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Abstract Thermostatically controlled loads (TCLs) have

great potentials to participate in the demand response

programs due to their flexibility in storing thermal energy.

The two-way communication infrastructure of smart grids

provides opportunities for the smart buildings/houses

equipped with TCLs to be aggregated in their participation

in the electricity markets. This paper focuses on the real-

time scheduling of TCL aggregators in the power market

using the structure of the Nordic electricity markets a case

study. An International Organization of Standardization

(ISO) thermal comfort model is employed to well control

the occupants’ thermal comfort, while a rolling horizon

optimization (RHO) strategy is proposed for the TCL

aggregator to maximize its profit in the regulation market

and to mitigate the impacts of system uncertainties. The

simulations are performed by means of a metaheuristic

optimization algorithm, i.e., natural aggregation algorithm

(NAA). A series of simulations are conducted to validate

the effectiveness of proposed method.

Keywords Thermostatically controlled load, Demand side

management, Rolling horizon optimization, Thermal

comfort model, Demand response

1 Introduction

Modern power systems have experienced major changes

and enhancements since the first proposal of ‘smart grid’ in

the early 21st century. The integration of renewable energy

sources, participations of demand side and deployment of

advanced sensor infrastructure have further increased the

system complexities and have driven the re-constructions

of grid operations [1].

Residential/commercial buildings are large energy con-

sumers in the distribution systems. For example, in China

the energy consumption of buildings contributes to 33% of

the whole society’s energy consumptions [2]. The ther-

mostatically controlled appliances (e.g., air conditioners,

heaters), widely used in houses and buildings, have great

potentials to participate in demand side management

(DSM) programs due to their thermal storing capabilities.

Extensive effort has been devoted to date at studying the

direct control techniques of thermostatically controlled

loads (TCLs). For example, [3] outlined the fundamental

requirements of direct load control (DLC) and presented a

general optimization framework to do the feeder-scale load

reduction, while [4] designed a priority based control

scheme for TCLs to participate in grid frequency regula-

tion. Reference [5] proposed a two-stage dispatch method

for TCLs where, in a first stage, a day-ahead scheduling

model is solved to determine the optimal TCL dispatch
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and, in a second stage, a real time control model allocates

the desired setpoints to individual TCL. In [6], the authors

used the Markov transition matrix to model the populated

TCLs to do the non-disruptive load reduction. Previous

work of the authors made use of an advanced thermal

inertia model to control TCL in smart homes [7] and pro-

posed a model for coordinately dispatch the TCLs and

thermal generation units [8]. In above works, the ON/OFF

control actions of TCLs are driven by the thermostats

settings and by a certain pre-set indoor temperature range.

In our previous works [9, 10], International Organization of

Standardization (ISO) standard thermal comfort models,

widely adopted to estimate the occupants’ thermal comfort

degree, have been considered in the model representation

for the TCL dispatch. By integrating the thermal comfort

model, the control actions of TCLs are driven by the cal-

culated comfort level of the occupants instead of ther-

mostats settings and indoor temperature dead-band.

In the smart grid paradigm, buildings can be aggregated

to place load reduction bids in the day-ahead market. In

this way, the aggregated TCLs act as a virtual power plant

(VPP) [11]. It can ‘generate more power’ to the grid by

turning off some TCLs to decrease the load and can

‘generate less power’ by turning some TCLs on. Once the

load reduction contracts are determined for the day-ahead

market, the differences between actual load shedding

amounts and contracted load reduction volumes will be

settled in the regulation market. Therefore, after deter-

mining the day-ahead contracts, the TCL aggregators need

to optimize the real-time control actions on TCLs by taking

into account the contracts and real-time information (e.g.,

regulation prices, weather information, etc.). Although

there have been several works studying the TCL control

schemes of in the regulation market, e.g., [12, 13], they all

consider TCL aggregators as ancillary service providers to

follow certain frequency regulation signals.

In this context, this paper aims to consider the TCL

aggregator as an independent biding actor in the day-ahead

market, instead of an ancillary service provider, and to

study its real-time operation with the determination of day-

ahead contracts. In particular, the main contributions of this

paper including:

1) The use of an ISO standard thermal comfort to

probabilistically control the occupants’ thermal com-

fort within real-time indoor environments.

