
tion of the International Association for Testing Materials
(ASTM) [1] as shown in Fig. 6 where the three meshes of 3-
noded triangular elements used and the boundary conditions
can be seen. A constant displacement field is imposed in the
entire shadow area.

The study has been performed using the 2D FEM–DEM
technique previously described. In order to localize the frac-
ture, only one band of elements is allowed to break at the
failure stress level corresponding to the testedmaterial, using
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Fig. 6 Normalized tensile test of a concrete specimen. Finite element
meshes and dimensions according to the ASTM D638 norm [1]

the linear damage model presented. The results obtained are
analyzed by plotting the horizontal displacement of points
PA and PB shown in Fig. 6.

The Young modulus, the Poisson ratio, and the density
are, respectively, E0 = 30 GPa, ν = 0.2, and γ = 1.0 ×
103 N/m3. The tensile strength is ft = 10 KPa. Two specific
fracture energies per unit area have been considered G f1 =
0.0 J/m2 and G f2 = 7.5 × 10−3 J/m2.

The specimen deforms by applying a constant velocity
displacement of 0.5 × 106 m/s. at the right tip of the speci-
men. Figure 7 shows the relationship between the imposed
displacement and the load level for the brittle fracture case
(G f1 = 0.0 J/m3). The behavior is exactly the same for the
three meshes used and in agreement with the expected result.
Figure 8 shows the damaged geometry. Note that where frac-
ture appears, discrete elements are created at the crack lips
as explained in the previous sections.

Fig. 8 Normalized tensile test of a concrete specimen. Cracked zone
with the discrete particles generated for the three finite element meshes
considered

When the numerical experiments are carried out using
a specific fracture energy of G f2 = 7.5 × 10−3 J/m2, the
displacement of points PA and PB situated at the right and
the center of the specimen, respectively (Fig. 6), is tracked
in order to evaluate the crack opening. Figure 9 shows the
load–displacement relationship at these points. For the three
meshes considered, the displacement evolution is very simi-
lar and in agreement with the expected results.

Since the fractured elements have a different size for each
mesh, the displacement of point PB in the elastic region
becomes smaller as the element size is reduced. However,
once the crack initiates, the displacement of point PB is ruled
by the elastic energy stored in the specimen. Beyond the limit
load value, the displacement of the point follows the contin-
uous branch of the theoretical static problem. As the problem
has been solved in a dynamic fashion, the change in slope
progresses gradually and has small fluctuations around the
theoretical result. The crack pattern for this case is very sim-
ilar to that shown in Fig. 8.

Fig. 7 Normalized tensile test
of a concrete specimen.
Load–horizontal displacement
curve at the specimen tip using
G f1 = 0.0 × 10−3 J/m2
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Fig. 9 Normalized tensile test
of a concrete specimen.
Load–horizontal displacement
curve at points PA and PB of the
specimen using
G2 = 7.5 × 10−3 J/m2

Fig. 10 Double notched
concrete beam. Dimensions and
boundary conditions

6.2 Four-point bending beam

The next example is the failure test of a double notch concrete
beam analyzed under plane stress conditions. This is a good
example of mix-mode fracture. The beam is supported at
two points and deforms in a bending mode by applying an
imposed displacement at the two points depicted in Fig. 10
where the beam dimensions are also shown.

The beam has two singular points at the tip of the two
notcheswhere the tensile stresses are high and damage begins
in this area. The material properties are E0 = 30 GPa, ν =
0.2, γ = 103 N/m3, ft = 2 MPa, and G f = 100 J/m2. The
problem has been solved with the 2D FEM–DEM technique
explained. Figure 11 shows a detail of the three meshes used
of 1165 nodes and 2202 linear triangular elements (coarse
mesh), 1847 nodes and 3480 elements (intermediate mesh),
and 5747 nodes and 11206 elements (fine mesh).

Figure 12 shows the crack path for the three meshes ana-
lyzedwhich coincide with the numerical results of Cervera et
al. [7]. Figure 13 shows the relationship between the vertical

reaction at a force support and the imposed displacement at
any of the two points depicted in Fig. 10. The graphs are in
good agreement with the results obtained in [7].

6.3 Indirect tensile test

The Brazilian tensile strength (BTS) test is a very practical
and simple experimental procedure to evaluate the tensile
strength of brittle materials. The concrete sample analyzed
is a cylinder of 0.2m diameter (D) and 0.1m thickness (t),
which is diametrically loaded by a press. The tensile strength
value is computed by the following relationship [3]:

f numt = 2P

π t D
(14)

where P is the applied load.
The material properties are E0 = 21 GPa, ν = 0.2, γ =

7.8 × 103 N/m3, ft = 10 KPa, and G f = 1 × 10−3 J/m2.
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Fig. 11 Double notched
concrete beam. Detail of the
three meshes used in the vicinity
of the two notches

Fig. 12 Double notched
concrete beam. Displacement
contours and crack path at the
two notches regions using three
different meshes: a Coarse
mesh, b intermediate mesh, c
Fine mesh. Detail of the discrete
elements generated at the cracks

Fig. 13 Double notched
concrete beam. Relationship
between the force and the
imposed displacement at any of
the two points depicted in
Fig. 10. FEM–DEM results are
compared to those given in [7]

123



Comp. Part. Mech. (2015) 2:301–314 309

Fig. 14 BTS test on a concrete
specimen. Dimensions,
boundary conditions, and finite
element meshes of three-noded
triangles used for the analysis

Fig. 15 BTS test on a concrete
specimen. Damage zone and
discrete elements generated. a
Coarse mesh, b intermediate
mesh, c Fine mesh

Using Eq. (14) this corresponds to a failure load of P =
314.16 N.

