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Abstract This article presents new algorithms for mas-
sively parallel granular dynamics simulations on distributed
memory architectures using a domain partitioning approach.
Collisions are modelled with hard contacts in order to hide
their micro-dynamics and thus to extend the time and length
scales that can be simulated. The global multi-contact prob-
lem is solved using a non-linear block Gauss-Seidel method
that is conforming to the subdomain structure. The parallel
algorithms employ a sophisticated protocol between proces-
sors that delegate algorithmic tasks such as contact treat-
ment and position integration uniquely and robustly to the
processors. Communication overhead is minimized through
aggressive message aggregation, leading to excellent strong
and weak scaling. The robustness and scalability is assessed
on three clusters including two peta-scale supercomputers
with up to 458,752 processor cores. The simulations can
reach unprecedented resolution of up to ten billion (10'0)
non-spherical particles and contacts.
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1 Introduction

Granular matter exhibits intriguing behaviours akin to solids,
liquids or gases. However, in contrast to those fundamental
states of matter, granular matter still cannot be described by
a unified model equation homogenizing the dynamics of the
individual particles [28]. To date, the rich set of phenomena
observed in granular matter, can only be reproduced with sim-
ulations that resolve every individual particle. In this paper,
we will consider methods where also the spatial extent and
geometric shape of the particles can be modelled. Thus in
addition to position and translational velocity the orienta-
tion and angular velocity of each particle constitute the state
variables of the dynamical system. The shapes of the parti-
cles can be described for example by geometric primitives,
such as spheres or cylinders, with a low-dimensional para-
meterization. Composite objects can be introduced as a set
of primitives that are rigidly glued together. Eventually, even
meshes with a higher-dimensional parameterization can be
used. In this article the shape of the particles does not change
in time, i.e. no agglomeration, fracture or deformation takes
place. The rates of change of the state variables are described
by the Newton-Euler equations, and the particle interactions
are determined by contact models.

Two fundamentally different model types must be dis-
tinguished: Soft and hard contacts. Soft contacts allow a
local compliance in the contact region, whereas hard contacts
forbid penetrations. In the former class the contact forces
can be discontinuous in time, leading to non-differentiable
but continuous velocities after integration. The differential
system can be cast e.g. as an ordinary differential equa-
tion with a discontinuous right-hand side or as differential
inclusions. However, the resulting differential system is typ-
ically extremely stiff if realistic material parameters are
employed.
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In the latter class, discontinuous forces are not suffi-
cient to accomplish non-penetration of the particles. Instead,
impulses are necessary to instantaneously change velocities
on collisions or in self-locking configurations if Coulomb
friction is present [35]. Stronger mathematical concepts
are required to describe the dynamics. For that purpose,
Moreau introduced the notion of measure differential inclu-
sions in [29].

Hard contacts are an idealization of reality. The rigid-
ity of contacts has the advantage that the dynamics of the
micro-collisions does not have to be resolved in time. How-
ever, this also introduces ambiguities: The rigidity has the
effect that the force chains along which a particle is sup-
ported are no longer unique [31]. If energy is dissipated,
this also effects the dynamics. To integrate measure dif-
ferential inclusions numerically in time, two options exist:
In the first approach the integration is performed in subin-
tervals from one impulsive event to the next [11,27]. At
each event an instantaneous impact problem must be solved
whose solution serves as initial condition of the subsequent
integration subinterval. Impact problems can range from sim-
ple binary collisions to self-locking configurations and to
complicated instantaneous frictional multi-contact problems
with simultaneous impacts. The dynamics between events
are described by differential inclusions, differential alge-
braic equations or ordinary differential equations. Predicting
the times of the upcoming events correctly is non-trivial in
general and handling them in order in parallel is imped-
ing the scalability [27]. In the second approach no efforts
are made to detect events, but the contact conditions are
only required to be satisfied at discrete points in time.
This approach is commonly referred to as a time-stepping
method.

This article focuses on the treatment of hard contacts in
order to avoid the temporal resolution of micro-collisions and
thus the dependence of the time-step length on the stiffness of
the contacts. In order to avoid the resolution of events a time-
stepping method is employed. This considerably extends the
time scales that are accessible to simulations of granular sys-
tems with stiff contacts.

To estimate the order of a typical real-life problem size
of a granular system, consider an excavator bucket with a
capacity of 1 m>. Assuming sand grains with a diameter of
0.15mm, and assuming that they are packed with a solid
volume fraction of 0.6, the excavator bucket contains in the
order of 10'? particles. In such a dense packing the number of
contacts is in the same order as the number of particles. Only
large scale parallel systems with distributed memory can pro-
vide enough memory to store the data and provide sufficient
computational power to integrate such systems for a relevant
simulation time. Consequently a massive parallelization of
the numerical method for architectures with distributed mem-
ory is absolutely essential.
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In the last half decade several approaches were pub-
lished suggesting parallelizations of the methods integrating
the equations of motion of rigid particles in hard contact
[17,18,22,30,36,40,41]. The approach put forward in this
article builds conceptually on these previous approaches but
exceeds them substantially by consistently parallelizing all
parts of the code, consistently distributing all simulation data
(including the description of the domain partitioning), sys-
tematically minimizing the volume of communication and
the number of exchanged messages, and relying exclusively
on efficient nearest-neighbor communication. The approach
described here additionally spares the expensive assembly
of system matrices by employing matrix-free computations.
All this is accomplished without sacrificing accuracy. The
matrix-free implementation allows the direct and straight for-
ward evaluation of wrenches in parallel and thus reduces the
amount of communicated data. Furthermore, an exception-
ally robust synchronization protocol is defined, which is not
susceptible to numerical errors. The excellent parallel scal-
ing behaviour is then demonstrated for dilute and dense test
problems in strong- and weak-scaling experiments on three
clusters with fundamentally different interconnect networks.
Among the test machines are the peta-scale supercomput-
ers SuperMUC and Juqueen, as they will be described in
Sect. 7.3. The results show that given a sufficient com-
putational intensity of the granular setup and an adequate
processor interconnect, a few hundred particles per process
are already enough to obtain satisfactory scaling even on mil-
lions of processes.

In Sect. 2 of this paper the underlying differential equa-
tions and the time-continuous formulation of the hard contact
models are formulated. Sect. 3 proposes a discretization
scheme and discrete constraints for the hard contact model.
The problem of reducing the number of contacts in the system
for efficiency reasons is addressed in Sect. 4. Subsequently,
an improved numerical method for solving multi-contact
problems in parallel is introduced in Sect. 5 before turning to
the design of the parallelization in Sect. 6. The scalability of
the parallelization is then demonstrated in Sect. 7 by means
of dilute and dense setups on three different clusters. Finally,
the algorithms and results are compared to previous work by
other authors in Sect. 8 before summarizing in Sect. 9.

2 Continuous dynamical system

The Newton-Euler equations for a system with v, particles

are [24]
(x(z)) N ( v (1) )
o)) \Qlpe®)’
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where the positions x (f) € R3", the rotations ¢ (1) € R*"»,
translational velocities v (r) € R3", and angular velocities
w(t) € R are the state variables at time 1.

Different parameterizations exist for the rotations, but
quaternions having four real components are the parameter-
ization of choice here. Independent of the parameterization,
the derivatives of the rotation components can be expressed
in terms of a matrix-vector product between a block-diagonal
matrix and the angular velocities [ 10]. If the rotation of parti-
cle i is described by the quaternion gy, +¢xi+gyj+g:k € H
then, according to [10], the i-th diagonal block of Q(¢ (¢)) is

1 qJw q: —4y
.. (1)) = —
Qilpn =5 | T 4 71

4y —qx 4quw

Each particle has an associated body frame whose origin
coincides with the body’s center of mass and whose axes
are initially aligned with the axes of the observational frame.
The body frame is rigidly attached to the body and translates
and rotates with it. All of the state variables and other quan-
tities are expressed in the observational frame unless noted
otherwise. Furthermore, the matrix

diag m;1
_ i=l..vp
M(p (1)) = diag L (¢; (1))

i=1..vp

is the block-diagonal mass matrix, where 1 denotes the 3 x 3
identity matrix. The mass matrix contains the constant par-
ticle masses m; and the particles’ inertia matrices I;; (@; (1))
about the particles’ centers of mass. The latter can be calcu-
lated by similarity transformations from the constant body
frame inertia matrices I?i. If the body frames are attached
such that they coincide with the principal axes of their parti-
cles, then the body frame inertia matrices are diagonal, and
floating-point operations as well as memory can be saved.
The lower-right block of the mass matrix corresponds to the
matrix I(@(¢)). f(s(¢),t) and T (s(¢), t) are the total forces
and torques (together they are referred to as wrenches) act-
ing at the particles’ centers of mass. Both may depend on
any of the state variables s (¢) of the system and time 7. The
wrench contributions from contact reactions are summed up
with external forces f,,, and torques 7.y, such as fictitious
forces from non-inertial reference frames.

Letd;(t) € IR3 be the contact reaction of a contact j € C,
where C = {1 .. v.}is the set of potential contact indices. Let
(j1. j2) € B? be the index pair of both particles involved in
the contact j, where B = {1 .. vp} is the set of body indices.
Let X;(x(1), (1)) € IR be the location of contact j, then
the wrench on body i is

fi(s(), t)) _ (f,-,m(s(t),t)) [ 1 ]x-
(n(sm,r) = \tiens (). 1) +j§ G 0), p() — xie |10
Ji=i

1
- ]ZC: [@ @), 9(1) — xl-(r»X} Ao,
Jo=i

wrench contributions

ey

where (-)* is a matrix, which when multiplied to a vector
corresponds to the cross product between its operand (-) and
the vector.

In contrast to soft contact models, the contact reactions
in hard contact models cannot be explicitly expressed as a
function of the state variables but are defined implicitly, e.g.
by implicit non-linear functions [23], complementarity con-
straints [1,3], or inclusions [38]. In any case, the constraints
distinguish between reactions in the directions normal to the
contact surfaces and reactions in the tangential planes of the
contact surfaces. The former are used to formulate the non-
penetration constraints, and the latter are used to formulate
the friction constraints. For that reason, each contact j is asso-
ciated with a contact frame, where the axis n; (x (1), ¢ (1)) €
R? points along the direction normal to the contact sur-
face, and the other two axes ¢;(x (1), @(t)) € R3 and
0j(x(@), (1)) € R3 span the tangential plane of the contact.

Let S; be the set of points in the observational frame defin-
ing the shape of particle i, and let f; (x;(¢), ¢;(¢),y) € R be
the associated signed distance function for a point y in the
observational frame. The signed distance function shall be
negative in the interior of S;. Assuming that all particles are
(strictly) convex with sufficiently smooth boundaries, then
for a pair of particles (ji, j») involved in a contact j, the
contact location X j(x (1), @ (1)) is defined by the optimiza-
tion problem

xj(t) = x;(x(0), @)
= arg min
fj2 (sz (t)v(pjz ®),y)=0

Fin ey (1), 05,(0), ), 2

with associated contact normal

nj(t) :=nj(x @), ) =Vyfjx;@),e;), %),

pointing outwards with respect to §;, and associated signed
contact distance

§j(1) :=§;(x (1), 9(0) = [j;(x;, 1), 9;,1), % (1))

which is negative in the case of penetrations.