2) The establishment of a rolling horizon optimization

(RHO) based real-time scheduling model aimed at

maximizing the TCL aggregator’s profit in the regu-

lation market while reducing the negative impacts of

system uncertainties.

3) The implementation and use of a metaheuristic

algorithm, i.e., natural aggregation algorithm (NAA),

for solving the real-time scheduling model.

This paper is organized as follows. Section 2 introduces

the market structure used in this study, followed by Sec-

tion 3 which presents the modelling of TCL and thermal

comfort indices. Section 4 depicts the proposed RHO

based real-time scheduling model for TCL aggregators and

Section 5 discusses the solution approach of the proposed

model. Experimental studies are reported in Section 6 and

conclusions are drawn in Section 7.

2 Electricity market structure

The real-time scheduling model studied in this paper is

based on the Nordic energy market without any loss of

generality as with minor modifications, the model is

applicable to also other market structures

Nordic energy market is a common market for elec-

tricity trading in Nordic countries. According to the Nordic

market report 2014 [14], the largest shares of Nordic

energy market in 2014 include: Vattenfall (18.8%), Statk-

raft (13.6%), Fortum (12.1%), E.ON (7%) and other elec-

tricity producers (50%). Nordic energy market is

subdivided into three markets, i.e., Elspot, Elbas and reg-

ulation market, respectively [15, 16]. These markets are

briefly described in the following sub-sections.

2.1 Elspot

In the Nordic power market system, Elspot is the day-

ahead market. In Elspot, market actors sign the hourly

contracts for the 24 hours of the next day. The spot market

closes at 12:00 am each day. By receiving the bids, the

market operator constructs the power purchasing and sell-

ing curves, and their cross point determines the clearance

price and volume being traded on each hour of the next day

[15]. The minimum contract size in the Elspot market is 0.1

MWh [17].

2.2 Elbas

Elbas is the intraday market. It opens at 15:00 each day

to allow hourly energy trading of the market actors for the

coming day. It closes 1 hour prior to the delivery. Elbas is

considered to be an adjustment market which supplements

Elspot and helps secure the necessary balance between

supply and demand in the power market for Northern

Europe. The minimum trading volume in Elbas market is

1 MWh per hour [18].

948 Fengji LUO et al.

123



2.3 Regulation market

The gap between power generation and consumption is

balanced by the transmission system operator (TSO)

through the regulation market. The actors with power

reserves place bids in the regulation market, and the bids

are ordered by price and form a staircase for each delivery

hour. At the end of each hour, the regulation price is

determined according to the most expensive upward reg-

ulation measures or cheapest down regulation measures

taken by the TSO [14]. The minimum bid size in the reg-

ulation market is 5 MW [19].

2.4 Balance settlement

The TSO allocates the regulation costs among balance

responsible actors through the balance settlement. All the

balance responsible actors pay or are paid according to the

deviations between their actual and planned productions.

There are 4 situations for the balance settlements:

1) If only the upward regulation is activated, the actors

with negative imbalance pay the upward regulation

price, which is larger or equal to the spot price, while the

actors with positive imbalance are paid at the spot price.

2) If only the downward regulation is activated, the actors

with negative imbalance pay the spot price, and those

with positive imbalance are paid by the down regu-

lation price, which is less or equal to the spot price.

3) If no regulation is activated, all transactions are settled

at the spot price.

4) If both upward and downward regulations are acti-

vated, upward or downward regulation prices are

applied depending on which regulation has the higher

volume. If volumes for ordered upward and downward

regulation are equal, then the spot price is applied.

To facilitate the participation of demand response, the

Nordic market also allows the trading of ‘demand flexi-

bility’ in both Elspot and Elbas, and the real-time imbal-

ances are managed and settled by the TSO as usual [20].

3 Modeling of TCL and thermal comfort indices

A fundamental step of TCL dispatch is to understand the

thermal transition process of the buildings and set up

appropriate thermal comfort model for the occupants.

3.1 TCL thermal dynamics model

In this paper, the widely adopted R-C model is used for

modelling the thermal transition of buildings with TCLs,

which have been proved to be capable for capturing the main

thermal dynamics of the buildings [3, 4]. The R-C model

includes two parameters: thermal resistance (R) and thermal

capacitance (C). By using the R-C model, the indoor tem-

perature trajectory caused by a TCL is governed by the fol-

lowing first-order ordinary differential equation [3].

