
Unified probabilistic gas and power flow

Yuan HU1, Haoran LIAN1, Zhaohong BIE1 , Baorong ZHOU2

Abstract The natural gas system and electricity system are

coupled tightly by gas turbines in an integrated energy

system. The uncertainties of one system will not only

threaten its own safe operation but also be likely to have a

significant impact on the other. Therefore, it is necessary to

study the variation of state variables when random fluctu-

ations emerge in the coupled system. In this paper, a multi-

slack-bus model is proposed to calculate the power and gas

flow in the coupled system. A unified probabilistic power

and gas flow calculation, in which the cumulant method

and Gram–Charlier expansion are applied, is first presented

to obtain the distribution of state variables after considering

the effects of uncertain factors. When the variation range of

random factors is too large, a new method of piecewise

linearization is put forward to achieve a better fitting pre-

cision of probability distribution. Compared to the Monte

Carlo method, the proposed method can reduce computa-

tion time greatly while reaching a satisfactory accuracy.

The validity of the proposed methods is verified in a cou-

pled system that consists of a 15-node natural gas system

and the IEEE case24 power system.

Keywords Natural gas and electricity coupled system,

Uncertainties, Multi-slack-bus model, Cumulant method,

Probabilistic power and gas flow, Piecewise linearization

1 Introduction

Compared with traditional coal-fired power generation,

gas-fired power generation has many advantages, such as

high efficiency, lower environmental impact, and flexible

startup and shutdown. With the growth of proven natural

gas reserves, the development of gas turbine technology

and increased environmental pressures, the proportion of

gas turbines in power generation has significantly increased

in recent years. In the foreseeable future, it is reasonable to

predict that natural gas will have good prospects for

application in the power system. At the same time, the

development of the Energy Internet in the future will also

prompt the tight coupling of the power system and the

natural gas system.

There are many random factors in the natural gas and

electricity coupled system, such as the uncertainty of

renewable energy output, the random outage of generator

units, and the random fluctuation of the power load and gas

load. The existence of these random factors makes the state

variables, e.g. gas flow in the gas pipeline, or the bus voltage

and branch power, no longer constants and present certain

probability distribution characteristics. In the traditional

power system, the power flow is deterministic, which means

that the bus voltage and branch power are constants. If

deterministic gas and power flow methods are used to
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analyze the natural gas and electricity coupled system, not

only is there a large amount of calculation, but also it is

difficult to obtain a detailed description of the overall situ-

ation of the system. However, given the statistical charac-

teristics of the injection variables in the coupled system as

input data, if the probabilistic flow algorithm is used, prob-

ability distribution information of state variables can be

obtained after a single calculation. Then, the operational

situation of the combined system including uncertain factors

can be fully reflected, which is helpful to discover potential

threats to the safe operation of the coupled system.

At present, the widely used probabilistic power flow

methods include the Monte Carlo method, cumulant

method and point estimate method. In the Monte Carlo

simulation method, [1] adopts the K-means clustering load

model and considers the component outage probability.

The proposed method promotes the practical application of

probabilistic power flow methods based on Monte Carlo. In

contrast to [1], [2] uses Latin hypercube sampling and the

Gram-Schmidt sequence orthogonal method to improve

sampling efficiency, and reduces computation time of the

Monte Carlo simulation. In [3], probabilistic energy flow is

analyzed in an integrated energy system by adopting the

Monte Carlo simulation, which is innovative but time

consuming. In terms of the probabilistic power flow

method based on the cumulant, a probability distribution is

obtained by the combination of the cumulant method and

the Gram–Charlier expansion given in [4]. Besides, [5]

combines the Von-Mises expansion and the cumulant

method, putting forward a probabilistic power flow method

considering branch outages and random node injection. As

for research on probabilistic power flow based on point

estimates, [6] presents a new method and compares the

results with the Monte Carlo simulation, which proves the

feasibility of the algorithm. For calculating the point esti-

mate method [7], it is pointed out in [8] that, in the case of

n input random variables, the point estimate method can

obtain the probability distribution information of state

variables only by 2n power flow calculations.