For convex particles each pair of bodies results in a poten-
tial contact, and thus the total number of contacts v, is limited
by %vb (vp — 1). Non-convex objects e.g. can be implemented
as composite objects of convex particles. By convention a
positive reaction in normal direction is repulsive, and thus
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the contact reaction A ;(¢) acts positively on particle j; and
negatively on j,, thus explaining the signs in (1). By applying
the opposite reactions at the same point in the observational
frame, not only the linear momentum can be conserved but
also the angular momentum of the system. Conservation of
energy can only hold if the contact model does not include
dissipative effects. Hard-contact models require the Signorini
condition to hold. Written as a complementarity condition for
a contact j, it reads

§i(t) = 0L 2,0 =0,

where A , (1) =n; T (). The signed contact distance is
required to be non-negative, resulting in a non-penetration
constraint. The contact reaction in direction of the con-
tact normal is also required to be non-negative, resulting in
non-adhesive contact reactions. Furthermore, both quantities
must be complementary, meaning that either of them must be
equal to zero. This effects that the contact reaction can only
be non-zero if the contact is closed.

However, the Signorini condition does not determine the
contact reaction force if the contact is closed. In that case the
non-penetration constraint on the velocity level,

EFD 20 L0 =0,

must be added to the system, where E]"’ is the right derivative
of the signed contact distance with respect to time. The con-
straint allows the contact to break only if no reaction force
is present and otherwise forces S;r (t) = 0. In the latter case
the reaction force is still not fixed. The non-penetration con-
straint on the acceleration level,

EFD =0 L0 =0,

then determines the force also if $]+ (t) =0.

When considering impacts, a non-penetration constraint
for the reaction impulse in the direction normal to the contact
surface must be formulated, and, if the contact is closed, an
additional constraint modelling the impact dynamics, such
as Newton’s impact law, must be added. The coefficient of
restitution in Newton’s impact law can then be used to control
the amount of energy that is dissipated in the collisions. This
is analogous to damping elements in soft contact models.

These non-penetration conditions can be complemented
by a friction condition. The most prominent model for dry
frictional contact is the Coulomb model which restricts the
relative contact velocity in the tangential plane of the contact.
The relative contact velocity for a pair of particles (ji, j2)
involved in a contact j is

v (s (1)) = v (1) + @) (1) x (&;(x (1), 9(1) —xj, (1)

— v (1) — @) (1) X (& (x (1), 9(0) — x,(1)).

J2
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Let
P (i), (1) 0t (s ()
8Vj10(1) 1= 8V, (s (1)) = (0 S (1), 9 (DT80 (5 (1)

be the relative contact velocity in the tangential plane after
application of the contact impulses, then the Coulomb con-
ditions for a non-impulsive point in time ¢ are

IAj.ro(®)ll2 < pjhjn(2) and
”(sUIM(I)HZXj,m(t) = _/Lj)\j,n(t)(sv;jw(t).

This inequality limits the magnitude of the friction force to
the product of the coefficient of friction w ; times the reaction
force in direction of the contact normal A ; ,,(¢). If the magni-
tude of the friction force reaches the limiting value, then the
friction conditions can only be fulfilled if the friction force
directly opposes the tangential relative contact velocity. If
instead the magnitude of the friction force is below the limit,
then the equation can only be fulfilled if ||8vj’t ;D2 = 0.
However, in this case these conditions must be supplemented
by the constraint

. + . +
180 o (122108 = =k (8], (1)

on acceleration level in order to determine the friction force.
Likewise constraints for the friction impulse are necessary.
At this point we refrain from formulating the measure differ-
ential inclusion in further detail since it would not contribute
information essential to the remaining paper which only deals
with the discrete-time system.

3 Discrete dynamical system

In simulations of granular matter impulsive reactions are
abundant. Higher-order integrators for time-stepping schem-
es are still subject to active research [33]. In particular, dis-
continuities pose problems for these integrators. Hence, the
continuous dynamical system is discretized in the following
with an integrator of order one, resembling the semi-implicit
Euler method and similar to the one suggested in [2].

Let s, x, ¢, v and ® denote the given discrete-time state
variables at time ¢ and A the contact reactions at time ¢. Then
the state variables at time ¢ 4 8¢ are functions depending on
the contact reactions: s’(A), x’(X), ¢’(X), v'(A) and @' (}).
The discrete-time Newton-Euler equations integrated by the
proposed scheme are

XMWY\ _ (x v' (L)
(q)’(x)) = (<p) ot (Q(w)w’(x)) :

(3)
V)Y _ (v - S, A1)
((d(k)) = (w) +orM(e) (r(s, A1) —w x I((p)w) :
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Positions and orientations at time ¢ + ¢ appear exclusively
on the left-hand side of the position and orientation integra-
tion. Velocities at time ¢ 4 §t appear on the left-hand side
of the velocity integration and additionally in the integration
of positions and orientations. The numerical integration of
the quaternion has the effect that the quaternion gradually
looses its unit length. This deficiency can be compensated
by renormalizing the quaternions after each integration.

Instead of discretizing each of the five intermittently active
continuous-time complementarity constraints, the Signorini
condition is only required to hold at the end of each time
step. This has the effect that impulsive reactions are no longer
necessary to satisfy the condition since the condition is no
longer required to be fulfilled instantaneously. Furthermore,
the signed distance function gets linearized, resulting in

Ei(t +81) = &;(1) + 8t (1) + OS1%),

where the time derivative of the signed contact distance can
be determined to be

Ej() =n;(n 8T (s (1))

under the assumption that the contact point X ;(r) translates
and rotates in accordance with body j», such that

Xj(0) =v,(1) + @), (t) X (&;(1) —x,,(1)).
Let the time-discrete relative contact velocity be

$0 () =v; W) + @} M) x (& —x)

_v/jz()‘) - w/jzo‘) X (Xj—xj,),

where the velocities are discretized implicitly. The discrete
non-penetration constraint then is
§j

5 Fn8Yi) =0 LAj, =0, )

The term i—’t acts as an error correction term if penetrations
are present (§; < 0). In that case it can be scaled down
to avoid introducing an excessive amount of energy. If no
numerical error is present, the contact is inelastic and thus
corresponds to a hard contact model with Newton’s impact
law, where the coefficient of restitution is 0. The frictional

constraints translate into

IAjsoll2 < pjAj, and

/ / (5)
18V 1o W l12A j.t0 = — 12 j.n 8V 1o (R).

Let Fj(A) = 0 denote a non-linear system of equations
equivalent to the constraints from (4) and (5) of a single
contact j, and let F(X) denote the collection of all F;(X).

Neither F(A) = 0 nor F;(A) = 0 for given l; have unique

solutions. Let F ;1 (o, }‘j) be a possible solution of the one-
contact problem of contact j, given the contact reactions A;

of all other contacts .

A detailed discussion of solution algorithms for one-
contact problems is out of the scope of this article. However,
splitting methods, where non-penetration and friction con-
straints are solved separately, are prone to slow convergence
or cycling. In [7] Bonnefon et al. solve the one-contact prob-
lem by finding the root of a quartic polynomial. Numerous
other approaches exist for modified friction laws, notably
those where the friction cone is approximated by a polyhe-
dral cone and solution algorithms for linear complementarity
problems can be used [1,32]. In any case the algorithm of
choice should be as robust as possible in order to success-
fully resolve v, contacts per iteration and time step. In this
article we will demonstrate that v, can be in the order of 1019,

4 Contact detection

The contact problem F (L) = 0 constitutes (’)(v,%) non-linear
equations. Thus, already the setup of the contact problem
would not run in linear time, much less the solution algorithm
even if it were optimal. The contact constraints of a contact j
can be removed from the system without altering the result if
the contact is known to stay open (A ; = 0) within the current
time step. Let

Si(t) = {y e R? ‘ fi(xi(), @;(1),y) < 0]

be the set of points in space corresponding to the rotated and
translated shape of particle i at time ¢ and let

mm:&m+hew

Iyll2 < hi(t)]

be an intersection hull that spherically expands the parti-
cle shape by the radius h;(t) > 0. If h;(¢) is chosen large
enough then an algorithm finding intersections between the
hulls can detect all contacts that can potentially become active
in the current time step. A possible choice for the expansion
radius is

hi(t) = st (lvi (D2 + llwi () [27:) + 7. 6)

where 7; = maxyes; ) llyll2 is the bounding radius of parti-
cle i, and t is a safety margin. The safety margin becomes
necessary since an explicit Euler step is underlying the
derivation of (6). In practice, the usage of intersection hulls
reduces the number of contacts considerably. E.g., monodis-
perse spherical particles can have at most 12 contacts per
particle if the expansion radii are small enough [34], result-
ing in O(vp) potential contacts.
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Broad-phase contact detection algorithms aim to limit the
particle pairs that are possible candidates for contacts to as
few as possible. To this end they use e.g. spatial partitioning
or they exploit the temporal coherence of the particle posi-
tions [9]. The candidate pairs are then checked in detail in
the narrow-phase contact detection, where (2) is solved for
each pair, leading to the contact location ¥ j»normal n; and
signed distance &; for a contact j.

To solve (2) for non-overlapping particles, the Gilbert-
Johnson—Keerthi (GJK) algorithm can be used [4,13]. For
overlapping particle shapes the expanding polytope algo-
rithm (EPA) computes approximate solutions [5]. For simple
geometric primitives like spheres, the optimization problem
can be solved analytically. The indices of all contacts found
that way form the set of potential contacts C = {1 .. v.} at
time 7. Let F (L) = 0 from now on denote the contact prob-
lem where all contact conditions and contact reactions whose
indices are not part of C have been filtered out.

5 Numerical solution algorithms

To solve the multi-contact problem, when suitable solu-
tion algorithms for the one-contact problems F;l are given,
a non-linear block Gauss-Seidel (NBGS) can be used as
propagated by the non-smooth contact dynamics (NSCD)
method [20]. Unfortunately, the Gauss-Seidel algorithm can-
not be efficiently executed in parallel for irregular data
dependencies as they appear in contact problems [22].

As an alternative, a more general variant is proposed here,
accommodating the subdomain structure that will arise in
the domain partitioning. Therefore, each contact j € C is
associated with a subdomain number s.(j) € P, where
P ={1..vp} is the set of subdomain indices for v, subdo-
mains. Algorithm 1 presents pseudo-code for the subdomain
NBGS with the relaxation parameter w > 0. The initial solu-
tion is chosen to be zero, however, any other initialization
can be used, in particular contact reactions from the previous
time step.