_TinðtÞ¼
1

CthRth

ToutðtÞ � TinðtÞ � sðtÞRthPrateð Þ ð1Þ

where Cth and Rth are the thermal capacity and resistance of

the building; s(t) is the state of the TCL, 0 is OFF, 1 is ON;

Tout(t) and Tin(t) are the outdoor air temperature at time t;

Prate is the rated power of the TCL.

Other alternative models could be used in the proposed

computational framework without significantly modifying

the proposed real-time scheduling model in Section 3.

For example, the authors used an R-C thermal network

model in [12] to model the thermal dynamics of commer-

cial buildings and, in [8], employed a thermal inertia model

by considering the wall’s thermal capacitance.

3.2 ISO 7730 thermal comfort model

One important consideration in TCL dispatch is the user’s

comfort. In this paper, we employ an ISO standard thermal

comfort model [21] to estimate the occupants’ thermal

comfort degrees. The model we used is the ISO7730 model,

which has many implementations of HVAC systems

[22, 23]. It depicts the analytical representation of human’s

thermal comfort degree by two indices: predicted mean vote

(PMV) and predicted percentage of dissatisfied (PPD). PMV

predicts themean value of votes of a large group of people on

the ISO thermal sensation scale. Based on PMV, PPD pre-

dicts the percentage of a large group of people likely to feel

‘too warm’ or ‘too cool’.

The thermal sensation of a human is determined by the

thermal balance of his or her body. In the ISO 7730 model,

this balance ismainly influenced by four environment factors

(air temperature, air relative humidity, air velocity, andmean

radiant temperature) and two individual factors (activity

level and clothing insulation). When these factors are

determined, the 7-point thermal sensation of the body as a

whole can be predicted by calculating the PMV in Fig. 1.

By taking into account the above factors, the PMV can

be calculated by (2) [21].

fPMV ¼ ð0:352 expð�0:042MÞ þ 0:032Þ½M � 0:35ð43�
0:061M � PvÞ � 0:42ðM � 50Þ � 0:0023Mð44�
PvÞ � 0:0014Mð34� TaÞ � 3:4� 10�8fclððTclþ
273Þ4 � ðTmrt þ 273Þ4Þ � fclhcðTcl � TaÞ�

ð2Þ

where M is the metabolic rate; Pv is the vapor pressure in

ambient air; Ta is the ambient air temperature; fcl is the
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clothing surface area factor; Tcl is the mean temperature of

outer surface of clothed body; Tmrt is the mean radiant

temperature; hc is the heat transfer coefficient. The clothing

surface temperature Tcl needs to be computed iteratively to

find the root of the nonlinear equations in (3) and (4).

Tcl ¼ 35:7� 0:032M � 0:18Iclf3:4� 10�8fcl½ðTclþ
273Þ4 � ðTmrt þ 273Þ4�g þ fclhcðTcl � TaÞ

ð3Þ

hc ¼
2:05 Tcl � Tinj j0:25 2:38 Tcl � Taj j0:25 [ 10:4

ffiffiffiffiffiffi

var
p

10:4
ffiffiffiffiffiffi

var
p

2:38 Tcl � Taj j0:25\10:4
ffiffiffiffiffiffi

var
p

(

ð4Þ

where Icl is the thermal resistance of clothing (clo). fcl and

Pv are calculated based on (5) and (6), respectively [21]:

fcl ¼
1þ 1290lcl lcl � 0:078
1:05þ 0:645lcl lcl [ 0:078

�

ð5Þ

Pv ¼ rh � 10exp 16:6536� 4030:183

Ta þ 273

� �

ð6Þ

Based on the PMV value, PPD is calculated in terms of

the determined PMV and provides a quantitative prediction

of the percentage of people who feel too cool or too warm

[21]:

fPPD ¼ 100� 95 exp �0:03353f 4PMV � 0:2179f 2PMV

� �

ð7Þ

3.3 Parameter determination of ISO 7730 model

As previously introduced, in the ISO 7730 model there

are 4 environment factors and 2 individual factors. In the

TCL control, the values of these parameters need to be

determined when calculating the PPD value.