It is generally believed that, although the Monte Carlo

simulation can get accurate results, it usually takes a large

number of simulations and is time-consuming, which makes

this method not suitable for practical systems [9]. Therefore,

the result of Monte Carlo simulation is often used as the ref-

erence for other algorithms. However, the cumulant method

has the advantages of less computational burden and higher

speed, so it has beenwidely used tomodelpractical systems.

In this paper, after developing a steady state power and

gas flow model, a unified probabilistic power and gas flow

method, that adopts cumulant method and Gram-Charlier

expansion, is applied to the natural gas and electricity

coupled system. The contributions of this paper mainly

include:

1) The multi-slack-bus model applied in both the natural

gas and the electricity system is proposed to calculate

the steady-state power and gas flow, which is more

accurate compared to the traditional single-slack-bus

model.

2) For the first time, a unified probabilistic power and gas

flow calculation based on the cumulant method is

proposed to analyze the effect of uncertain factors on

the natural gas and electricity coupled system. This

method is much faster than other existing methods of

unified probabilistic power and gas flow, such as the

Monte Carlo simulation used in [3].

3) A new method of piecewise linearization is put

forward to achieve a more precise fit to the probability

distribution when random factors with large variation

range appear in the coupled system.

This paper is organized as follows. Section 2 presents a

model of the natural gas system and introduces its com-

ponents. A steady-state power and gas flow model with

multiple slack buses is proposed in Sect. 3. Unified prob-

abilistic power flow based on the cumulant method and

Gram–Charlier expansion is introduced in Sect. 4. In Sect.

5, the proposed approach is applied to a test system to

verify its effectiveness. Finally, conclusions are presented

in Sect. 6.

2 Model of natural gas system

In the past, models of the power system have been thor-

oughly investigated, and theAC power flowmodel is adopted

in this paper. In this section, amodel of the natural gas system,

to be used in the coupled system model, is introduced.

The natural gas network is shown in Fig. 1. It mainly

consists of five parts: the natural gas source, natural gas

pipeline, compressor, storage tank and natural gas load.

The storage tank is treated as a gas source in this paper.

The models of key natural gas components are described

as follows.

2.1 Gas flow model of natural gas pipeline

In this paper, the Weymouth steady-state power flow

model is used to describe the relationship between gas flow

in the pipeline and pressure at both ends of the pipeline

[10]:

Pipeline

Tie node Storage tank

Compressor Gas load

WS

Gas source

Fig. 1 Simplified schematic diagram of natural gas system
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sgnpðpi; pjÞ � fp2p ¼ /pðp2i � p2j Þ ð1Þ

�Fmax
p � fpp �Fmax

p 8p 2 SP ð2Þ

sgnpðpi; pjÞ ¼
þ1 pi [ pj
�1 pi\pj

�
ð3Þ

where fpp, pi and pj stand for the gas flow in the pipeline

and the pressure at both ends of the pipeline; /p and sgnp

stand for the gas flow transmission parameter and direction

of flow in pipeline p; Fmax
p is the transmission capacity limit

of pipeline p; SP is the set of pipelines.

2.2 Compressor model

The model of the compressor is a nonconvex and non-

linear equation that describes the relationship between the

compression ratio and the energy consumption [11]:

Ho ¼ Bo � fco
pj
pi

� �Zoi
a�1
að Þ

�1

" #
8o 2 SC ð4Þ

where Ho is the energy consumption of compressor o; fco is

the natural gas flow in the compressor; pi and pj stand for

the gas pressure at the inlet and outlet of the compressor,

respectively; Zoi andastand for the compression parameter

and heat ratio of compressor o at its inlet; Bo is a parameter

related to operating temperature, heat ratio and working

efficiency; SC is the set of compressors.

The energy consumed by the compressor can be sup-

plied by electricity or natural gas. Here, only the natural

gas is taken into consideration. The relationship between

the energy consumption and gas consumption is shown in

(5):

so ¼ n00oH
2
o þ n0oHo þ no 8o 2 SC ð5Þ

where n00o , n
0
o and no are the coefficients of quadratic term,

linear term and constant term of compressor o’s energy

consumption curve, respectively.