The algorithm is of iterative nature and needs an appro-
priate stopping criterion to terminate. Note that the choice
of the stopping criterion for parallel executions of the algo-
rithm is not different from serial executions [22,36]. In each
iteration k a sweep over all contacts is performed, where
each contact j is relaxed, given an approximation of all

other contact reactions i(k'”. In the subdomain NBGS, the
approximation of contact reaction [ is taken from the cur-
rent iteration if it was already relaxed (I < j) and if it is
associated with the same subdomain as the contact j to be
relaxed (s.(I) = sc(j)). In all other cases, the approxima-
tion is taken from the previous iteration. The contact reaction
X;kH) is then a weighted mean between the previous approxi-
mation and the relaxation result. If all contacts are associated
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I: k<0
2: 20 0
3: while convergence criterion not met do

4: for j < 1tov.do
5: for/ € Cdo

. ~(k)) AEY S < A s () = s ()
6: AT L ®

! else

7: end for )
8: y < F;' 0,55 )
o; A — oy + (1= o
10:  end for

11: k< k+1
12: end while

Algorithm 1: The subdomain NBGS method with relaxation
parameter .

with the same subdomain and w = 1 then Algorithm 1 cor-
responds to a classic NBGS. If each contact is associated
to a different subdomain then Algorithm 1 corresponds to a
non-linear block Jacobi (NBJ) with relaxation parameter w.

It is well known that Gauss-Seidel and Jacobi methods of
equations do not scale linearly with the number of unknowns
for many problems of practical interest. This means that the
number of iterations needed to obtain a given error bound
increases with the number of unknowns in the system. How-
ever, this effect is most severe only when large global systems
must be solved. In many cases of interest in granular dynam-
ics, the global system effectively splits into many small
systems that correspond to the clusters of objects in con-
tact. Therefore, and in particular when a good initial guess is
available from previous time steps, often a moderate number
of iterations is sufficient to obtain a satisfactory accuracy. To
compensate for effects due to a variable number of iterations
in the scaling experiments in Sect. 7, the iterative solver is
stopped there after a constant number of iterations.

The subsequent section explains how the subdomain
NBGS algorithm presented in this section can be imple-
mented and efficiently executed in parallel on machines with
distributed memory. Under the assumption that the algorithm
converges, the contact reactions thus obtained in a parallel
execution of the NBGS solve the mathematical statement of
the problem from Sect. 3 just as if the algorithm is executed
serially. However, as mentioned briefly in Sect. 3, the dis-
crete systems have a non-unique solution, as it is inherently
caused by the hard contact model. Hence, solutions obtained
by the NBJ, the classic NBGS and the subdomain NBGS
can differ. However, this is simply an effect of an insufficient
regularization of the hard contact problem, it is not caused
by the parallelization per se.

6 Parallelization design

Sect. 6.1 introduces the domain partitioning approach.
Sect. 6.2 then discusses requirements that must be met in
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order to be able to treat all contacts exactly once in par-
allel. Sect. 6.3 explains a special technique to reduce the
data dependencies to other processes. To this end, accumu-
lator and correction variables will be introduced. In Sect. 6.4
conditions are discussed under which the set of commu-
nication partners can be reduced to the nearest neighbors.
Time-integration and the subsequent necessity of synchro-
nization are addressed in Sect. 6.5 before summarizing the
time-stepping procedure in Sect. 6.6.

6.1 Domain partitioning

Under the assumption that no contacts are present, there
exists no coupling between the data of any two particles, and
the problem becomes embarrassingly parallel: Each process
integrates LS—’;J or fl‘j—’p’] particles. Let s, (i) € P determine the
process responsible for the time-integration of particle i as of
now referred to as the parent process. All data associated with
this particle, that is the state variables (position, orientation,
velocities) and constants (mass, body frame inertia matrix,
shape parameters), are instantiated only at the parent process
in order to distribute the total memory load. However, con-
tacts or short-range potentials introduce data dependencies
to particles that in general are not instantiated on the local
process nor on a process close to the local one, rendering a
proper scaling impossible. A domain partitioning approach
alleviates this problem.

Let £2 denote the computational domain within which all
particles are located and £2, C £2,p € P, a family of
disjoint subdomains into which the domain shall be parti-
tioned. In this context, subdomain boundaries are assigned
to exactly one process. One process shall be executed per
subdomain. The number of processes can e.g. correspond to
the number of compute nodes in a hybrid parallelization or to
the total number of cores or even threads in a homogeneous
parallelization. In the domain partitioning approach the inte-
gration of a particle whose center of mass x; is located in a
subdomain £2, at time ¢ is calculated by process p. That way
data dependencies typically pertain the local or neighboring
subdomains since they are considered to be of short range.
Let s5(i) be adapted accordingly. Special care is required
when associating a particle to a subdomain whose center of
mass is located on or near subdomain interfaces. Especially,
periodic boundary conditions can complicate the association
process since the finite precision of floating-point arithmetics
does in general not allow a consistent parametric description
of subdomains across periodic boundaries. Sect. 6.5 below
explains how the synchronization protocol can be used to
realize a reliable association.

The domain partitioning should be chosen such that
approximately an equal number of particles is located ini-
tially in each subdomain and that this is sustained over the

Fig. 1 A hexagonal close packing of spheres inside a box-shaped
domain. The domain is partitioned into two subdomains a Red particles
are associated with the bottom process, blue particles are associated
with the top process. b The view of each process is illustrated sepa-
rately: The top process instantiates additional shadow copies. (Color
figure online)

course of the simulation in order to balance the computational
load which is directly proportional to the number of particles.
Particles now migrate between processes if their positions
change the subdomain. Migration can lead to severe load
imbalances that may need to be addressed by dynamically
repartitioning the domain. Such load-balancing techniques
are beyond the scope of this article.

6.2 Shadow copies

A pure local instantiation of particles has the effect that
contacts cannot be detected between particles that are not
located on the same process. A process can detect a contact
if both particles involved in the contact are instantiated on
that process. In order to guarantee that at least one process
can detect a contact, the condition that a contact j must be
detected by all processes whose subdomains intersect with
the hull intersection Hj; N H}, is sufficient if the intersec-
tion of the hull intersection and the domain is non-empty.
This condition can be fulfilled by the following requirement:

Requirement 1 A particle i must be instantiated not only
on the parent process but also on all processes whose sub-
domains intersect with the particle’s hull.

These additional instantiations shall be termed shadow
copies in the following. As passive copies of the original data
structures, they must be kept in synchronization with the orig-
inal instantiation on the parent process. Figure 1 illustrates
the concept. A hexagonal close packing of spheres confined
by lateral walls is shown. The illustration is simplified in
the sense that no intersection hulls are considered. The box-
shaped domain is split into an upper and a lower subdomain.
Each subdomain is associated to one process. The red par-
ticles are associated to the bottom process according to the
positions, whereas the blue particles are associated to the top
process. In Fig. 1b the view of the bottom and top process is
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split. Since the upper-most layer of red particles extends into
the subdomain of the top process, the top process must instan-
tiate synchronized copies of these particles. These shadow
copies are marked by using a darker shading in the figure.

In order to determine which process will be responsible
for treating the contact a rule is needed. Ideally this does not
require additional communication. Here, the statement that
a process is responsible for freating a contact refers to the
responsibility of the process for executing the relaxation of
the respective contact in Algorithm 1. The typical choice for
this rule requires that the process whose subdomain contains
the point of contact is put in charge to treat the contact [36].

However, this seemingly natural rule only works if the
process whose subdomain contains the point is able to detect
the contact. Unfortunately, this is only guaranteed if the point
of contact is located within the hull intersection. Also, if the
point of contact is located outside of the domain £2, then no
process would be responsible to treat it.

A more intricate drawback of this approach is that it can
fail in case of periodic boundary conditions: If the contact
point is located near the periodic boundary, the periodic
image of the contact point will be detected at the other
end of the simulation box. Due to the shifted position of
the contact point image and the limited numerical precision,
the processes can no longer consistently determine which
process gets to treat the contact.

A more robust rule can be established by fulfilling the
following requirement:

Requirement 2 All shadow copy holders of a particle main-
tain a complete list of all other shadow copy holders and the
parent process of that particle.

Then each process detecting a contact can determine the list
of all processes detecting that very same contact, which is
the list of all processes with an instantiation of both particles
involved in the contact. This list is exactly the same on all
processes detecting the contact and is not prone to numerical
errors. The rule can then e.g. appoint the detecting process
with smallest rank to treat the contact. In order to enhance
the locality of the contact treatment, the rule should favor the
particle parents if they are among the contact witnesses. Any
such rule defines a partitioning of the contact set C. Let C,,
be the set of all contacts treated by process p € P. Then
process p instantiates all contacts j € C,.

Figure 2 illustrates the association of contacts to processes
on the basis of the hexagonal close packing. In Fig. 2a the
contacts detected by each process are shown. The blue con-
tacts are only detected on the top process and the red contacts
are only detected on the bottom process. The white con-
tacts are detected on both processes. Requirement 2 enables
the processes to consistently associate these contacts to the
processes. In Fig. 2b the ambiguity is resolved and the red
and blue contacts form a partitioning of all contacts. If the
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Fig. 2 The contact network of the hexagonal close packing. The view
is separated for each process a Red and blue contact nodes are unambigu-
ously associated with the boffom and top process respectively. White
contact nodes are detected redundantly b All redundant contacts are
removed and the red and blue contact nodes form a partitioning of all
contacts. (Color figure online)

bottom process has the smaller rank, the smallest rank rule
from above would result in such a contact partitioning.

6.3 Accumulator and correction variables

The contact relaxations in Algorithm 1 exhibit sums with
non-local data dependencies. In the following, the redundant
evaluation of these sums is prevented by introducing accu-
mulator variables and the non-local data dependencies are
reduced by introducing correction variables.

The relaxation of a contact j depends on the data of the
state variables of both particles (ji, j») involved in the con-
tact, their constants and shape parameters, as can be seen by
inspecting (4), (5) and the definitions of the terms appearing
therein. All of these quantities are instantiated on the detect-
ing process, either as a shadow copy or as an original instance.
The contact variables of contact j (location, signed distance
and the contact frame) are also required. They are available on
the detecting process since they result from the positions, ori-
entations, and the shape parameters of the particles (j1, j2) in
the contact detection. Furthermore, the force and torque terms
from (1) acting on these particles additionally depend on the

locations Xx; and reaction approximations Xl(k’j) of all other
contacts / involving one of the particles (i, j»). Neither the
locations nor the reaction approximations of these contacts
are necessarily available on the process treating contact j.
To rectify this deficiency, one can introduce contact shadow
copies so that location and reaction approximation can be
mirrored at every instantiation of both particles involved in
the contact. However, the organisational overhead of contact
shadow copies can be circumvented. It is not necessary that
the process treating the contact evaluates all the wrench con-
tributions to the particles involved in the contact. Instead,
parts of the wrench contribution sum can be evaluated on
the processes actually treating the remote contacts and can
subsequently be communicated:
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Fig. 3 The contact network of the hexagonal close packing. In order
to relax the green contact on the bottom process, the contact reactions
of the red contact nodes are needed from the botfom process and the
contact reactions of the blue contact nodes are needed from the top
process. (Color figure online)
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Figure 3 illustrates the data dependencies in the relax-
ation of a contact on the basis of the contact network in the
hexagonal close packing. When relaxing the green contact,
all contact reactions acting on the two contacting particles
(J1, j2) are required in order to perform the relaxation. Let
Jj1 be the particle left of the green contact and j, be the par-
ticle right of the green contact. The total wrench on jj is
the sum of the wrench contribution on the particle from the
top process and the bottom process. The wrench contribu-
tion from the top process consists of two contact reactions
marked in blue and the wrench contribution from the bottom
process consists of six contact reactions marked in red. The
same applies to particle js.