1) Determination of Activity Level and Clothing Insula-

tion. In ISO 7730 model, these two factors are repre-

sented by discrete numerical values. For example, the

clothing insulation value of light summer clothing could

be 0.5, and the activity level value of sedentary activity

is 1.2 [16]. In real applications, these two factors can be

estimated by analyzing the seasonal clothing character-

istics of the occupants, nature of the occupants’ jobs, etc.

They can also be determined from the historical

recorded data or directly monitored by sensors.

2) Determination of Indoor Relative Air Humidity and

Indoor Air Velocity. In the real applications, the

values of indoor relative air humidity and velocity can

be directly obtained through the deployed indoor

sensors.

3) Determination of Indoor Air Temperature. The out-

door air temperature can be obtained by sensors and

meteorological forecasting techniques. The indoor air

temperature depends on the outdoor air temperature

and TCL state. Once these are determined, the indoor

air temperature trajectory can be calculated with (1).

4) Determination of Mean Radiant Temperature. The

mean radiant temperature is defined as the uniform

temperature of an imaginary enclosure in which the

radiant heat transfer from the human body equals the

radiant heat transfer in the actual non-uniform enclo-

sure. It can be measured by sensors or calculated with

approximation methods [24].

3.4 TCL grouping strategy

Single building cannot participate in the power market

due to its limited capacity. When aggregating a large

number of TCLs, it would be technically intractable to

dispatch the TCLs individually. A feasible approach is to

group the TCLs properly, and dispatch the TCLs on a

group basis [4]. In this paper, we first assume that all the

occupants are within a moderate activity environment and,

consequently, set the value of M equal to 1.2. This

assumption covers many typical building scenarios, such as

dwellings, offices, classrooms, etc. [25]. We then represent

each TCL sample as a feature vector Cth;Rth; Icl;Prate

� 	

and

use the C-means clustering method [26] to cluster the TCL

samples based on their feature similarities. Based on the

clustering results, we separate TCLs into multiple groups

according to their calculated parameters.

For each TCL group, an equivalent TCL model is then

established whose parameters are the averaged values of

the parameters of the TCL samples part of that group.

4 Rolling horizon optimization based real-time
operation model for TCL aggregator

There are two major phrases for TCL aggregators to

participate in the Nordic power market. The first phase is

the day-ahead stage, where the aggregator determines the

bids based on the 24-hour ahead forecast data. The second

phase depicts the real-time operation stage, where the

aggregator practically applies control actions on TCLs

based on the updated real-time information and pre-deter-

mined contracts. In this paper, we assume the day-ahead

contracts have already been determined and restrict our

study on the real-time scheduling.

Air temperature
Air relative humidity
Air velocity 
Mean radiant temperature 
Activity level
Clothing insulation

PMV 
calculation

-3 Cold
-2 Cool
-1 Slightly cool
0 Neutral
1 Slightly warm
2 Warm
3 Hot

Physical variables Thermal sensation indicator

PMV 
value

Fig. 1 Schematic of PMV calculation
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RHO has been proved to be an effective approach for

real-time dispatch [27]. By continuously proceeding over

the optimization horizon, updating the system states and

repetitively performing the optimization over the rolling

future horizon, the RHO can effectively mitigate the neg-

ative impacts of the forecast errors. In this paper, we

employ the RHO strategy for the real-time scheduling of

TCL aggregators.

4.1 Identification of stochastic variables

The stochastic variables involved in the real-time

scheduling of TCL aggregator include the 6 thermal comfort

model parameters in Section 3 and upward/downward reg-

ulation prices. Since the clothing condition (Icl) and activity

level (M) of the occupants often do not change significantly,

in this paper we treat them as fixed values during the

scheduling period. The other 4 thermal comfort parameters

and regulation prices can be online forecasted by using the

weather forecast techniques or machine learning techniques.

4.2 RHO based real-time TCL scheduling model

In the real-time stage, the TCL aggregator decides ON/

OFF control actions of each managed TCL group at each

time interval. By employing the RHO strategy, the

scheduling process is characterized by the following steps:

1) System modeling. The stochastic variables previously

introduced are predicted over a future finite horizon,

which is called the control window (or prediction

window).

2) Objective definition. The scheduling objective of the

TCL aggregator over the prediction window is

specified.