When the compressor operating mode is given, the gas

pressure relationship between the inlet and outlet of the

compressor can be described by (6), where � o is the

compression ratio of compressor o:

pj ¼ � opi 8o 2 SC ð6Þ

2.3 Node flow balance equationX
p2SP

Ajp � fpp þ
X
o2SC

Ujo � fco þ
X
h2SWS

Cjh �WSh ¼
X
o2SC

Tjoso

þ
X

r2SWL0
D0

jr �WL0r þ
X

g2SWL00
D00

jg � wlg 8j 2 SGB

ð7Þ

where A, U, C, D0, D00 and T stand for different incidence

matrixes;WSh andWL0r represent the gas output of source h

and the gas load of node r in a given operational situation

(no gas turbine included); wlg is the gas consumption of gas

turbine g; SWS is the set of gas source nodes; SWL0 and
SWL00 stand for the sets of conventional natural gas load

nodes and gas turbine nodes, respectively; SGB is the set of

natural gas network nodes.

2.4 Coupling equation between power system

and natural gas system

The natural gas network and power network are coupled

by gas turbines, creating the relationship shown in (8):

wlk ¼
l1 � Pg2i þ l2 � Pgi þ l3

GHV
8k 2 X1; 8i 2 X2 ð8Þ

where X1 and X2 are the sets of coupled nodes in the gas

network and power network, respectively; l1, l2 and l3
are the coefficients of quadratic term, linear term and

constant term of the turbine’s energy consumption curve,

respectively; GHV is the coefficient of energy conver-

sion; Pgi is the real active power output of

generator i.

3 Steady-state power and gas flow of coupled
system with multiple slack buses

Referring to the dynamic power flow model presented in

[12], a steady state power and gas flow model with multiple

slack buses is proposed. The steady state flow equations of

the coupled system are divided into two parts: the power

flow equations for the power system and the gas flow

equations for the natural gas system.

3.1 Power flow equation for power system

When the traditional power flow equations are used, it

is necessary to appoint a slack bus in the system, and

assume all the unbalanced power in the system is cor-

rected by this node. However, in case of a branch and a

generator outage, a large amount of unbalanced power

appears, and it is unreasonable to maintain balance of the

total power system by relying only on the one slack bus.

In practical operation of the power system, a small part

of unbalanced power in the system is regulated by the

frequency characteristics of the load, and the vast

402 Yuan HU et al.
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majority is shared by multiple generators. Therefore,

power flow equations with a multi-slack-bus model,

which are more in line with practical operation, are

adopted to calculate the power flow in the power system.

In such a calculation, it is required to select multiple

generators to participate in the regulation of unbalanced

power in advance and appoint the participation factor for

each generator. In addition, it is also required to select a

bus voltage angle as a reference.

Given the network parameters and operating conditions

of the power system, the multi-slack-bus power flow

equations are shown in (9):

DPi ¼
P
l2i

Pgl �
P
k2i

Pd0k �
P
j2i

Pij ¼ 0

DQi ¼
P
l2i

Qg0l �
P
k2i

Qd0k �
P
j2i

Qij ¼ 0
8i 2 SNB

8><
>:

ð9Þ

where

Pgl ¼ Pg0l þ flDPR 8l 2 SG ð10ÞX
l2SG

fl ¼ 1 0� fl � 1 ð11Þ

Pgl is the real active power output of generator l; Pd0k and

Qd0k are the active and reactive power demand of load k; Pij

and Qij are the active and reactive power flow in the line

from node i to node j; Pg0l and Qg
0
l are the initial active and

reactive power output of generator l; DPR is the total

amount of unbalanced power of system, and fl is the par-

ticipation factor of generator l; SG is the set of generators

in the power system; SNB stands for the network nodes in

the power system.

Assuming the number of nodes is NE, and that the

number of PV nodes is r, there are active power balance

equations for all nodes, and NE - r reactive power balance

equations for non-PV nodes. The unknown variables to be

solved in power system are of three kinds: the voltage

magnitude vector Vof NE - r dimensions; the voltage

angle vector h of NE - 1 dimensions; and the total

unbalanced power of system DPR. In multi-slack-bus

power flow, the number of variables is 2NE - r and the

number of equations is 2NE - r; these numbers are equal,

so there is a unique solution if the equations are well

conditioned.

