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Abstract Estimation for weather-related failure probabil-

ity of overhead transmission lines is essential in the relia-

bility assessment of a power system. This paper analyzes

the outage and weather data of 110 kV overhead trans-

mission lines in the Guangxi Zhuang Autonomous Region

of China during 2011–2014. The result reveals obvious

uneven distributions of outage events for time and space

due to the spatial and temporal variation of severe weather.

Based on the results, an estimation method is proposed in

this paper. Split and aggregation is used to smooth the

outage and weather data. The poisson model is adopted in

our method to investigate the statistic characteristics of

transmission line outage events. Regression analysis is

applied to obtain the correlation between the weather

intensity and history failure rate. Furthermore the method

proposed is validated against the empirical outage data.

Keywords Severe weather, Transmission line, Poisson

model, Failure probability, Regression analysis

1 Introduction

Overhead transmission lines are exposed to nature and

are vulnerable to severe weather, such as lighting, storms

and hurricanes and so on [1–4]. Operational security of

overhead transmission lines has a close relationship with

the external meteorological conditions. Weather factors

need to be taken into consideration for a reliability

assessment of overhead transmission lines, which is

important for economic- security decision making [5–7].

Failure probability of overhead transmission lines is

essential in applying an appropriate reliability assessment

method.

The Markov model [8] is widely used to estimate the

failure rate of overhead transmission lines. Considering the

intensity of the weather factors, the Markov model is being

developed as a two-state, three-state, and multi-state

weather model and so on [9–11]. Chong Wang presents a

Markov-based deterioration model for transmission com-

ponents [12]. Ali Arab et al. use partially observable

Markov decision processes to develop a generic model for

integrated condition-based maintenance of the electric

power systems infrastructure [13]. Yong Liu and Chanan

Singh introduced a DC-OPF based Markov cut-set method
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to evaluate composite power system reliability considering

weather effects [14]. These models are primarily suit-

able for relatively long-term applications. There are both

temporal and spatial variations of weather factors [15, 16].

Estimation of the weather influence on transmission lines is

required to capture the stochastic behavior of the weather

[17].

The Monte Carlo method is applied to simulate the

stochastic behavior after the modeling of complex system

operational conditions [18]. Billinton and Wenyuan [19]

used the two-state weather model and the Monte Carlo

sampling technique to incorporate the variable weather

conditions in a composite analysis. Mathaios Panteli and

Pierluigi Mancarella introduced a novel sequential Monte-

Carlo-based time-series simulation model to assess power

system resilience [20]. The Monte Carlo simulation

depends on random experiments and its convergence may

require acceleration by using other techniques [15].

In order to establish a simple relationship between

failure probability and weather factors, statistical analysis

and the artificial intelligence method are also adopted [21].

For example, the noisy OR-gate model, regression model

and fuzzy model are proposed in many literatures [22–25].

In these methods, the average failure rate model is still

used after data splitting and aggregation. Weather can

affect all the transmission lines in a certain area. The

outage event in this area has a random nature and statistical

characteristic, which is ignored in the average failure rate

model. The poisson model is proposed in [26] to consider

the statistical characteristics of transmission line outage

events. But the model is not fully described and not vali-

dated against empirical outage data.

In order to determine the distribution of outage events

on time and space, outage and weather data of an 110 kV

overhead transmission line from the Guangxi Zhuang

Autonomous Region of China during 2011–2014 are ana-

lyzed in this paper. A failure probability estimation method

for overhead transmission lines is proposed in this paper

considering lightning and wind. Statistical characteristics

of an outage event are investigated based on the poisson

model. The relationship between the poisson model

parameter and history failure rate is presented. Furthermore

the model is validated against the empirical outage data.

2 Outage events of transmission lines in Guangxi
Zhuang Autonomous Region

Outage events of 110 kV transmission lines in Guangxi

Zhuang Autonomous Region of China during 2012–2014

are classified as shown in Fig. 1. Weather-related outage

events account for 78.09% in total. Lighting and wind are

the two main severe weather factors, which are taken into

consideration in the following analysis.

Due to the temporal and spatial variation of weather

factors, the distribution of weather-related outage events is

uneven for time and space. As shown in Figs. 2 and 3,

lightning-related outages in Fangchenggang city, Wuzhou

city and Guilin city are the top three, accounting for

14.55%, 12.29% and 11.43% respectively. Strong wind

primarily affects the coastal areas, such as Beihai city,

Qinzhou city and Fangchengang city and the outages

account for 35.71%, 22.77% and 21.88% respectively. The

Lightning
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External damage
9.26%

Bird damage
5.20%

Wildfire
2.14%

Pollution
0.16% Wind

12.27%

Unknown cause
5.91%

Others
1.53%

Fig. 1 Proportion of transmission line outage causes
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Fig. 2 Spatial variation of weather-related transmission line outages
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monthly variation of outage events is closely related to the

activities of lightning and wind. It is primarily concentrated

from May to September, which accounts for 78.59% of the

whole year. Outages induced by wind are primarily con-

centrated from June to October and are related to typhoon

activity. Because of the uneven distribution of weather

factors for time and space, there are obvious differences for

transmission line outages between various regions in each

month. It is necessary to deal with the temporal and spatial

variations of weather factors and outage events to make

short-term predictions.