3) Objective function optimization. The objective func-

tion is optimized as a function of the set of future TCL

control signals to be applied to the system during the

predictive window.

4) Receding horizon strategy. Only the control signal of

the first time interval is applied to the TCL groups. In

the next time step, the predictive window moves

forward with one time interval and all the algorithms is

repeated.

In each round of RHO, the scheduling objective of

aggregator is to maximize its total profits over the predic-

tion window:

max f ðsGPÞ ¼
X

t0þTwd

t¼t0
Cspot;tþCreg;t � Cls;t

� �

ð8Þ

where Twd is the RHO control window size; Cspot;t is the

revenue of the TCL aggregator in the spot market at time t;

Creg;t is the revenue of the TCL aggregator in the regulation

market at time t; Cls;t is the TCL shedding cost at time t.

The decision variables are collected in sGP, which is the

TCL state matrix with size Twd � NGP, where NGP is the

number of TCL groups managed by the TCL aggregator.

The entry sGPðt; iÞ represents the ON/OFF state of the ith

TCL group at time t. Cspot;t is a deterministic value since

the bids and clearance prices have already been

determined:

Cspot;t ¼ Ccon;tpspot;tDt ð9Þ

where Ccon;t is the contracted load reduction volume of the

TCL aggregator at time t; pspot;t is the clearance electricity

price at time t; Dt is the duration of a time interval. When

the actual shed load is smaller than the contracted load

reduction volume, Creg;t is negative and represents the cost

in the regulation market. Creg;t is calculated as follows:

Creg;t ¼
ppos;tðCshed;t � Ccon;tÞDt Cshed;t �Ccon;t

pneg;tðCshed;t � Ccon;tÞDt Cshed;t\Ccon;t

�

ð10Þ

Cshed;t ¼
X

NGP

i¼1

ð1�sGPðt; iÞPGP;iÞ ð11Þ

PGP;i ¼
X

NTCL;i

j¼1

Prate;i;j ð12Þ

where ppos;t and pneg;t are forecasted positive and negative

imbalance price at time t; Cshed;t is the total shed TCL

power of the aggregator at t; PGP;i is the aggregated power

of the ith TCL group; Prate;i;j is the rated power of the jth

TCL of the ith group; NTCL;i is the number of TCLs of the

ith TCL group.

Cls;t is the TCL shedding cost, represented by the

incentive scheme (or customer reward) provided by the

TCL aggregator to the customers, so as to encourage their

participation in the DSM programs. In this paper, we

assume the customer reward increases when the thermal

comfort tends to decrease:

Cls;t ¼
X

NGP

i¼1

Cls;i;t ð13Þ

Cls;i;t ¼
0 fPPD;i;t � f limit

PPD

exp
fPPD;i;t

f limit
PPD

� �

� 1

� �

Dt fPPD;i;t [ f limit
PPD

8

<

:

ð14Þ

where Cls;i;t is the TCL shedding cost of the ith TCL group

at time t; fPPD;i;t is the PPD value calculated on the

equivalent model of ith TCL group at time t; f limit
PPD is the

allowable limit of the PPD value.

Equations (13) and (14) show that, when the calculated

PPD of the equivalent TCL group model is less than a pre-

set threshold, the TCL shedding cost is nil or, otherwise,

Rolling horizon optimization for real-time operation of thermostatically controlled load… 951

123



the load shedding cost exponentially increases with the

increase of PPD. Model (8) is subjected to following

constraints:

a) TCL group state constraint

sGPðt; iÞ 2 ð0; 1Þ 8t¼t0 : t0þTwd; i¼1 : NGP ð15Þ

b) Minimum online time constraint: it is applied to avoid

mechanical weariness of TCLs due to frequent ON/

OFF actions:

soni ðtÞ� sonmin ð16Þ

soni ðtÞ¼ soni ðt � 1ÞþsGPðt; iÞDt
� �

sGPðt; iÞ ð17Þ

where soni ðtÞ is the accumulated online time of the ith TCL

group at time t; sonmin is the minimum required online time.

5 Approach to solve the model

The proposed model is essentially a binary optimization

problem over a finite horizon. By introducing the ISO 7730

thermal comfort model, the function of (8) becomes highly

nonlinear and non-convex. When calculating PMV, the

clothing surface temperature Tcl has to be computed iter-

atively. It would be difficult, if not impossible, to use

mathematical programming methods to solve this model.