3.2 Gas flow equation in natural gas system

Using the models of various components introduced in

Sect. 2, it is not difficult to obtain the gas flow equations in

the natural gas system:

DWj ¼
X
p2SP

Ajp � fpp þ
X
o2SC

Ujo � fco þ
X
h2SWS

Cjh �WSh

�
X
o2SC

Tjoso �
X

r2SWL0
D0

jr �WL0r

�
X

g2SWL00
D00

jg � wlg ¼ 0 8j 2 SGB

Dfpp ¼ fp2p � sgnpðpi; pjÞ/p p2i � p2j

� �
¼ 0 8p 2 SP

DHo ¼ hto � Bo � fco
pj
pi

� �Zoi
a�1
að Þ

�1

" #
¼ 0 8o 2 SC

DCo ¼ so � ðno þ n0o � hto þ n00o � ht2oÞ ¼ 0 8o 2 SC

DPo ¼ pj � � op ¼ 0i 8o 2 SC

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

Similar to power loss in the power system, the natural

gas consumption of compressor is unknown before gas

flow calculation. The slack nodes should be set to balance

the gas flow in the natural gas system. The dynamic gas

flow model, similar to the dynamic power flow model, is

applied to calculate the gas flow; that is to say, the amount

of unbalanced gas gets balanced from multiple gas wells.

The gas output in (12) can be expressed as follows:

WSh ¼ WS0h þ 1hDWR 8h 2 SWS ð13ÞX
h2SWS

1h ¼ 1; 0� 1h � 1 8h 2 SWS ð14Þ

where WS0h stands for the given gas output of gas well h; 1h
is the participation factor of gas well h; DWR is the total

amount of unbalanced gas of the gas system.

It is assumed that there areNGB nodes,NPL pipelines,NC

compressors andNGG gas turbines in the natural gas system.

The number of variables remaining to be solved in the gas

flow equations is NGB ? NPL ? 3NC ? NGG, consisting

of seven kinds: the gas pressure vector p of NGB - 1

dimensions; the pipeline gas flow vector fp of NPL dimen-

sions; the compressor gas flow vector fc of NC dimensions;

the compressor energy consumption vector ht of NC dimen-

sions; the compressor gas consumption vector s of NC

dimensions; the unbalanced gas DWR in the natural gas sys-

tem; and the gas turbine gas consumption wl of NGG

dimensions. However, the number of equations in the gas

flowcalculation isNGB ? NPL ? 3NC. Thus, the number of

equations is NGG less than the number of variables. It is

required to supplement the relationship, which containsNGG

equations (equal to the number of gas turbines), between the

power system and natural gas system, shown in (15):

DWLk ¼ wlk �
l1 � Pg2i þ l2 � Pgi þ l3

GHV
¼ 0

8k 2 X1; 8i 2 X2

ð15Þ
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3.3 Unified flow equation in coupled system

Combining the equations in (9), (12) and (15) together,

the unified power and gas flow equations for the coupled

system are obtained, where the number of equations is

equal to the number of variables (both

2NE - r ? NGB ? NPL ? 3NC ? NGG):

DPi ¼
P
j2i

Pgj �
P
k2i

Pd0k �
P
j2i

Pij ¼ 0 8i 2 SNB

DQi ¼
P
j2i

Qg0j �
P
k2i

Qd0k �
P
j2i

Qij ¼ 0 8i 2 SPQ

DWj ¼
P
p2SP

Ajp � fpp þ
P
o2SC

Ujo � fco þ
P

h2SWS

Cjh �WSh

�
P
o2SC

Tjoso �
P

r2SWL0
D0

jr �WL0r

�
P

g2SWL00
D00

jg � wlg ¼ 0 8j 2 SGB

Dfpp ¼ fp2p � sgnpðpi; pjÞ/p p2i � p2j

� �
¼ 0 8p 2 SP

DHo ¼ hto � Bo � fco
pj
pi

� �Zoi
a�1
að Þ

�1

" #
¼ 0 8o 2 SC

DCo ¼ so � ðno þ n0o � hto þ n00o � ht2oÞ ¼ 0 8o 2 SC

DPo ¼ pj � � opi ¼ 0 8o 2 SC

DWLk ¼ wlk �
l1 � Pg2i þ l2 � Pgi þ l3

GHV
¼ 0

8k 2 X1; 8i 2 X2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

Note that several intermediate variables, such as the

pipeline gas vector and the compressor gas consumption

vector, are introduced into the equations of the coupled

system [13–15]. This increase in the number of variables

greatly improves the convenience of the generation of the

Jacobi matrix in the subsequent model.