3 Estimation for transmission line failure
probability

3.1 Temporal and spatial split of weather

and outage data

According to the weather and outage data of transmis-

sion lines, appropriate weather factors are determined in

the method and denoted as w1, w2, …, wp respectively. Due

to the temporal and spatial variations of weather factors,

temporal and spatial splits are needed. Distribution of

weather factors is uneven over a vast area, such as a pro-

vince. A transmission line might be in multiple areas with a

different meteorological environment. A spatial split is the

division of weather areas. Assuming that the meteorolog-

ical environment in each weather area is consistent, the

divided weather areas are denoted as WA1, WA2, …,WAq

respectively. According to the data from the meteorologi-

cal department, the weather area is divided the same as the

administrative area. There are several lines in one weather

area, which are in the same meteorological environment.

All transmission lines with the same voltage level are taken

as the basic samples for the estimation of one weather area.

Temporal treatment of weather data contains both split and

aggregation. First weather and outage data are split by a

step of one day and the weather data is classified into

several intensities. Based on the intensity classification, the

weather and outage data with the same intensity are

aggregated. Both temporal and spatial aggregation result in

data smoothing and provides more meaningful patterns and

it converts the time distribution of the weather factors to

the intensity distribution. There are several weather factors

in one area and the combination of different weather fac-

tors is defined as a weather block. As the weather factor w1

and w2 in a weather area is at level k and m respectively,

the weather block is defined as WBkm. The outage data is

divided according to the classification of the weather block.

3.2 Probability distribution of a transmission line

failure based on poisson model

In each weather area, the outage events per day resulting

from the condition of each weather block can be considered

as discrete rare events. The failure probability satisfies the

poisson model and its expression is:

PðX ¼ kÞ¼e�hhk
�
k! k ¼ 0; 1; . . . ð1Þ

where X is the occurrence number of the random event.

It is assumed that there are n lines in the weather area

WAi, and the line lengths are l1, l2, …, ln respectively. X is

the line outage event per unit time resulting from the

condition of the weather block WBkm. Outage event per

unit time of each transmission line is X1, X2, …, Xn

respectively, and they are independent events. The obser-

vation value of each event is x1, x2, …, xn respectively.

X follows the poisson model, and the failure probability of

the transmission line per unit time is:

PðX� 1Þ ¼ 1 � e�h ð2Þ

According to the maximum likelihood estimation

method, the likelihood function is:
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LðhÞ ¼
Yn

i¼1

pðxi; hÞ ¼
Yn

i¼1

e�h h
xi

xi!
¼ e�nhh

Pn

i¼1

xi Yn

i¼1

xi!

 !�1

ð3Þ

ĥ ¼ 1

n

Xn

i¼1

xi ð4Þ

TWB is defined to denote the days of the weather block and

z1, z2,…, zn denote the outage times of each transmission

line occurring in the duration of the historical data

respectively. Because the repairing time is too small it

can be neglected and the failure rate is approximately

represented as the failure frequency in unit length and unit

time as follows:

k� ¼ TWB

Xn

i¼1

li

 !�1Xn

i¼1

zi ¼
1

n

Xn

i¼1

xi

 !
1

n

Xn

i¼1

li

 !�1

¼ 1

n� L

Xn

i¼1

xi¼
ĥ

L

ð5Þ

L ¼ 1

n

Xn

i¼1

li ð6Þ

where L is the average length of the transmission lines in

the weather area.

Historical outage data of transmission lines can be used

to calculate the parameter of the poisson model. According

to historical weather and outage data, the relationship

between the historical failure rate and weather factors can

be established. Based on the poisson model, the failure

probability of the transmission line can be predicted using

the weather forecast data.

3.3 Regression analysis

Regression analysis is used in this paper to establish the

relationship between the historical failure rate k* and

weather factors w1, w2,…, wp. Because k* is too small to be

calculated, k0 is defined to denote the logarithm of k*,
which is shown as follows:

k0 ¼ ln(k�Þ ¼ ln TWB

Xn

i¼1

li

 !�1Xn

i¼1

zi

0

@

1

A ð7Þ

The regression model of k0 and weather factors can be

expressed in matrix form as follows:

k0 ¼ BW ð8Þ

where B = [b0, b1, b2,…, bp] and it is the regression

coefficient matrix; W is the weather factor matrix.