Recently, the authors have proposed a new metaheuristic

method, referred to as a natural aggregation algorithm

(NAA) [28, 29], and this is used in the following for the

benchmarking of the experiments. The NAA has been

employed in this study because it possesses strong global

searching capabilities in a nonlinear space and has the

potentials to outperform other state-of-the-art heuristic

algorithms [28].

5.1 Introduction of NAA

NAA mimics the collective intelligence of group-living

animals in their resource sharing and competition process.

The group-living animals tend to group on the multiple

resources (e.g., shelters, food, etc.) to exploit the resources.

Resources with higher qualities will attract more swarm

individuals to aggregate, while the overcrowding of a

group would make the group members leave it to explore

better resource or join other groups. Biologists established

probabilistic models to describe the group-living animals’

self-aggregation behaviors and mathematically proved that

their aggregating behaviors can help the swarm to opti-

mally balance the resource exploitation and exploration

[30].

In NAA, a population of individuals is distributed as

multiple sub-populations, where each sub-population is

called a ‘shelter’. The core of NAA is a stochastic migra-

tion model, which individuals can dynamically migrate

among sub-populations. In particular, in each generation,

each individual placed at a shelter s will first evaluate its

probability of leaving its current shelter (Qs):

Qs ¼
hs

1þ xs
Cs


 �2
ð18Þ

where hs is the normalized quality of shelter s; xs is the

number of individuals currently in s; Cs is the capacity of

shelter s, representing the maximum number of individuals

it can contain. Based on Qs, the individual decides whether

or not to leave the current shelter. For each individual not

part of any shelter, it randomly selects a shelter s and

evaluates its probability of entering it as follows:

Rs¼ 1� hs
� �

1� xs

Cs

� �

ð19Þ

Based on Rs, the individual decides whether or not to

enter the shelter under consideration. After making the

migration decisions, each individual placed at a certain

shelter performs a located search, while each individual not

included in any shelter performs a generalized search.

Further details related to the NAA can be found in [28].

5.2 Applying NAA on binary spaces

The NAA is designed for real-parameter optimizations

over the continuous space. Since the proposed optimization

function in (8) is a binary optimization problem, a mapping

scheme needs to be adopted to map the NAA on binary

spaces. In this study, we use the same mapping

scheme applied in particle swarm optimization (PSO) [31]:

PðdijÞ ¼
1

1þ expð�dijÞ
ð20Þ

xij ¼
1 rand\PðdijÞ
0 otherwise

�

ð21Þ

where PðdijÞ is the bit change probabilities; dij is the dif-

ference of jth dimensional value of individual i between

current generations at the last generation.

5.3 Encoding real-time scheduling model into NAA

In each round of RHO, NAA is employed to solve model

(8). We first transform the optimization described in (8)

into a minimization problem by simply using the reciprocal

of the objective function. In NAA, each individual is a Twd
dimensional vector, representing a potential ON/OFF

control scheme over the prediction window. The value of

each dimension is binary: 0-OFF or 1-ON.
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The schematic of the proposed real-time scheduling

model of TCL aggregators can be depicted in Fig. 2.

6 Simulation study

6.1 Simulation setup

A TCL aggregator which manages 300 buildings, with

the rated power of each TCL randomly generated from the

range [10 kW, 20 kW]. This setting represents a residential

area of moderate scale and the aggregated energy of TCLs

is significantly larger than the minimum contract size

requirement of the Elspot market (0.1 MWh). All buildings

are assumed to be equipped with cooling TCLs (such as air

conditioner). Based on [32], Cth of each TCL is randomly

generated from 0.015 to 0.065 kWh/�C per square meters

and the thermal conductance (1/Rth) is randomly generated

from 0.001 to 0.003 kW/�C per square meters. The room

areas of the 30 houses considered are randomly generated

in the range [100 m2, 500 m2]. Dt is taken as 5 minutes.

It is normally safe to assume Icl and M as fixed values

over the dispatch horizon. We set the value of M to be 1.2

as discussed in Section 3 and then randomly generate

values of Icl in the range [0.25, 1.65] [21]. sonmin is set to five

minutes.