By removing the node injection vector to the left of the

coupled system flow equation in (16), using W as a short

form, and introducing the function f(X) to stand for the

expression on the right, the original flow equations can be

simplified as:

W ¼ f (X) ð17Þ

The equation shown in (17) can be expressed as a

Taylor series expansion at the steady-state working point

to obtain the linear form, ignoring the quadratic and

higher-order terms. Then, the correction equations shown

in (18) are obtained, with which the variables to be

solved in the coupled system can be obtained by

Newton–Raphson method.

For the convenience of expression, the equations in (18)

are transformed into the equation in (19), where Jac is the

Jacobi matrix of the correction equations.

DP
DQ
DW
Dfp
DH
DC
DP
DWL

2
66666666664

3
77777777775
¼

oDP
oDV

oDP
oDh

oDP
oDP R

0 0 0 0 0 0 0

oDQ
oDV

oDQ
oDh

0 0 0 0 0 0 0 0

0 0 0
oDW
oDp

oDW
oDfp

oDW
oDfc

oDW
oDs

oDW
oDwl

0
oDW
oDWR

0 0 0
oDfp
oDp

oDfp
oDfp

0 0 0 0 0

0 0 0
oDH
oDp

0
oDH
oDfc

0 0
oDH
oDht

0

0 0 0 0 0 0
oDC
oDs

0
oDC
oDht

0

0 0 0
oDP
oDp

0 0 0 0 0 0

0 0
oDWL

oDP R
0 0 0 0

oDWL

oDwl
0 0

2
66666666666666666666666664

3
77777777777777777777777775

DV
Dh
DPR

Dp
Dfp
Dfc
Ds
Dwl
Dht
DWR

2
666666666666664

3
777777777777775

ð18Þ
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DW ¼ JacDX ð19Þ

The detailed procedure of steady state power and gas

flow calculation in the coupled system is as follows.

1) Set the iteration number iter = 1. The convergence

precision e and the operational mode of the coupled

system should be given, including the output of

generators, the output of gas wells and the compres-

sion ratio of compressors.

2) Give initial values Xini to the unknown variables

X(iter) in the coupled system. A flat startup is used in

the power system, assigning voltage magnitude to 1

and angle to 0. The initial value for the natural gas

system can be set by solving a linearized optimal gas

flow problem according to [10].

3) Substitute the values of unknown variables X(iter) into

the correction equation (18), so the constant term

DW(iter) and coefficient matrix Jac(iter) can be

obtained.

4) Calculate the correction quantities DX(iter) by the

correction equations and correct the unknown vari-

ables by X(iter ? 1) = X(iter) ? DX(iter). Update the
iteration number iter = iter ? 1.

5) Apply the updated value of unknown variables

X(iter) to calculate the constant term DW(iter) in

the correction equations. Judge whether DWj j is less

than e. If it is, stop the iteration and output the final

result. Otherwise, go back to step 3 and continue

calculating.

4 Calculation of probabilistic flow in coupled
system

Based on the steady-state power and gas flow model

with multiple slack buses presented in the Sect. 3, this part

focuses on calculation of unified probabilistic power and

gas flow in the coupled system.

4.1 Model of random factors in coupled system

The uncertainties considered in the system consist of the

uncertainty of power load, gas load and the output of wind

power. To model the uncertain factors, a normal distribu-

tion [16] is applied to describe the active and reactive load

in the power system and the gas load in the natural gas

system.

f Plð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2prpl

p exp �
Pl � lpl
� 	2

2r2pl

 !

f Qlð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2prql

p exp �
Ql � lql
� 	2

2r2ql

 !

f Glð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2prgl

p exp �
Gl � lgl
� 	2

2r2gl

 !

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

where lpl, lql and lgl are expected values of the active

load, reactive load and gas load, respectively; rpl, rql and
rgl are the corresponding standard deviations of the active

load, reactive load and gas load, respectively.