The least square method is used to obtain the regression

coefficient matrix. Furthermore, the significance test and

applicability test are adopted to test the regression equa-

tion. Then the regression equation can be used to estimate.

3.4 Failure probability of transmission lines

If the average line length in a weather area is known, the

outage time per line in unit time can be obtained:

k ¼ LeBW ¼ 1

n

Xn

i¼1

xi ¼ ĥ ð9Þ

Failure probability of transmission line in unit time can

be calculated as follows:

P ¼ 1 � e�k ð10Þ

If a line passes through several weather areas, the non-

failure probability ‘‘1 - P’’ is the product of ‘‘1 - PWAq
’’

which means the non-failure probability of the line in each

weather area. The total failure probability is calculated as

follows:

1 � P ¼ 1 � PWA1
ð Þ 1 � PWA2

ð Þ � � � 1 � PWAq

� �
ð11Þ

Based on the above principles, the following steps are

used to make a concrete calculation as shown in Fig. 4.

1) Determine main weather factors by analyzing the

historical outage and weather data. Weather and

outage data is classified according to the division of

the weather area.

Historical weather data

Weather area division Geographic data of transmission line

Data split on each weather area

Weather block division Historical outage data of
transmission line

Historical failure rate in each weather block

Regression model establishment

Obtain the Poisson model parameter

Failure probability
estimation

Weather
forecast data

Predicted failure probability

Fig. 4 Flow chart of estimation method proposed
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2) Classify the weather intensity and establish the

weather block.

3) Count the outage number in different weather blocks

and calculate the historical failure rate of the trans-

mission line.

4) Establish the regression model of the historical failure

rate and weather intensity and select the suitable re-

gression model via the hypothesis test.

5) Obtain the poisson model parameter based on the

historical outage and weather data.

6) Calculate the failure probability of the transmission

line with the weather forecast data.

4 Example

4.1 Temporal and spatial split of historical data

According to the weather and outage data of the 110 kV

transmission line in the Guangxi Zhuang Autonomous

Region of China during 2012–2014, two parameters

denoted as w1 and w2 are chosen as the lightning density

and maximum wind speed per day. The lightning density

data is obtained from LLS [27] and the wind speed data is

the instantaneous value obtained on the ground from the

meteorological service of Guangxi. Taking Fangchenggang

city with the most outages for example, the weather area of

the whole city is named as WA0. Four counties in its

jurisdiction, Gangkou, Fangcheng, Shangsi and Dongxin,

are named as WA1, WA2, WA3 and WA4 respectively.

Gangkou and Dongxin are next to the sea, and Shangsi is

farthest from the seaside.

After dividing the weather area, lightning density and

maximum wind speed of each weather area are collected

and the weather intensity is classified into a weather block

as shown in Fig. 5. The number of days in which lightning

density is more than 0.9 times/(km2�a) accounts for 0.4% in

total days. Therefore, this paper focuses on the analysis of

the outages with a lightning density between 0–0.9 times/

(km2�a). Lightning density is divided into 10 levels with an

interval of 0.09 times/(km2�a), named as 1–10. The number

of days in which the maximum wind speed is more than 14

m/s represents 0.16%, so the outages with the maximum

wind speed between 0-14 m/s are analyzed in this paper.

Maximum wind speed is divided into 10 levels with an

interval of 1.4 m/s, named as 1–10. Combined with the

outage data, statistics of the outage numbers at different

weather blocks are obtained for subsequent calculation.

4.2 Historical failure rate of the transmission line

According to the third step of the calculation process,

the outage numbers at different weather blocks are counted.

The historical failure rate of the transmission line is cal-

culated. The data during January 2012 to July 2014 is taken

to establish the estimation model and the data during

August 2014 to December 2014 is taken to verify the

model.

Taking WA2 as an example, the total outage numbers

and day numbers of each weather block are shown in

Fig. 6a and b respectively. According to (7), historic failure

rate in each weather block is shown in Fig. 6c. The day

number with the lowest weather intensity is generally more

than that with the highest weather intensity. Because the

occurrence probability of severe weather is low, the outage

number under strong weather intensity could be small. But

the stronger the weather intensity is, the higher the failure

rate will be. The historical failure rate in other weather

areas is roughly the same as that of WA2.