The total wrench on particle i € {jj, jo} can also be
expressed in terms of the total wrench on particle i at the
beginning of iteration k:
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When relaxing the contact j in iteration k of the subdo-
main NBGS, the wrench on particle i € {1, j»} is evaluated
with the reaction approximation i(k']) as parameter. Since
the subdomain NBGS respects the subdomain association of

the contacts, the remote wrench contributions to particle i
cancel out, and just the total wrench on particle i from the
last iteration is needed in addition to corrections stemming
from contacts that were already relaxed by the same process.
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Our implementation instantiates variables on process p
for the reaction approximations APl € R3IC! of all contacts
treated by process p. Any updates to the reaction approx-
imations occur in place. Furthermore, an implementation
can instantiate accumulator variables f [p], 7lPl € R31Byl on
process p for the wrenches from the last iteration of all instan-
tiated particles (shadow copies and original instances), where
B, contains the indices of all shadow copies and original
instances instantiated on process p. This set is partitioned
into By jocar and By shadow, containing the indices of the
original instances and the shadow copies respectively.

Instead of evaluating the wrench contribution sums each
time when calculating the total wrench on particle i anew, the
contributions can be accumulated as the contacts are relaxed.
For that purpose, the correction variables §f (Pl ¢ R3IBy
and 877! € R3B! can be instantiated. Then, after line 9
of Algorithm 1, these wrench corrections can be updated by
assigning

5f%‘j“("” _ 8f5;:<1'>1 +[ 1 i|()\(/<+1)_ A0
st st Gj—x;) ] P

spbeti sl ) T Ly — x| T

J2 J2

The evaluation of the total wrench on particle i in line 8 of
Algorithm 1 when relaxing contact j in iteration k£ becomes

fi(i(k’j.)) _ fl[SC(j_)] N afl[slr(j-)]
tj(i(k,j)) .rl[_sc(J)] 3.[’[&(1)] ’

that is the sum of the accumulator and the correction vari-
ables.

At the end of each iteration the wrench corrections for
each body must be reduced and added to the accumulated
wrench from the last iteration. This can be performed in
two message exchanges. In the first message exchange each
process sends the wrench correction of each shadow copy
to its parent process. Then each process sums up for each
original instance all wrench corrections obtained from the
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shadow copy holders, its own wrench correction, and the
original instance’s accumulated wrench. Subsequently, the
updated accumulated wrench of each original instance is sent
to the shadow copy holders in a second message-exchange
communication step. The wrench corrections are then reset
everywhere.

The accumulated wrenches f1P1, 7IP] are initialized on
each process p before line 3 in Algorithm 1 to

[p]
(fi[p]) < (fi.,ext) Vi € Bp
Tl- Tl,ext

unless the initial solution is chosen to be non-zero. The
wrench corrections are initially set to 0. If the external forces
and torques are not known on each process or are scattered
among the processes having instantiated the particles, the ini-
tialization requires another two message exchanges, as they
are necessary at the end of each iteration.

An alternative to storing accumulated wrenches and
wrench corrections is to store accumulated velocities and
velocity corrections. In that case, a process p instantiates
variables v[P1, @1, §vlP1 slPl ¢ R3IBr!. The accumulated
velocities are set to vg()»(k)) and ] AR for all i € B,
in each iteration. They are initialized and updated accord-
ingly. The velocity corrections are initialized and updated
analogously to the wrench corrections. Hereby, the velocity
variables can be updated in place. In the classic NBGS, no
wrench or velocity correction variables would be necessary,
but the corrections could be added to the velocity variables
right away which is similar to the approach suggested by
Tasora et al. in [39].

6.4 Nearest-neighbor communication

In the following we describe how the strict locality of particle
interactions can be used to optimize the parallel commu-
nication and synchronization by exchanging messages only
between nearest neighbors. So far the shadow copies can be
present on any process, and the corrections in the summa-
tion over wrench or velocity corrections can originate from
a long list of processes. However, by requiring that the par-
ticle hulls do not extend past any neighboring subdomains,
all message exchanges can be reduced to nearest-neighbor
communications. Let

Ny ={g e P\ {p}linflly, —y,l2ly, € 2,.y, € 24} =0}

be the set of process indices in direct neighborhood of
process p’s subdomain, and let

Lig = néi%inf ly, =y4ll2 |y, € 82p.3, € U 1>
P geP\(N,U{p}H)
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be the shortest distance from a point inside a subdomain to a
non-nearest neighbor. Then the condition

Fi+ i)t + 1 <lga VieB (7)

ensures in the first approximation that no hull extends past
neighboring subdomains. This immediately defines a hard
upper limit of 7; < l;4 — t for the bounding radius and thus
for the size of all objects. Furthermore, given the particle
shapes, velocities, and safety margins, the condition defines
an upper limit for the time-step length. The introduction of
condition (7) entails that on a process p only the description
of the subdomains within £2,, + {y eR3 | Iyl < ldd} needs
to be available. Thus the description of non-nearest-neighbor
subdomains can be dispensed with and the description of
nearest-neighbor subdomains does not have to be correct
outside of the spherical expansion of 2, with expansion
radius /44. This permits a localized description of the domain
partitioning on each process, describing the surrounding sub-
domains only.

Typically, the size limit stemming from (7) is not a prob-
lem for the particles of the granular matter themselves, but
very well for boundaries or mechanical parts the granular
matter interacts with. However, the number of such large bod-
ies is in many applications of practical interest significantly
smaller than the number of small-sized particles, suggest-
ing that they can be treated globally. Let Bgjopa be the set
of all body indices exceeding the size limit. These bodies
will be referred to as being global in the following. All asso-
ciated state variables and constants shall be instantiated on
all processes and initialized equally. The time-integration of
these global bodies then can be performed by all processes
equally. If a global body i has infinite inertia (m; = oo and
I?i = ool), such as a stationary wall or a non-stationary
vibrating plate, the body velocities are constant, and no
wrenches need to be communicated. Global bodies having
a finite inertia can be treated by executing an all-reduce
communication primitive whenever reducing the wrench or
velocity corrections of the small-sized bodies. Instead of only
involving neighboring processes, the all-reduce operation
sums up the corrections for each global body with finite iner-
tia from all processes and broadcasts the result, not requiring
any domain partitioning information.

6.5 Time-integration and synchronization protocol

Having solved the contact problem F (1) = 0 by Algorithm 1,
the time-integration defined in (3) needs to be performed. If
the NBGS implementation uses velocity accumulators, the
integrated velocities are at hand after the final communication
of the velocity corrections. If instead the NBGS implemen-
tation uses wrench accumulators, the wrenches are at hand,
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and the velocities of all local bodies can be updated imme-
diately.

Subsequently, the time-integration of the positions can
take place. Updating a body’s position or orientation effects
that the list of shadow copy holders changes since the inter-
section hull possibly intersects with different subdomains.
Also, the body’s center of mass can move out of the par-
ent’s subdomain. In order to restore the fulfillment of the
requirements 1 and 2, a process must determine the new list
of shadow copy holders and the new parent process for each
local body after the position update. Shadow copy holders
must be informed when such shadow copies become obso-
lete and must be removed. Analogously, processes must be
notified when new shadow copies must be added to their
state. In this case copies of the corresponding state variables,
constants, list of shadow copy holder indices, and index of
the parent process must be transmitted.

All other shadow copy holders must obtain the new state
variables, list of shadow copy holder indices, and index of
the parent process. Hereby, the condition from (7) guar-
antees that all communication partners are neighbors. All
information can be propagated in a single aggregated nearest-
neighbor message-exchange. The information should be
communicated explicitly and should not be derived implic-
itly, in order to avoid inconsistencies. This is essential to
guarantee that the responsibility of a process to treat a con-
tact can always be determined as well as the responsibility
to perform the time integration.

Our implementation of the synchronization protocol
makes use of separate container data structures for storing
shadow copies and original instances in order to be able to
enumerate these different types of bodies with good perfor-
mance. Both containers support efficient insertion, deletion
and lookup operations for handling the fluctuations and
updates of the particles efficiently. Furthermore, the deter-
mination of the new list of shadow copy holders involves
intersection tests between intersection hulls of local bodies
and neighboring subdomains as requirement 1 explains in
Sect. 6.2. However, determining the minimal set of shadow
copy holders is not necessary. Any type of bounding volumes
can be used to ease intersection testing. In particular bound-
ing spheres either with tightly fitting bounding radii 7; +5; (¢)
or even with an overall bounding radius max; g 7; + h; (t) as
proposed by Shojaaee et al. in [36] are canonical. Concern-
ing the geometry of the subdomains at least the subdomain
closures can be used for intersection testing. In our imple-
mentation we chose to determine almost minimal sets of
shadow copy holders by testing the intersections of the actual
hull geometries of the particles with the closures of the subdo-
mains. This reduces the number of shadow copies and thus the
overall communication volume in exchange for more expen-
sive intersection tests.

1: procedure SIMULATETIMESTEP

2: Cp,pp = BROADPHASECOLLISIONDETECTION

3 Cp,np = NARROWPHASECOLLISIONDETECTION(C),, )
4:  C, = FILTERCONTACTS(Cp,np)

5: INITIALIZEACCUMULATORANDCORRECTIONV ARIABLES
6 k<0

7. APl <0

8 while convergence criterion not met do

9 for j < 1tov. A jeC,do

10: A wF7 0, A%”]) + (1 —wpl!
11: end for

12: REDUCECORRECTIONS

13: k<—k+1

14: end while

15:  INTEGRATESTATEVARIABLES
16:  SYNCHRONIZE

17: end procedure

Algorithm 2: A single time step of the simulation on
process p.

6.6 Summary

Algorithm 2 summarizes the steps that must be executed on a
process p when time-integrating the system for a single time
step 8¢ in parallel. The algorithm requires that all shadow
copies are instantiated on all subdomains their hull intersects
with. Furthermore, the shadow copies must be in synchro-
nized state with the original instance, and the global bodies
must also be in sync to each other. The positions of all local
bodies must be located within the local subdomain. The time
step proceeds by executing the broad-phase contact detection
which uses the positions, orientations, shapes, hull expansion
radii, and possibly information from previous time steps, in
order to determine a set of contact candidates (body pairs)
Cp,bp On process p in near-linear time.

Then, in the narrow-phase contact detection, for all can-
didates the contact location, associated contact frame, and
signed contact distance is determined if the hulls actually
intersect. Finally, this set of detected contacts C,, ,, must be
filtered according to one of the rules presented above, result-
ing in C,, the set of contacts to be treated by process p.
Before entering the iteration of the subdomain NBGS, the
accumulator, correction, and contact reaction variables must
be initialized. The initialization of the accumulator variables
requires an additional reduction step if the external forces or
torques cannot be readily evaluated on all processes.

Each iteration of the subdomain NBGS on process p
involves a sweep over all contacts to be treated by the process.
The contacts are relaxed by a suitable one-contact solver. The
Jj indexing indicates that such a solver typically needs to eval-
uate the relative contact velocity under the assumption that
no reaction acts at the contact j. This can be achieved by
subtracting out the corresponding part from the accumula-
tor variables. The weighted relaxation result is then stored in

@ Springer



184

Comp. Part. Mech. (2015) 2:173-196

place. The update of the wrench or velocity correction vari-
ables is not explicitly listed. After the sweep the wrench or
velocity corrections are sent to the respective parent process
and summed up per body including the accumulator vari-
ables. Then the accumulator variables are redistributed to
the respective shadow copy holders in a second message-
exchange step.