The probabilistic model of wind power depends on the

probabilistic model of wind speed and the relationship

between the output power and the wind speed. The Weibull

distribution is applied to model the wind speed [17]:

f ðvÞ ¼ b

a

v

a

� �b�1

exp � v

a

� �b� �
ð21Þ

The relationship between the wind power output and

wind speed can be described by (22):

P ¼
0 v� vin; v� vout

PN

v� vin

vrated � vin
vin\v\vrated

PN vrated � v\vout

8><
>: ð22Þ

where v is the wind speed; a, b are the scale and shape

parameters of Weibull distribution, respectively; vin, vout
and vrated are the cut-in, cut-out and rated wind speed,

respectively, of the wind turbines modelled; PN is the rated

wind power output.

4.2 Cumulant method

Based on the models in (20), (21) and (22), the central

moments of load and wind power can be obtained by the

method presented in [4] and [18]. The relationship between

central moments and cumulants is presented in (23), by

which the cumulants can be deduced from the central

moments:

c1 ¼ m

c2 ¼ b2 ¼ r2

c3 ¼ b3
c4 ¼ b4 � 3b22
c5 ¼ b5 � 10b2b3
c6 ¼ b6 � 15b2b4 � 10b23 þ 30b32
c7 ¼ b7 � 21b2b5 � 35b3b4 þ 210b3b

2
2

..

.

8>>>>>>>>>>><
>>>>>>>>>>>:

ð23Þ

where m is the mean value; r is the standard deviation; ci is
the i-order cumulant; bi is the i-order central moment.
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In (17), if the uncertainties of the power load, gas load

and renewable energy are considered, W will be a random

variable vector. Assuming there emerges a small fluctua-

tion DW of the node injection vector, the state variable

vector will change by DX, correspondingly. About the

steady-state working point, W0 ¼ f X0ð Þ, the fluctuations

can be calculated by:

W0 þ DW ¼ f X0 þ DXð Þ � f X0ð Þ þ J0DX ð24Þ

DX ¼ J�1
0 DW ¼ S0DW

J0 ¼
of Xð Þ
oX






X¼X0

8<
: ð25Þ

J0 is the Jacobi matrix of the previous iteration. The

random fluctuation DW of node injection can be obtained

by the convolution of wind output fluctuation DWW , power

load fluctuation DWEL and gas load fluctuation DWGL:

DW ¼ DWW � DWEL � DWGL ð26Þ

where * is the symbol of convolution.

Assuming that the random variables of node injection in

coupled system are independent of each other, the cumu-

lant computation can be used to replace the convolution

operation:

ck ¼ ckW þ ckEL þ ckGL ð27Þ

where ck, ckW , c
k
EL and ckGL are the k-order cumulants of the

node injection variable, wind power output, and power load

and gas load, respectively.

4.3 Gram–Charlier expansion

After getting the cumulants of the node injection vari-

able, the cumulant of the state variable can be obtained

according to the relationship in (25) and the homogeneity

and additivity of cumulants [4]. Then, the Gram–Charlier

expansion, the Edge-Worth expansion or the Cornish-

Fisher expansion can be applied to obtain the probability

distribution of the state variables [19].

In this paper, the widely-used Gram–Charlier expansion

is applied. Its main idea is to express the probability dis-

tribution characteristics by the expansion series made up of

all-order derivatives of the standard normal distribution.

The coefficients of the expansion are composed of nor-

malized cumulants. By substituting normalized cumulants

of state variables into (28), the corresponding probability

distribution of the normalized state variables can be

obtained:

f tð Þ ¼ N tð Þ 1þ g3

3!
H3 tð Þ þ g4

4!
H4 tð Þ þ g5

5!
H5 tð Þ

�

þ g6 þ 10g23
6!

H3 tð Þ þ g7 þ 35g3g4

7!
H7 tð Þ þ � � �

�

ð28Þ

where

t ¼ X � EðXÞ
dX

ð29Þ

gi ¼
ci

diX
ð30Þ

N tð Þ is the probability density function of the normal

distribution; t is the normalized random variable; gi is the

normalized i-order cumulant; Hi tð Þ is i-order Hermite

polynomial; E(X) and dX are the expected value and

standard deviation of standard variable X.