Threemeshes of 890, 1989, and 7956 linear triangular ele-
ments each were used for the analysis, as shown in Fig. 14.
The sample is deformed by imposing a constant velocity dis-
placement at the top of the sample.

Figure 15 depicts the damaged geometry, as well as the
crack and the discrete elements generated at a certain instant
of the analysis. The cracking pattern is similar for the three
meshes and in agreement with the expected result. Figure 16
shows the evolution of the vertical load versus the horizontal
displacement at the center of the specimen up to the failure
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Fig. 16 2D FEM–DEM
analysis of BTS test on a
concrete specimen.
Force–displacement relationship
for the three meshes used

Fig. 17 3D FEM–DEM
analysis of BTS test on a
concrete specimen. Damage
zone and discrete elements
generated. a Coarse mesh, b
intermediate mesh, c Fine mesh
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Fig. 18 3D FEM–DEM
analysis of BTS test on a
concrete specimen.
Force–displacement relationship
for the three meshes used

Fig. 19 Compressive failure
analysis of a concrete specimen.
Geometry and finite element
meshes of 3-noded triangles

load. The numerical values for the tensile strength obtained
using Eq. (14) for each three meshes (coarse to fine) were
10587, 10506, and10481Pa, respectively,which yield amax-
imum of 5% error versus the expected value of ft = 10KPa.

The same example with identical geometry and mechan-
ical properties was solved in 3D using an extension of the
FEM–DEM technique presented in this work [31]. Three
meshes were used with 9338, 31455, and 61623 4-noded
linear tetrahedra. Results of the crack pattern obtained for
each of these meshes are depicted in Fig. 17. The numeri-
cal results for the load–displacement curve are presented in
Fig. 18. The numerical values obtained for the tensile strength
were (coarse to fine mesh) 10 693, 10 351, and 10 235 Pa
which yielded a range of 6-2% error versus the expected
value of ft = 10 KPa.

6.4 Example of compressive failure

The usefulness of the FEM–DEM formulation is verified in
the analysis of the compressive failure of a prismatic concrete
specimen. The problem is analyzed in 2D. Figure 19 depicts
the geometry of the specimen, the material properties, and
the two meshes of 3-noded triangles used for the analysis.

The material properties are E0 = 30GPa, ν = 0.2, γ =
7.8×103N/m3, ft = 2.0MPa, Gt = 100 J/m2, and fc/ ft =
10. This corresponds to a maximum uniaxial compression
stress of 20.0MPa.

Figure 20 shows the stress–strain curve up to failure. The
failure compressive stress is around fc = 18.8MPa which
agrees well with the expected value, taking into account the
difficulty in modeling the correct boundary conditions.
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Fig. 20 Compressive failure
analysis of concrete specimen.
Stress–strain curve

Fig. 21 Compressive failure
analysis of a concrete specimen
using a structured mesh. a
Theoretical result [2]. b Crack
path. c Displacement
distribution. d Damage
distribution
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Fig. 22 Compressive failure
analysis of a concrete specimen
using a unstructured mesh. a
Theoretical result [2]. b Crack
path. c Displacement
distribution. d Damage
distribution

Figure 21 shows the final failure pattern, displacements,
and damage for the structuredmesh. The fracture on the sam-
ple coincides with the theoretical case (Fig. 21a) [2] due to
the symmetry of the mesh.

Figure 22 shows the final failure pattern, displacements,
and damage for the unstructured mesh applying symmetry
conditions. The fractures on the sample have a good agree-
ment with the theoretical case [2] showing the bands of
vertical cracks at 45◦.

7 Conclusions

We have presented a simple FEM–DEM methodology for
predicting the onset and evolution of the crack path in mate-
rials and structures. Some advantages and differences with
similar procedures such as the EET [12,17,30] can be high-
lighted:

– The failure criterion is considered at the midpoint of the
element sides using a smooth stress field which does not
need any additional considerations such as stabilization,
or complex mixed finite element formulations.

– Damaging the element sides implies that the twoelements
sharing the side reduce its stiffness simultaneously.

– There is no mass loss by eliminating the associated finite
elements. This ensures the conservation of the domain
mass during the fracturing process.

– The implementation of the FEM–DEM technique pre-
sented is quite simple and has yielded promising results,
both qualitatively and quantitatively, for predicting the
onset and propagation of fracture in concrete samples
under tension, compression and mixed failure modes.
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