After a fixed number of iterations or when a prescribed
convergence criterion is met, the time step proceeds by exe-
cuting the time-integration for each local body. The changes
of the state variables must then be synchronized in a final
message-exchange step, after which the preconditions of the
next time step are met. Any user intervention taking place
between two time steps needs to adhere to these require-
ments.

7 Experimental validation of scalability

This section aims to assess the scalability of the parallel algo-
rithms and data strcutures that were presented in Sect. 6.
The methods have been implemented in the open-source
software framework pe for massively parallel simulations of
rigid bodies [18, 19]. The implementation is based on veloc-
ity accumulators and corrections, as introduced in Sect. 6.3.
The accumulator initialization performs an additional initial
correction reduction step in all experiments.

In Sect. 7.1 the idea behind weak- and strong-scaling
experiments is explained before presenting the test prob-
lems for which those experiments are executed in Sect. 7.2.
The scaling experiments are performed on three clusters
whose properties are summarized and compared in Sect. 7.3.
Sect. 7.4 points out the fundamental differences in the scal-
ability requirements of the two test problems. Finally, in
Sect. 7.5 the weak-scaling and in Sect. 7.6 the strong-scaling
results are presented for each test problem and cluster.

7.1 Weak and strong scalability

To demonstrate the scalability of the algorithms and their
implementation, we perform weak-scaling experiments,
where the problem size is chosen directly proportional to
the number of processes and such that the load per process
stays constant. Thus, if ideal scaling is achieved, the time
to solution will stay constant. Let 7, be the time to solution
on p processes, then the parallel efficiency e s in a weak-
scaling experiment is defined to be

I

e —
p,ws =
tI?

In strong-scaling experiments, in contrast, the problem
size is kept constant, effecting a decreasing work load per
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process when increasing the number of processes. Thus, ide-
ally the time to solution on p processes should be reduced by
p in comparison to the time to solution on a single process.
The speedup s, on p processes is defined to be

!
sy = —.
P 0
The parallel efficiency e ;5 in a strong-scaling experiment
is then the fraction of the ideal speedup actually achieved

K t
P 1
€pss = —— =

P plp

Sometimes speedup and parallel efficiency are also stated
with respect to a different baseline, that is, a single central
processing unit (CPU) or a single node rather than a single
hardware thread or core—the principle remains the same.
The parallel efficiency in a weak- and strong-scaling context
is asimple performance metric that will serve in the following
to assess the quality of the parallelization.

7.2 Test problems

The scalability of the parallelization algorithm as it is imple-
mented in the pe framework is validated based on two
fundamentally different families of test problems. Sect. 7.2.1
describes a family of dilute granular gas setups whereas
Sect. 7.2.2 describes a family of hexagonal close packings
of spheres corresponding to structured and dense setups. We
chose these setups because their demands towards the imple-
mentation vary considerably. This will be analyzed in detail
in Sect. 7.4.

7.2.1 Granular gas

Granular material attains a gaseous state when sufficient
energy is brought into the system, for example by vibra-
tion. Consequently, granular gases feature a low solid volume
fraction and are dominated by binary collisions. When the
energy supply ceases, the system cools down due to dissipa-
tion in the collisions. Granular gases are not only observed
in laboratory experiments, but appear naturally for exam-
ple in planetary rings [37] and in technical applications such
as granular dampers [21]. These systems in general exhibit
interesting effects like the inelastic collapse [26] or other
clustering effects as they e.g. can be observed in the Maxwell-
demon experiment [43].

As initial conditions, a rectangular domain with confining
walls is chosen. The domain contains a prescribed number of
non-spherical particles arranged in a Cartesian grid. Random
initial translational velocities are assigned to the particles. All
translational velocity components vary uniformly between
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Fig. 4 The granular gas test problem with two processes and 2 x 2 x 2
particles per process

—0.2m/s and 0.2m/s. The particles have no initial rotational
velocities. The particles are composed of two to four spheres
of varying radius, which are arranged at the boundary of the
particles’ bounding spheres. The particle’s bounding sphere
has a diameter of 1 cm causing the spherical components of
the particle to overlap. The number of spheres per particle
varies uniformly and also the radii of the spheres vary uni-
formly in the range [0.6 cm, 0.8 cm]. Figure 4 illustrates the
initial setup with two processes and 2 x 2 x 2 particles per
process.

The distance between the centers of two granular parti-
cles along each spatial dimension is 1.1 cm, amounting to a
solid volume fraction of 23 % on average. In [18] almost the
same family of setups served as a scalability test problem.
However, there the granular gases had a solid volume frac-
tion of 3.8 % on average. In order to test a higher collision
frequency, a denser granular gas was chosen here. The sys-
tem is simulated for % s, and the time step is kept constant at
100 ws, resulting in 1000 time steps in total. Since the con-
tacts are dissipative and no energy is added, the system is
quickly cooling down. The coefficient of friction is 0.1 for
any contact whether it is a contact between a pair of particles
or a contact between a particle and a confining wall.

For this test problem, the subdomain NBGS solver
requires a slight underrelaxation in order to prevent diver-
gence. Using an underrelaxation parameter of 0.75 produces
good results. For binary collisions, a single iteration of the
solver would suffice, but because particles cluster due to the
inelastic contacts, more iterations are required. This could
be determined by a dynamic stopping criterion, but in the
scenario presented here it was found to be more efficient to
perform a fixed number of 10 iterations.

For particle simulations, the work load strongly depends
on the number of particles and contacts. For the weak-scaling
experiments, each process is responsible for a rectangular
subdomain, initially containing a fixed number of particles
arranged in a Cartesian grid. For the strong-scaling experi-
ments, the total number of particles in x-, y-, and z-dimension

Fig. 5 The hexagonal close packing test problem with two processes
and two layers of spherical particles

should be divisible by the number of processes in x-, y-, and
z-dimension that is used in the experiment. With this arrange-
ment the initial load is perfectly balanced. Statistically, the
load, that is the number of particles and contacts per subdo-
main, remains balanced if the subdomains are large enough,
and clustering effects have not yet progressed too far. In the
simulation performed here, the duration of the simulation was
chosen such that the load remains well balanced throughout.

7.2.2 Hexagonal close packing of spheres

The next setup aims to assess the scalability of the paral-
lelization for a dense granular scenario. To demonstrate the
scalability, it should be easy and efficient to generate the
initial setup for arbitrary problem sizes, and a good load bal-
ance should be possible for a longer period of time. Hence,
a hexagonal close packing of equal spheres was chosen, for
which simple formulas for the position of the spheres are
available. The packing density is known to be ﬁi ~ 74.0 %.
According to the Kepler conjecture, a hexagonal close pack-
ing is the densest possible packing of spheres. To avoid load
imbalances at the boundaries, a domain is chosen that is
periodic in the x- and y-dimension. In z-dimension the pack-
ing is confined by walls that are in direct contact with the
spheres on both sides. Assuming an even number of parti-
cles in y-direction, the number of contacts is permanently
nyny(6n, — 1) for ny x ny x n; particles. The domain is
decomposed in x- and y-dimensions only. The objects are
subject to gravity. However, the direction of gravity is tilted
in the x-z-plane such that the setup corresponds to a ramp
inclined by 30° including a lid. The basic setup is illustrated
in Fig. 5 on the basis of two processes and two layers of
spherical particles. The magnitude of gravity is 9.81 m/s>.
The time step is set to 10 s and remains constant. The radii
of the particles are 1 mm, and their density is 2.65 g/cm?>. All
particles are set to an initial downhill velocity of 10 cm/s. The
coefficient of friction is 0.85 for contacts between pairs of
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Table 1 The test machines used for performing the weak- and strong-scaling experiments

Cluster name

Emmy

SuperMUC

Juqueen

Computing centre

Regional computing centre in
Erlangen (RRZE), Germany

Leibniz supercomputing centre
(LRZ), Germany

Jiilich supercomputing centre
(JSC), Germany

Best TOP 500 ranking -

Peak performance in PFlop/s 0.23

Number of nodes 560

Number of sockets 2

Name of CPU Intel Xeon E5-2660 v2
Clock rate in GHz 22

Number of cores per CPU 10

Number of threads per core 2

Total RAM in TiB 35

Interconnection fabric Infiniband QDR

Network topology Non-blocking tree

4th (June 2012) 5th (November 2012)
32 59

9216 28,672

2 1

Intel Xeon E5-2680 IBM PowerPC A2
2.7 1.6

8 16

2 4

288 448

Infiniband QDR/ Infiniband FDR 10 BlueGene/Q
Non-blocking tree/ 4:1 pruned tree 5D torus

particles and contacts between particles and walls. The high
coefficient of friction causes a slip-stick transition shortly
after the simulation begins. As in the granular gas setups
the subdomain NBGS uses an underrelaxation of 0.75. The
solver unconditionally performs 100 iterations in each time
step. This intentionally disregards that the iterative solver
converges faster for smaller problems. A multigrid solver
could possibly remedy the dependence on the problem size,
but the successful construction of such a solver needs sub-
stantial further research.

7.3 Test machines

In the following all test machines will be introduced. Table 1
summarizes their basic technical characteristics. The Emmy
cluster is located at the Regional Computing Centre in Erlan-
gen (RRZE) in Germany which is associated to the Friedrich-
Alexander-Universitit Erlangen-Niirnberg. The cluster com-
prises 560 compute nodes. Each node has a dual-socket
board equipped with two Xeon E5-2660 v2 processors. Each
processor has 10 cores clocked at 2.2 GHz. The processors
offer 2-way simultaneous multithreading (SMT). The peak
performance of the cluster is 0.23 PFlop/s. Each node is
equipped with 64 GiB of random access memory (RAM).
The cluster features a fully non-blocking Infiniband inter-
connect with quad data rate (QDR) and 4 x link aggregation,
resulting in a bandwidth of 40 Gbit/s per link and direction.
In all experiments on the Emmy cluster, each core is associ-
ated with a subdomain since preliminary tests showed that we
could not take advantage of the SMT features by associating
each hardware thread with a subdomain. The Emmy cluster
has the smallest peak performance among the test machines
and was never among the 500 world’s largest commercially
available supercomputers. However, it is the machine with
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the largest non-blocking tree network topology and it has the
largest amount of RAM per core.