For the indoor environment, it is safe to take the air

velocity as 0.1 m/s [25]. Due to the lack of relevant data, in

this paper we do not consider the solar radiations and set

the mean radiation temperature of each TCL to be equal

with the indoor air temperature. We also assume the indoor

relative humidity to remain equal to 50%, regarded as a

comfort and healthy value for humans. This condition can

be achieved through the use of automatic indoor humidity

control devices. Based on the above settings, the number of

stochastic variables over the scheduling horizon is reduced

to 3: outdoor air temperature, up regulation prices and

down regulation prices. The incentive rate a is set to be

300; f limit
PPD is set to 20% according to the recommendations

of American Society of Heating, Refrigerating, and Air-

Conditioning Engineers (ASHRAE) [25].

1-day real outdoor air temperature recorded by a mete-

orological observation station and 1-day real regulation

price pro file downloaded from the Nordic market website

[16] are used in the simulations presented in the following.

Gaussian noises are added to simulate the corresponding

very short term forecasting profiles. The real and forecasted

outdoor temperature profiles are shown in Fig. 3. The day-

ahead contracted load reduction volumes are set as Fig. 4,

while the corresponding clearance prices, also obtained

from [16], are also plotted.
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TCL sample

TCL sample

TCL 
clustering

Feature 
identification

TCL group

TCL TCL
TCL group
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Fig. 2 Schematic of proposed real-time control model

Fig. 3 Real & forecasted outdoor air temperature profiles
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The parameter settings of NAA are: population

size = 60, maximum generation time = 300, NS ¼ 4,

Cs ¼ 12, d ¼ 1, Cr;local ¼ 0:8, a ¼ 1:2, Cr;global ¼ 0:1.

6.2 Numerical results

300 TCL samples are firstly generated by using the

Monte-Carlo sampling method and then clustered by using

the K-means clustering method. Based on the clustering

results, 33 TCL groups are formed, where each one con-

sists of maximum 10 TCLs. Figure 5(c) shows the clus-

tering of the 300 TCLs, where each cluster is identified by

a particular color. Figure 5 (a) shows the scatters of the

equivalent models, and Fig. 5(b) illustrates the equivalent

model and all sample points of a representative TCL

group.

Under the RHO strategy, with the preceding of time, the

system states (profit, indoor temperature, etc.) are updated

after each round of RHO optimization with the realizations

of the stochastic variables. The efficiency of the RHO

strategy is illustrated in Fig. 6, where the total load

shedding amounts over all the TCL groups of the first 3

rounds of RHO optimizations are shown. It can be clearly

seen that there are some differences of the TCL schedules

for the 3 rounds of optimizations. These differences are

mainly produced by the updates of the forecasting and real-

time information. The results indicate that the RHO strat-

egy can well respond to the updated information to adjust

the scheduling plan.

We then extend the RHO process to cover the whole

scheduling horizon (24 hours). Figure 7 shows the com-

parison of the day-ahead load shedding bids and the actual

shed loads. It shows that there are some deviations between

the day-ahead bid volumes and actual shed load volumes.

These deviations are attributed to two main reasons. On

one hand, the bid volumes are determined on an hourly

basis, but the TCL control often needs higher control fre-

quency [12] (in our case, 5 minutes), and the TCL group

capacities are considered as discrete values. This leads to

unavoidable deviations. On the other hand, driven by the

real-time regulation price, the actual load shedding

amounts does not necessary to strictly follow the bids,

where the deviations can make the TCL aggregator save

imbalance costs or make profits from the regulation market.

Fig. 4 Clearance price profile and contracted shed load capacities

Fig. 5 TCL group clustering

Fig. 6 Total load shedding of aggregator at first 3 rounds of RHO

Fig. 7 Comparison of actual and contracted shed load and market

regulation price profiles
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It shows that in the optimal solution, the TCLs are ‘pre-

cooled’ before the peak upward regulation price time by

shed ding less load than the contract, and then during the

peak upward regulation price period, more TCLs are

switched off to mitigate the upward regulation risks. The

numerical work has been performed on a DELL worksta-

tion with 128-Gegabyte memory and 2 Intel Xeon pro-

cessor. The average simulation time for one RHO round

has been approximately 242.7 seconds. With a control

interval equal to 5 minutes, the computational requirements

indicate that the proposed model can be used for practical

applications.