4.3 Estimation and verification of model

According to the historical failure rate and weather

intensity in each weather block, the regression model of k0

and also the weather factors is established. Comparing the

hypothesis test result of multiple regression models, the

polynomial regression model in (12) to (16) has the highest

goodness of fit. The value of p in the f-test is less than 0.01

and the value of p in the t-test is less than 0.05. In the

applicability test, the residuals are all subject to the normal

distribution and there is no difference and self-correlation.

The regression results are significant.

k0WA0
¼ �13:2719 þ 2:8091w1 � 0:2515w1w2 � 0:1438w2

1

þ 0:0963w2
2

ð12Þ
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k0WA1
¼ �13:9225 þ 3:1331w1 � 0:0791w1w2 � 0:2645w2

1

þ 0:0727w2
2

ð13Þ

k0WA2
¼ �11:9084 þ 1:6476w1 � 0:0387w1w2 � 0:1069w2

1

þ 0:0595w2
2

ð14Þ

k0WA3
¼ �11:8423 þ 1:0980w1 þ 0:2043w1w2 � 0:2692w2

1

þ 0:0515w2
2

ð15Þ

k0WA4
¼ �13:5802 þ 3:2945w1 � 0:2511w1w2 � 0:2008w2

1

þ 0:1078w2
2

ð16Þ

According to the above formulas and (5), the poisson

model parameter is calculated. Using (10), the estimation

model for failure probability of each weather area is finally

obtained. Putting the forecast weather data into the

estimation model, the failure probability of the

transmission line can be predicted.

Based on the outage and weather data of the transmis-

sion line during August 2014 to December 2014, the esti-

mation model is verified. Taking two transmission lines in

weather area WA0 as an example, the lightning density and

maximum wind speed in September 2014 are converted

into weather intensity and substituted into the model.

Comparison between the predicted failure probability and

actual outage number is shown in Fig. 7. Line X1 is the

Zhuhuang No. 2 line in weather area WA2 and WA4, which

Fig. 6 Historical statistics of transmission line outages in different

weather blocks of WA2
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is 30.73 km long. Line X2 is the Xinjiangshen line in WA1,

WA2 and WA4, which is 60 km long. Weather area WA1

and WA4 are nearer to the seaside than weather area WA2.

The minimum distances between these two lines and the

seaside are all about 2 km. Because line X2 is longer and

passes through weather area WA1, there is a longer line

near the seaside. Most insulators used in these two lines are

FXBW4-110/100.

Predicted failure probability from the estimation model is

consistent with the actual outage events. When the predicted

failure probability is high, the actual outage event happened.

The predicted failure probability is largest on September 16,

2014 and it was the day when the typhoon ‘‘seagull’’ was

striking the coast. In order to evaluate the accuracy of the pre-

diction, predicted failure probability curves of two lines during

August 2014 to December 2014 are presented in Fig. 8.

There is only one peak value more than 0.2 on the two

curves of the predicted failure probability, which is during

the typhoon ‘‘seagull.’’ In the curve of line X1, most of the

predicted failure probability is less than 0.05 and the pro-

portion is about 97.4%. There was just one outage on

September 3, 2014 with the predicted failure probability

less than 0.1. The outage reason recorded is lightning. But

the weather data shows very low lightning activity density

on this day. There are two days during typhoon ‘‘seagull’’

with one outage and the predicted failure probability is

more than 0.2. In the curve of line X2, 96.1% of the pre-

dicted failure probability is less than 0.05. There is no

outage with the predicted failure probability less than 0.1.

There are two days during typhoon ‘‘seagull’’ with two

outages and the predicted failure probability is more than

0.3. In general, the calculation model can reliably predict

the outage probability of transmission lines. 0.2 can be set

as a pre-warning value of outage probability for the power

grid company.

5 Conclusion

1) Weather-related outage accounts for 78.09% according

to the outage data analysis of the 110 kV transmission

line in the Guangxi Zhuang Autonomous Region of

China during 2012–2014. The distribution of weather-

related outages for time and space is consistent with the

temporal and spatial variation of weather factors.

2) An estimation method for failure probability of

transmission lines is proposed in this paper. It splits

and aggregates the historical weather and outage data

with an interval of one day for each weather area. The

weather data is converted to weather intensity and

aggregated as a weather block. The statistical charac-

teristics of the outage event in each weather block are

investigated based on the poisson model. The rela-

tionship between the poisson model parameter and

weather data is analyzed via regression analysis.

3) The example shows that the model can reliably predict

the failure probability of transmission lines. It can

effectively reflect the influence of a typhoon. According

to the weather forecast data, the power grid company

could predict the failure probability for each weather

area using this method. 0.2 can be set as a pre-warning

value of the outage probability. Then the power grid

company can send operational staff to the area with the

highest probability, especially more than 0.2. When

there is an outage of transmission lines caused by severe

weather, the repair time could be reduced.
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