The second test machine is the SuperMUC supercom-
puter which is located at the Leibniz Supercomputing Cen-
tre (LRZ) in Germany and was best ranked on the 4th place
of the TOP 500 list in June 2012. The cluster is subdivided
into multiple islands. The majority of the compute power
is contributed by the 18 thin-node islands. Each thin-node
island consists of 512 compute nodes (excluding four addi-
tional spare nodes) connected to a fully non-blocking 648
port FDR10 Infiniband switch with 4x link aggregation,
resulting in a bandwidth of 40 Gbit/s per link and direc-
tion. Though QDR and FDR10 use the same signaling rate,
the effective data rate of FDR10 is more than 20 % higher
since it uses a more efficient encoding of the transmitted
data. The islands’ switches are each connected via 126 links
to 126 spine switches. This results in a blocking switch-
topology. Thus, if e.g. all nodes within an island send to nodes
located in another island, then the 512 nodes have to share
126 links to the spine switches, effecting that the bandwidth
is roughly one quarter of the bandwidth that would be avail-
able in an overall non-blocking switch-topology. Each (thin)
compute node has two sockets, each equipped with an Intel
Xeon E5-2680 processor having 8 cores clocked at 2.7 GHz.
The processors support 2-way SMT. In the following, as in
the case of the Emmy cluster, each core is associated with
a single subdomain. The peak performance of the cluster is
stated to be 3.2 Pflop/s. Each node offers 32 GiB of RAM,
summing up to 288 TiB in total. The SuperMUC supercom-
puter has an interesting blocking tree network-topology and
the processors with the highest clock rate among the proces-
sors in the test machines.

The third test machine is the Juqueen supercomputer
which is located at the Jiilich Supercomputing Centre (JSC)
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Table 2 Summary of the domain partitionings used on all test clusters

1 2 4 8 10 16
nodes 55 55 55 55 20 30 L 2 4 8 16 32 64 128 256 512
1D P 1 2 4 8 10 16 20 40 80 160 320 640 1280 2560 5120 10240
[ weak-scaling granular gas 3
4 8 10 16
nodes 55 55 50 30 2 4 8 16 32 64 128 256 512
P 2 4 5 4 5 8 10 16 20 32 40 64 80 128
2D Dy 2 2 2 4 4 5 8 10 16 20 32 40 64 80
[ weak-scaling granular gas o
k——— weak-scaling hexagonal close packing ——
k—— strong-scaling hexagonal close packing ——
nodes 45 48 1 2 4 8 16 32 64 128 256 512
Dz 2 4 5 5 5 8 8 10 16 16 20 32
3D Py 2 2 2 4 4 5 8 8 10 16 16 20
D= 2 2 2 2 4 4 5 8 8 10 16 16
[ weak-scaling granular gas 4
k———————— strong-scaling granular gas ————
(a) Domain partitionings used on the Emmy cluster
nodes 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 28672
Pz 8 16 16 32 32 64 64 128 128 256 256 512 512 1024 1024 1024
2D Dy 8 16 16 32 32 64 64 128 128 256 256 512 512 1024 1792
k weak-scaling hexagonal close packing |
k—— strong-scaling hexagonal close packing ——|
nodes 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 28672
Dz 4 8 8 8 16 16 16 32 32 32 64 64 64 128 128 128
3D Dy 4 4 8 8 8 16 16 16 32 32 32 64 64 64 128 128
j 2 4 4 4 8 8 8 16 16 16 32 32 32 64 64 64 112
K weak-scaling granular gas |
k strong-scaling granular gas |
(b) Domain partitionings used on the Juqueen supercomputer
nodes 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
P 4 4 4 8 8 8 16 16 16 32 32 32 64 64
3D Dy 2 4 4 4 8 8 8 16 16 16 32 32 32 64
Pz 2 2 4 4 4 8 8 8 16 16 16 32 32 32
K weak-scaling granular gas |

f————————— strong-scaling granular gas ———————|

(c) Domain partitionings used on the SuperMUC supercomputer

in Germany and was best ranked on the 5th place of the
TOP 500 list in November 2012. The cluster is a BlueGene/Q
system with 28,672 compute nodes since 2013 [14,42]. Each
node features a single IBM PowerPC A2 processor having
18 cores clocked at 1.6 GHz, where only 16 cores are avail-
able for computing. The processors support 4-way SMT.
The Juqueen supercomputer is the only machine, where we
associate each hardware thread with a subdomain in the
scaling experiments. The machine’s peak performance is
5.9 PFlop/s. Each node offers 16 GiB of RAM, summing up
to 448 TiB in total. The interconnect fabric is a 5D torus
network featuring a bandwidth of 16 Gbit/s per link and
direction [8]. The Juqueen supercomputer is the machine

with the highest peak performance, the largest number of
cores and threads and the only machine among our test
machines with a torus interconnect.

Table 2 presents a summary of the domain partitionings
used for the scaling experiments on the various clusters.
The number of nodes are always a power of two except
when using the whole machine or when performing intra-
node scalings. The intra-node scaling behaviour is analyzed
by means of weak-scaling experiments choosing the gran-
ular gas as a test problem and the Emmy cluster as a test
machine. The influence of the number of dimensions in
which the domain is partitioned is also only analyzed for
this configuration. All further scaling tests of the granular
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gas scenario use three-dimensional domain partitionings. All
inter-node weak-scaling experiments start with a single node
and extend to the full machine where possible. The experi-
ments on the SuperMUC supercomputer were obtained at the
Extreme Scaling Workshop in July 2013 at the LRZ, where
at most 16 islands corresponding to 8192 nodes were avail-
able. All strong-scaling experiments start on a single node
except on the Juqueen supercomputer, where we chose to
start at 32 nodes which is the minimum allocation unit in
the batch system on Juqueen. The experiments extend to a
number of nodes where a notable efficiency degradation is
observed. Since the results on the SuperMUC were obtained
well before the other experiments, no scaling experiments
with the hexagonal close packing scenario are available.

7.4 Time-step profiles

In this section we clarify how much time is spent in the var-
ious phases of the time-step procedure and how this time
changes in a weak scaling depending on the test problem.
Figure 6 breaks down the wall-clock times of various time
step components in two-level pie charts for the granular gas
scenario. The times are averaged over all time steps and
processes. The dark blue section corresponds to the fraction
of the time in a time step used for detecting and filtering con-
tacts. The orange section corresponds to the time used for
initializing the velocity accumulators and corrections. The
time to relax the contacts is indicated by the yellow time
slice. It includes the contact sweeps for all 10 iterations with-
out the correction reductions. The time used by all correction
reductions is shown in the green section which includes the
reductions for each iteration and the reduction after the ini-
tialization. The time slice is split up on the second level in
the time used for assembling, exchanging, and processing the
first correction reduction message (dark green section) and

M Correction Reductions
B Position Integration
B Synchronization

(b)

M Contact Detection
B Initialization
Contact Sweeps

Fig. 6 The time-step profiles for two weak-scaling executions of the
granular gas on the Emmy cluster with 253 particles per process a Time-
step profile of the granular gas executed with 5 x 2 x 2 = 20 processes
on a single node b Time-step profile of the granular gas executed with
8 x 8 x 5 = 320 processes on 16 nodes. (Color figure online)
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M Correction Reductions
B Position Integration
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B Contact Detection
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St gl
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Fig. 7 The time-step profiles for two weak-scaling executions of the
hexagonal close packing scenario on the Emmy cluster with 10° par-
ticles per process a Time-step profile of the hexagonal close packing
scenario executed with 5 x 2 x 2 = 20 processes on a single node
b Time-step profile of the hexagonal close packing scenario executed
with 8 x 8 x 5 = 320 processes on 16 nodes. (Color figure online)

the time used for assembling, exchanging, and processing the
second correction reduction message (light green section).
The time slices are depicted counterclockwise in the given
order. The message-exchange communications have a dotted
border to distinguish them from the rest. A single message-
exchange communication time measurement started, when
sending the first message buffer to the neighbors, and ended,
when having received the last message buffer from the neigh-
bors. The dark red section corresponds to the time used by the
time-integration of the positions, and the final blue section
indicates the time used by the position synchronization. The
latter is split up into assembling, exchanging, and processing
of the message in the inner ring. The message-exchange com-
munication is highlighted by the dashed border again. The
first pie chart in Fig. 6a corresponds to the time-step profile of
an execution in the weak-scaling experiment with the three-
dimensional domain partitioning 5 x 2 x 2 on a single node
of the Emmy cluster. Figure 6b shows the time-step profile of
an execution in the weak-scaling experiment with the three-
dimensional domain partitioning 8 x 8 x 5 on 16 nodes. The
two time slices involving communication need more time in
comparison to Fig. 6a, especially the framed slices on the
second level which amount to the communication. The wall-
clock time for the components involving no communication
was roughly the same in both runs. The enlarged synchroniza-
tion time-slices in Fig. 6b then approximately amount to the
increased time-step duration on 16 nodes. Overall, computa-
tions in the time step of this granular gas scenario prevail. But
since the collision frequency is low, the 10 contact sweeps,
marked by the yellow and green sections, are dominated by
communication.

Figure 7 presents time-step profiles for two weak-scaling
executions of the hexagonal close packing scenario. The
time-step profiles use the same color coding as in Fig. 6. In
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Table 3 Summary of the test
problem parameters used for the
weak-scaling experiments

Granular gas Hexagonal close packing

contrast to the time-step profiles of the granular gas scenario,
the time step is dominated by the 100 contact sweeps (yellow
section) and the 100 correction reductions (green section).
Contact detection, position integration, and synchronization
play a negligible role. In Fig. 7a the time-step profile of a
weak-scaling execution with again 20 processes on a single
node of the Emmy cluster is presented, whereas in Fig. 7b
the time-step profile of a weak-scaling execution with again
320 processes on 16 nodes is shown. The wall-clock time

Emmy Juqueen SuperMUC Emmy Juqueen
Number of particles per process 253 103 103 103 103
Number of time steps 1000 1000 10,000 1000 100
Maximum number of particles 1.6 x 108 1.8x10° 1.3x108 1.0x 107 1.8 x 10°
Initial number of contacts 0 0 0 6.0 x 107 1.1 x 1010
Solid volume fraction (%) 23 23 3.8 74 74
70000 T T T T T T T T T
N |
60000 [
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© 50000 f .
3
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g
£ 20000 [ g
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10000 F ]
measured bandwidth of triad (first series) —xX—
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spent in the contact sweep was roughly the same in both exe-
cutions, hence the increased communication costs are mainly
responsible for the larger time slice of the correction reduc-
tion.

The time-step profiles showed that for the dilute gran-
ular gas scenario the time spent in the various time-step
components is well balanced and the time spent in the com-
munication routines moderately increases as the problem size
is increased. For the hexagonal close packings most of the
time is spent in the contact sweeps and the reduction of the
velocity corrections. Components such as the position inte-
gration and the final synchronization play a negligible role
due to the higher number of iterations in comparison to the
granular gas scenario.

7.5 Weak-scaling results

In the following subsections the weak-scaling results for
both test problems on the clusters are presented. Table 3
presents an overview of the employed parameters. The exper-
iments differ in terms of the number of particles generated
per process depending on the amount of memory available.
In order to control the overall wall-clock time, the number
of time steps performed varies between 100 and 10,000. All
wall-clock times presented in the following subsections cor-
respond to the average wall-clock time needed to perform a
single time step per 1000 particles facilitating the comparison
of the charts. The wall-clock times exclude the time needed
to setup the systems and generate the simulation output. The
scaling experiments of the granular gas scenario on Super-
MUC differs from the other granular gas experiments in that
the gas is considerably more dilute and a longer period of
time is simulated.