As a demonstration, Fig. 8 shows the applied ON/OFF

control actions and the corresponding mean indoor tem-

perature trajectory and mean PPD profile of the represen-

tative TCL equivalent group model in details. From the

optimization results, it can be seen that for most of the

times, the averaged PPD values of the TCL group are

controlled within an acceptable range (below 20%), while

occasionally the PPD values produce slightly higher val-

ues. The variation scale of the PPD profile depends on the

incentive rate a. The smaller value of aindicates the more

flexibility for the aggregator to dispatch the TCLs, but also

implies larger disturbances for the customers. In real

applications, the choice of incentive rate can be determined

by the negotiation between the customer and utility. Also

from Fig. 8, it can be seen that during the high outdoor

temperature period (say, 12:00am * 13:00 pm), the TCL

group is more frequently switched between ON and OFF

status, so as to maintain the indoor comfort

environment.

We next illustrate the efficiency of our TCL grouping

strategy. A comparison case is designed where the TCL

groups are formed randomly from the whole sample set.

The comparison equivalent TCL group model is then

generated by averaging the parameters of the samples.

Figure 9 shows the indoor temperature and PPD trajecto-

ries of a representative TCL group under both cases. In

Fig. 9, the red line represents the PPD trajectory of the

equivalent TCL model and the gray dotted lines represent

the PPD trajectory of each TCL in the group. To further

illustrate the comparison, the small plots reported with in

each of the two graphs in Fig. 9 illustrate the scatters of

PPD values of each TCL in the group at a randomly

selected time interval under both cases. It shows that with

our cluster strategy, the deviations between the individual

TCLs and equivalent TCL group model are much less than

those of the comparison case, indicating our method can

significantly reduce the impacts of TCL heterogeneity.

We compare our RHO approach with the case without

RHO. In this comparison case, we do the 24-hour opti-

mization subjected to the same objective, based on all the

forecasted data. The profits & costs of the TCL aggregator

are then settled by the real data. The overall revenue &

costs under the proposed model and the comparison model

are shown in Table 1. Clearly, without using the RHO

strategy, there are more customer reward costs and less

market profits for the TCL aggregator, which are incurred

by the forecast error of the weather conditions and regu-

lation prices.

Lastly, we validate the performance of NAA on the

proposed model by comparing it with four widely used

heuristic algorithms: genetic algorithm (GA) [33], PSO

[34], differential evolution (DE) [35], and artificial bee

colony (ABC) algorithm [36]. The codes of GA are

Fig. 8 Dispatch results of representative TCL group Fig. 9 Comparison results of representative TCL group
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provided by Matlab; the codes of DE and PSO are imple-

mented in Matlab scripts; and the codes of ABC are

obtained from [37]. The same population size and maxi-

mum generation time are applied for all five algorithms.

For a fair comparison, five trials are performed for each

algorithm and the averaged result is c–alculated. For con-

venience purpose, we multiply the objective function (8) by

- 1 to transform the maximization problem (8) to be a

minimization problem. The convergence comparison

results are shown in Fig. 10. The convergence curves

indicate that on the proposed model, NAA performs

slightly better than DE, but significantly better than GA,

ABC, and PSO. This trend is generally consistent with the

experiments of NAA on standard benchmark functions

[28].

7 Conclusion and future works

In this paper, we study the real-time scheduling

scheme of the TCL aggregator in the power market using

the Nordic market structure as a case study. The thermal

comfort control of the residents is considered by means

of an ISO standard thermal comfort model, and a RHO

based real-time TCL scheduling model is proposed to

maximize the profit of the aggregator in the regulation

market. A metaheuristic based algorithm is applied to

solve the model and experiments are established to val-

idate the efficiency of the proposed method. The

simulation results show that the aggregated TCLs have

the flexibility to help the TCL aggregator mitigate the

imbalance cost risk in the real-time regulation market,

and also validate the proposed TCL clustering strategy

and thermal comfort model can well control the users’

thermal comfort.

The work of this paper is based on the assumption that

the load shedding bids of the TCL aggregator have already

determined ahead of the real-time scheduling. The authors

are planning to extend the current work for identifying

optimal bidding strategies of the TCL aggregator partici-

pating in the market.
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