Based on the combined cumulant and Gram–Charlier

expansion method, Fig. 2 shows the solution process of the

proposed probabilistic flow method for the coupled system.

Note that the cumulant and state variables should be nor-

malized. All state variables except the power flow in the

power system can be obtained by the method shown in

Fig. 2. As for power flow in power system, it can be

obtained by the method in [20, 21].

4.4 A new method of piecewise linearization

When the random factors in the coupled system fluctuate

over a large range, the fitting precision of the proposed

method may become worse. To tackle this problem, a new

method of piecewise linearization is proposed. Its main

idea is based on the multi-point Taylor series expansion

[22]. The detailed calculation process is as follows:

Input the original data and the probabilistic characteristics
of injection variable

Run deterministic power and gas flow at the
stable state work point and gain X0, S0

Calculate the cumulant of injection variable based on 
its probabilistic characteristics 

Calculate the cumulant of state variable based on the equation 
shown in (25)

Calculate probability distribution function of normalized state 
variable by Gram- Charlier expansion

Obtain the probability distribution function of state
variable by translation t=[X E(X)]/δX

Start

End

Fig. 2 Flow chart of proposed probabilistic flow method

406 Yuan HU et al.

123



1) Divide the random factors with a large variation range

into several intervals, to obtain a number of operation

scenarios.

2) The probability of each scenario can be calculated

according to the distribution of random factors.

3) Apply the proposed method to obtain the cumulative

distribution function f(x) of state variable x in each

scenario, which can be represented as (31):

f xð Þ ¼

f1 xð Þ p ¼ p1
f2 xð Þ p ¼ p2

..

.

fN xð Þ p ¼ pN

8>>><
>>>:

ð31Þ

where fi xð Þ is the cumulative distribution function of

variable x in scenario i; pi is the probability of scenario i;

PN
i¼1

pi ¼ 1; N is the number of scenarios.

4) Finally, the cumulative distribution function f(x) of

state variable x can be obtained by (32):

f xð Þ ¼
XN
i¼1

pifi xð Þ ð32Þ

By applying the method illustrated above, the fitting

precision of the proposed method can be well improved.

5 Case study

There are 38 lines and 33 generators in the IEEE case24

power system [23]. In the 15-node natural gas system [11],

there are 12 pipelines, 4 compressors and 5 gas loads (gas

turbines not included). The total installed capacity of the

Bus 21Bus 18

Bus 16

Bus 15

Bus 24

Bus 3

Bus 1
Bus 7

Bus 8

Bus 10

Bus 12

Bus 23

Bus 20

Bus 19

Bus 14

Bus 11

Bus 9

Bus 4

Bus 5

Bus 2

Bus 22

Bus 17

Bus 6

Bus 13

Wind farm
 Electricity line

Coal-fired plant
Gas-fired plant

NG-14

NG-12NG-10

NG-9 NG-11

NG-8NG-6

7-GN5-GN

NG-4NG-3

2-GN1-GN

NG-15

NG-13

W1=WS1 W2=WS2

E-1

 Gas-electricity coupled bus

Pipeline

E-2

 Compressor

4LW=41W3LW=31W

W3=WL1 W4=WL2

W15=WL5

E-7 E-13

Fig. 3 Natural gas and electricity coupled system
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power system is 2999 MW and the total load is 2850 MW.

The power system and natural gas system are coupled by 4

gas turbines, with coupling nodes noted yellow in Fig. 3.

The buses with gas turbines and gas wells are slack buses,

i.e., buses 1, 2, 7 and 13 are slack buses in the electricity

system, and nodes 1 and 2 are slack buses in the natural gas

system.

5.1 Probabilistic gas and power flow analysis

The gas load and power load are assumed to obey the

normal distribution, and two cases are designed to analyze

the effect of random factors on the coupled system: case 1,

where the standard deviation coefficient of the normal

distribution is 0.02, and case 2, where the standard devia-

tion coefficient of the normal distribution is 0.05. There are

3 wind turbines in the system, with their data shown in

Table 1.