2 4 6 8 10 12 14 16 18 20
number of processes

Fig. 8 Measured bandwidth of the triad in the stream benchmark com-
puted with a varying number of cores on a single node of the Emmy
cluster

7.5.1 Granular gas

First, we pay special attention to the intra-node weak-scaling
before turning to the inter-node weak-scaling since the for-
mer is subject to the non-linear scaling behaviour of the
memory bandwidth. As a test problem we chose the gran-
ular gas scenario and as the test machine the Emmy cluster.
A single node in the cluster is equipped with two processors
each one having a single on-chip memory controller. The
total memory bandwidth available to both sockets is exactly
twice the bandwidth of a single socket. However, for a sin-
gle socket a simple stream benchmark [25] reveals that the
memory architecture is designed such that for x cores more
than )lc of the socket’s total memory bandwidth is available.
Figure 8 plots the measured memory bandwidth of compu-
tations of the triad as defined in the stream benchmark. The
computations are performed by a varying number of cores
in parallel. The first series of measurements minimizes the
number of sockets in use meaning that the processor affini-
ties are adjusted such that in measurements with less or equal
to 10 processes all share the same memory controller. In the
second series of measurements, the processes are pinned to
the sockets alternately such that 2x processes have twice
the bandwidth at their disposal as x processes in the first
series. Indeed, the lower-left part of the first series’ graph
very well matches the second series’ graph with proper scal-
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Fig. 9 Intra-node weak-scaling graphs for a granular gas on the Emmy
cluster

ing. The measured bandwidth in the first series increases for
an increasing number of processes until the available memory
bandwidth of the first memory controller is saturated. Mea-
surements with more than 10 processes start to make use of
the second memory controller and the measured bandwidth
continues to increase linearly.

An analogous behavior can be observed in the intra-node
weak-scaling graphs. Figure 9 plots the average wall-clock
time needed for a single time step and 1000 particles. In the
first series of executions again the pinning strategy minimiz-
ing the number of sockets in use is employed. The average
wall-clock time needed per time step increases considerably
for executions with up to 10 processes. However, beyond
that point the weak-scaling graph continues almost ideally.
The second series of executions uses the pinning strategy as
before for minimizing the maximum number of processes
per socket. This means that executions with 2x processes in
the second series have twice the bandwidth at their disposal
as the executions with x processes in the first series. The
graphs of the second series show that the wall-clock times
needed per time step on 2x processes indeed closely match
the wall-clock times on x processes in the first series. This
indicates that our implementation is limited by the available
memory bandwidth.

The figure also distinguishes between weak-scaling graphs
with one-, two-, and three-dimensional domain partition-
ings since their communication volumes differ. Higher-
dimensional non-periodic domain partitionings have typ-
ically a higher communication volume in comparison to
lower dimensional non-periodic domain partitionings with
the same number of processes, due to the larger area of the
interfaces between the subdomains. The plotted timings for
the one-dimensional domain partitionings are indeed consis-
tently slightly better than the timings for two-dimensional
domain partitionings, which are in turn slightly better than
the timings for three-dimensional domain partitionings.

Even though the intra-node weak-scaling results reveal an
underperforming parallel efficiency between 30.8 and 32.9 %
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Fig. 10 Inter-node weak-scaling graphs for a granular gas on all test
machines a Weak-scaling graph on the Emmy cluster b Weak-scaling
graph on the Juqueen supercomputer ¢ Weak-scaling graph on the
SuperMUC supercomputer

when computing on all cores of an Emmy node, the correla-
tion with the measured memory bandwidth of a triad suggests
that a good intra-node scaling can be expected as long as the
available bandwidth scales. With corresponding pinning, this
is the case as off the first full socket on the Emmy cluster.
Figure 10a extends the weak-scaling experiment to almost
the full Emmy cluster for one-, two-, and three-dimensional
domain partitionings. The scaling experiment for the one-
dimensional domain partitionings performs best and achieves
on 512 nodes aparallel efficiency of 98.3 % with respect to the
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single-node performance. The time measurements for two-
dimensional domain partitionings are consistently slower,
but the parallel efficiency does not drop below 89.7 %. The
time measurements for three-dimensional domain partition-
ings come in last, and the parallel efficiency goes down to
76.1 % for 512 nodes. This behaviour can be explained by the
differences in the communication volumes of one-, two-, and
three-dimensional domain partitionings. The results attest
that the problem can be efficiently scaled (almost) up to the
full machine if the load per process is sufficiently large.

Figure 10b shows the results of the inter-node weak-
scaling experiments on the Juqueen supercomputer. The
scaling experiments are only performed with the more
demanding three-dimensional domain partitionings. In the
first series of measurements the average wall-clock time per
time step increases as expected up to 2048 nodes. But then
the average time-step duration for setups with 4096 nodes
and beyond is significantly shorter than the average time-
step duration with fewer nodes. The time steps are even
computed faster than on a single node, where no inter-node
communication takes place at all. Assuming that intra-node
communication is faster than inter-node communication, this
is a puzzling result. In fact, it turns out that the intra-node
communication is responsible for the behaviour: The default
mechanism for intra-node communication is via shared mem-
ory on the Juqueen. In the second series of measurements
we disallow the usage of shared memory for intra-node
communication. This results in the measurements that are
consistently faster than the measurements from the first
series, and the parallel efficiency is now essentially monoton-
ically decreasing with an excellent parallel efficiency of at
least 92.9 %.

The reason why the measured times in the first series
become shorter for 4096 nodes and more is revealed when
considering how the processes get mapped to the hardware.
The default mapping on Juqueen is ABCDET, where the
letters A to E stand for the five dimensions of the torus
network, and T stands for the hardware thread within each
node. The six-dimensional coordinates are then mapped to
the MPI ranks in a row-major order, that is, the last dimension
increases fastest. The T coordinate is limited by the number
of processes per node, which is 64 for the above measure-
ments. Upon creation of a three-dimensional communicator,
the three dimensions of the domain partitioning are mapped
also in row-major order. If the number of processes in z-
dimension is less than the number of processes per node,
this has the effect that a two-dimensional or even three-
dimensional section of the domain partitioning is mapped
to a single node. However, if the number of processes in
z-dimension is larger or equal to the number of processes
per node, only a one-dimensional section of the domain par-
titioning is mapped to a single node. A one-dimensional
section of the domain partitioning performs considerably less

intra-node communication than a two- or three-dimensional
section of the domain partitioning. This matches exactly the
situation for 2048 and 4096 nodes. For 2048 nodes, a two-
dimensional section 1 x 2 x 32 of the domain partitioning
64 x 64 x 32 is mapped to each node, and for 4096 nodes a
one-dimensional section 1 x 1 x 64 of the domain partition-
ing 64 x 64 x 64 is mapped to each node. To substantiate
this claim, we confirmed that the performance jump occurs
when the last dimension of the domain partitioning reaches
the number of processes per node, also when using 16 and
32 processes per node.

Figure 10c presents the weak-scaling results on the Super-
MUC supercomputer. The setup differs from the granular gas
scenario presented in Sect. 7.2.1 in that it is more dilute. The
distance between the centers of two granular particles along
each spatial dimension is 2cm, amounting to a solid volume
fraction of 3.8 % and consequently to fewer collisions. As on
the Juqueen supercomputer only three-dimensional domain
partitionings are used. All runs on up to 512 nodes were run-
ning within a single island. The run on 1024 nodes also used
the minimum number of 2 islands. The run on 4096 nodes
used nodes from 9 islands, and the run on 8192 nodes used
nodes from 17 islands, that is both runs used one island more
than required. The graph shows that most of the performance
is lost in runs on up to 512 nodes. In these runs only the non-
blocking intra-island communication is utilised. Thus this
part of the setup is very similar to the Emmy cluster since
it also has dual-socket nodes with Intel Xeon E5 processors
and a non-blocking tree Infiniband network. Nevertheless,
the intra-island scaling results are distinctly worse. The rea-
sons for these differences were not yet fully investigated.
However, the scaling behaviour beyond a single island can
be considered satisfactory, featuring a parallel efficiency of
73.8 % with respect to a single island. A possible explanation
of the underperforming intra-node scaling behaviour could
be that during the tests some of the Infiniband links were
degraded to QDR, which was a known problem at the time
the extreme-scaling workshop took place. The communica-
tion routines then need % ~ 1.21 times longer to complete.
This could also explain the high variability of the runs’ wall-
clock times.

Subsequently, a second series of measurements is per-
formed with 603 non-spherical particles per process. The
scaling behaviour is comparable to the scaling behav-
iour observed in Fig. 10c. However, the largest weak-
scaling run simulated 28, 311, 552,000 ~ 2.8 - 10'* non-
spherical particles—possibly a record-breaking number for
non-smooth contact dynamics.

7.5.2 Hexagonal close packings of spheres

Figure 11a shows the average wall-clock time needed for a
single time step in the hexagonal close packing test on the
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Fig. 11 Inter-node weak-scaling graphs for hexagonal close packings
of spheres a Weak-scaling graph on the Emmy cluster b Weak-scaling
graph on the Juqueen supercomputer

Emmy cluster. The parallel efficiency with respect to a single
node remains above 79.9 % for all executions. This is slightly
better than the parallel efficiency of 76.1 % for the granular
gas.

The weak-scaling results of the hexagonal close pack-
ing scenario on the Juqueen supercomputer are presented
in Fig. 11b. The parallel efficiency with respect to a single
node stays above 91.4 % for all measurements. This result
is almost as good as the 92.9 % parallel efficiency in the
scaling experiments of the granular gas. The largest execu-
tion exercises 1024 x 1792 x 1 = 1,835,008 processes on all
28,672 nodes of the machine, where 10,240x 17,920x 10 =
1,835,008, 000 particles are spawned, in total leading to
10,826,547,200 =~ 1.1 - 10'0 contacts — again a possibly

record-breaking number for non-smooth contact dynam-
ics.

7.6 Strong-scaling results

In the following subsections the strong-scaling results for
both test problems on the clusters are presented. Table 4
gives an overview of the employed parameters. The experi-
ments differ in terms of the number of particles generated in
total and the number of time steps used for averaging. As in
the weak-scaling experiments the granular gas scenario on
SuperMUC is more dilute than on the other machines.

7.6.1 Granular gas

Figure 12 presents the strong-scaling results of the granu-
lar gas scenario on all clusters. The strong-scaling graph
on the Emmy cluster is presented in Fig. 12a. A total of
320 x 160 x 160 = 8,192,000 particles is used, leading to at
most 64 x 80 x 80 = 409,600 particles per process on a sin-
gle node and at least 10 x 8 x 10 = 800 particles per process
on 512 nodes. The speedup is ideal for up to 64 nodes and
then the simulation becomes gradually less efficient. Some
time measurements exceed the optimal speedup, which can
happen for example if the problem becomes small enough to
fit into one of the caches. In conclusion, the scaling experi-
ments for this dilute setup on the Emmy cluster suggest that
one obtains a satisfactory parallel efficiency on the whole
cluster, as long as several thousand particles are allocated to
each process.

Figure 12b presents the results of the strong-scaling exper-
iments on the Juqueen supercomputer for the granular gas.
The total number of particles was 32,768,000 particles. In
the execution on 32 nodes each of the 16 x 16 x 8§ =
2048 processes initially had 20 x 20 x 40 = 16,000 non-
spherical particles, and in the execution on 4096 nodes each
of the 64 x 64 x 64 = 262,144 processes spawned 5 x5 x5 =
125 particles. The parallel efficiency is plotted with respect
to 32 nodes and stays above 80.7 % for up to 1024 nodes
and 500 particles per process before rapidly decreasing. On
4096 nodes the efficiency is at 55.4 %. The weak- and strong-
scaling results are both better in comparison to the Emmy

Table 4 Summary of the test problem parameters used for the strong-scaling experiments

Granular gas

Hexagonal close packing

Emmy Juqueen

SuperMUC Emmy Juqueen

320 x 160 x 160
1000
23

Number of particles 320 x 320 x 320
1000

23

Number of time steps

Solid volume fraction (%)

128 x 128 x 128
100
3.8

1280 x 640 x 10
50
74

2048 x 2048 x 10
20
74
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Fig. 12 Strong-scaling graphs for a granular gas test problem on all
test machines a Strong-scaling graph on the Emmy cluster b Strong-
scaling graph on the Juqueen supercomputer ¢ Strong-scaling graph on
the SuperMUC supercomputer

cluster, owed to the torus network which shows excellent
performance for the nearest-neighbor communication.

The results of the strong-scaling experiments on the
SuperMUC supercomputer are shown in Fig. 12c. In total
128> non-spherical particles are simulated. Hence, in the
single-node run each process owns 32 x 64 x 64 = 131,072
particles, and in the run on 1024 nodes, each process owns
8 x4 x4 = 128 particles. The parallel efficiency is at 90.0 %
on 256 nodes. Beyond that point it decreases dramatically,
indicating that the scaling is good as long as at least about
500 particles are present per process.
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Fig. 13 Strong-scaling graphs for hexagonal close packings of spheres
a Strong-scaling graph on the Emmy cluster b Strong-scaling graph on
the Juqueen supercomputer

7.6.2 Hexagonal close packings of spheres

In the strong-scaling experiment on the Emmy cluster in total
1280 x 640 x 10 = 8,192,000 particles were generated. The
experiment was run for 1 to 512 nodes, such that the small-
est setup with 5 x 4 x 1 = 20 processes on a single node
generated 256 x 160 x 10 = 409,600 spherical particles per
process, and the largest setup with 128 x 80 x 1 = 10,240
processes on 512 nodes generated 10 x 8 x 10 = 800 particles
per process. Figure 13a presents the results. A super-linear
speedup is observed for several benchmark runs, which is
likely due to caching effects, since the working set size
becomes very small on each core. In the strong-scaling exper-
iment for 512 nodes of the granular gas scenario on Emmy
also only 800 particles are generated per process. However,
the computational intensity here is much higher in compar-
ison to that of the granular gas, because far more contacts
msut be resolved. This explains the high parallel efficiency
of 113 % in comparison to the disappointing parallel effi-
ciency of 37.7 % from Fig. 12a. In conclusion, the scaling
experiments suggest that a few hundred particles per process
are enough to achieve a very good parallel efficiency on the
Emmy cluster if the granular material is dense.
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For the strong-scaling experiment on the Juqueen super-
computer a hexagonal close packing with 41,943,040 parti-
cles in total is created. The smallest execution runs 64 x 32 x
1 = 2048 processes on 32 nodes, where 32 x 64 x 10 =
20, 480 spherical particles are generated per process. The
largest execution runs 512 x 512 x 1 = 262,144 processes on
4096 nodes, where 4 x 4 x 10 = 160 particles are generated
per process. Figure 13b shows the speedup and the parallel
efficiency on the second axis, both with respect to 32 nodes.
A parallel efficiency of 75.0 % on 4096 nodes is achieved,
where only 160 particles were owned per process. This sug-
gests that a reasonable good efficiency can be achieved for a
dense setup on the Juqueen supercomputer, as long as several
hundred particles are handled per process.

8 Related work

Other authors have proposed approaches for parallelizing
non-smooth contact dynamics on architectures with distrib-
uted memory. All of them are based on domain partitionings.
A parallelization strategy termed non-smooth contact domain
decomposition (NSCDD) implemented in the renowned
LMGC90 code was lately presented in [40,41] by Visseq et
al. The approach is inspired by the finite element tearing and
interconnect (FETI) method for solving partial differential
equations in computational mechanics. The authors suggest
to decouple the multi-contact problem such that on each
process a multi-contact problem is solved having the same
structure as a multi-contact problem that is solved sequen-
tially. Particles with multiple contacts that are associated
with different subdomains are duplicated, similar to shadow
copies used in this article. However, the mass and inertia are
split among all instantiations. The coupling is recovered by
adding linear equations gluing the duplicates back together
through additional Lagrange multipliers. In contrast to the
contact constraints, the interface equations are linear, and a
block-diagonal system of linear equations must be solved
after several sweeps over all contacts. In [41], the authors
present simulations with up to 2 - 103 spherical particles
and 2 - 109 contacts, time-integrated on up to 100 processes.
The NSCDD allows non-nearest-neighbor communication in
order to allow enlarged rigid bodies instead of introducing a
concept analogous to global bodies.

Prior to Visseq et al., Koziara et al. presented the paral-
lelization implemented in the solfec code [22]. This approach
dispenses with the separation into interface problems and
local multi-contact problems. A classic NBGS is parallelized
with a non-negligible but inevitable amount of serialization.
Bodies are instantiated redundantly on all processes, pro-
hibiting scaling beyond the memory limit. Instead of using
accumulator and correction variables, as proposed in this
paper, the authors synchronize dummy particles (particles

@ Springer

that are in contact with shadow copies or original instances)
in addition to shadow copies in order to implement contact
shadow copies. As in the NSCDD, the system matrix (Delas-
sus operator) is set up explicitly instead of using matrix-free
computations as proposed here. Simulations are presented
with up to 1 - 10* polyhedral particles or 6 - 10° contacts
time-integrated on up to 64 processes.

Atthe same time, Shojaaee et al. presented another domain
partitioning method in [36]. The presentation is restricted
to two-dimensional problems. The solver in the paper cor-
responds to a subdomain NBGS with relaxation parameter
o = 1, where the authors argue that divergence does typ-
ically not occur. At least for three-dimensional simulations
this is in our experience not sufficient. Shadow copies are cre-
ated not only if the hulls overlap the neighboring subdomain
but also if the particles approach the subdomain boundaries,
simplifying the intersection testing but introducing excessive
shadow copies. Shojaaee et al. also introduce contact shadow
copies instead of using accumulator and correction variables
as proposed here. Simulations are presented with up to 1 - 10°
circular particles in a dense packing on up to 256 processes.

The approach presented in this paper improves in gen-
eral the robustness and scalability of previously published
parallel algorithms. The matrix-free approach facilitates the
evaluation of the particle wrenches in parallel as suggested
in Sect. 6.3 and thus reduces the amount of communicated
data. The separation of bodies into global and local bod-
ies allows to restrict message-exchange communications to
nearest neighbors as detailed in Sect. 6.4 and thus maps well
to various interconnect networks. Furthermore, the synchro-
nization protocol defined in Sect. 6.2 and Sect. 6.5 is not
susceptible to numerical errors in contrast to the conven-
tional rules which are based on contact locations. Last but
not least the scaling experiments from Sect. 7 with up to
2.8 - 109 non-spherical particles or 1.1 - 10'? contacts on up
to 1.8 - 10° processes exceed all previously published num-
bers by a factor of 103-10%.

9 Summary

This article presents models and algorithms for perform-
ing scalable direct numerical simulations of granular matter
in hard contact as we implemented them in the pe open-
source software framework for massively parallel simula-
tions of rigid bodies. The pe framework already has been
successfully used to simulate granular systems with and with-
out surrounding fluid in the past [6, 12]. Excellent scaling has
also been achieved in a fluid-structure interaction context
[15,16].

The discretization of the equations of motion underly-
ing the time-stepping scheme uses an integrator of order
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one. Contacts are modelled as inelastic and hard contacts
with Coulomb friction. The hard contact model avoids the
necessity to resolve the collision micro-dynamics and the
time-stepping scheme avoids the necessity to resolve impul-
sive events in time. The one-step integration can be split into
the integration of the velocities and the subsequent integra-
tion of the positions and orientations.

The velocity integration requires the solution of a non-
linear system of equations per time step. In order to reduce the
size of the system in the first place conventional broad-phase
contact detection algorithms are applied to exclude contacts
between intersection hulls. To solve the non-linear system of
equations the subdomain non-linear block Gauss-Seidel is
used. The numerical solution algorithm is a mixture between
a non-linear block Gauss-Seidel (NBGS) and a non-linear
block Jacobi with underrelaxation. In contrast to a pure non-
linear block Jacobi it only requires a mild underrelaxation and
in contrast to a non-linear block Gauss-Seidel it accommo-
dates the subdomain structure of the domain partitioning and
thus allows an efficient parallelization avoiding irregular data
dependencies across subdomains. The implementation of the
subdomain NBGS in the peis matrix-free and thus avoids the
expensive assembly of the Delassus operator. Furthermore,
the use of accumulators and correction variables enables the
evaluation of the particle wrenches in parallel, reuses partial
results and reduces the number of particles that need to be
synchronized.

The integration of the positions and orientations is entailed
by the execution of a robust synchronization protocol that
guarantees correctness while being highly efficient when
proceeding to ultra large scale. The key to obtain this robust-
ness is to add the rank of the parent process and the ranks
of the shadow copy holders to the state of each particle
and to explicitly communicate the state changes. Only then
processes can reliably agree upon responsibilities such as
contact treatment and particle integration without being sus-
ceptible to numerical errors.

Beyond that, all messages are aggressively aggregated in
order to reduce the communication overhead of small mes-
sages and all messages are restricted to nearest neighbors.
The latter is achieved by splitting bodies into local and global
bodies and identifying appropriate requirements. Both mea-
sures improve the scalability of the implementation.

Finally, the scalability was demonstrated for dilute and
dense setups on three clusters, two of them having been in
the top 10 of the world’s largest publicly available super-
computers. The parallel efficiency on Juqueen is excellent.
The inter-island scaling results on SuperMUC are satisfac-
tory, however, the intra-island scaling results show room for
possible improvements. This is not inherently caused by the
parallelization approach, as can be shown by inspecting the
results of the Emmy cluster, whose architecture is similar to
a single island of SuperMUC.

The largest scaling experiments demonstrate that sim-
ulations of unprecedented scale with up to 2.8 - 10'°
non-spherical particles and up to 1.1 - 10'° contacts are
possible using up to 1.8 - 10® processes. The systematic
evaluation also confirms that good parallel efficiency can be
expected on millions of processes even if only a few hun-
dred particles are allocated to each process provided that
the computation exhibits a sufficiently high computational
intensity and the architecture has a good interconnect net-
work.

The favourable scalability results do not account for the
fact that the NBGS solver may not scale (algorithmically) in
terms of the number of iterations needed to achieve a given
error bound when large ensembles of particles are in mutual
contact. Possible future developments arise out of this: In
such situations, the convergence rate of multigrid methods
can still be independent of the number of unknowns and is in
that sense optimal. The successful construction of a multigrid
method for hard contact problems would be invaluable for
simulating every-increasing system sizes.
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