In case 1, the node pressure in the natural gas system

and the bus voltage in the power system are both studied by

probabilistic power and gas flow to illustrate the effect of

random factors on the state variables.

Figure 4 shows the node pressure in the natural gas

system when random factors are introduced. It is clear that

the node pressure is no longer a constant when there

appears a fluctuation of node injection. Compared with the

Monte Carlo (MC) method, the proposed method has a

good fitting precision. Comparing the curve fitting at node

5 with node 11 in Fig. 4, it can be concluded that the curve

fitting is better when the state variable is further away from

random factors, intuitively.

In Fig. 5, it can be seen that, similarly to the node

pressure in the natural gas system, the bus voltages in the

power system also exhibit variation when random factors

are introduced [24]. However, the variation range of bus

voltage is much smaller than that of node pressure. This

means that the bus voltage is more robust than the node

pressure under the influence of random factors.

As for other state variables in the coupled system, the

gas flow in the pipeline, the active power flow and the

reactive power flow in the power system are also analyzed

and shown in Fig. 6. It can be seen that the proposed

method can also attain good curve fitting about other state

variables.

The random factors in case 2 have a wider range than

those in case 1, and the effect of larger random factors on

the coupled system is analyzed. The condition of state

Fig. 6 Probability distribution of other state variables

Fig. 5 Probability distribution of pressure at bus 3 and 24

Table 1 Data of wind turbines

Node Capacity

(MW)

Cut-in

wind

speed

(m/s)

Cut-out

wind

speed

(m/s)

Rated

wind

speed

(m/s)

Weibull-

k

Weibull-

c (m/s)

1 50 4 25 15 1.14 6.77

2 60 3 30 18 1.25 6.90

13 30 5 18 10 1.10 6.42

Fig. 4 Probability distribution of pressure at node 5 and 11
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variables in case 2 is compared with that in case 1, and the

results are shown in Fig. 7.

Figure 7a, b compare the cumulative distribution func-

tion of pressure at node 11 and Fig. 7c, d compare the

probability density function of the voltage at bus 12. In

Fig. 7a, the pressure at node 11 ranges from 665 to 825 Pa,

while in Fig. 7b, the pressure at node 11 ranges from 555 to

935 Pa. Meanwhile, the curve fitting in Fig. 7d is worse

than that in Fig. 7c. When random factors have a wider

range, the state variables in the coupled system also vary

over a wider range and the curve fitting of the proposed

method becomes worse.

5.2 Computation time comparison

The computation time of the proposed method and the

MC method is shown in Table 2.

It can be seen that, depending on the order of Gram–

Charlier expansion, the cumulant method is ten times faster

than the Monte Carlo method. According to Table 2, for

the Monte Carlo method, there is a linear relationship

between computation time and the number of iterations.

However, the computation time increases only slightly

when the order of Gram–Charlier expansion rises.

5.3 ARMS error analysis

In order to demonstrate the proposed method has a good

fitting precision, the average root mean square (ARMS)

error is calculated using the Monte Carlo results as refer-

ence [4]. ARMS is defined as:

ARMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

MCi � CGið Þ2
s

N
ð33Þ

where MCi is the value of ith point on the cumulative

distribution function calculated by the Monte Carlo

method; CGi is the value of ith point on the cumulative

distribution function calculated by the cumulant method; N

stands for the number of points, with N assigned as 100 for

this analysis.

The definition of case 1 and 2 has been given in Sect.

5.1. The relevant ARMS errors of state variables under two

cases are calculated to quantitatively analyze the precision

of curve fitting when the random factors have a wider

range. The results are shown in Table 3.

The results in Table 3 quantitatively illustrate that the

proposed method has a good fitting precision. Taking the

pressure at node 5 as an example, the value of ARMS

reaches 0.062%, which indicates the fitting precision is

very high. Comparing the results of case 1 and case 2, it

can also be concluded that as the random factors have a

wider range, the fitting precision will degenerate as

reflected by the values of ARMS.

Table 2 Computation time comparison

Method Computation time (s)

Monte Carlo (500 iterations) 6.951

Monte Carlo (3000 iterations) 36.070

Monte Carlo (5000 iterations) 59.468

Monte Carlo (10000 iterations) 132.293

Cumulant & Gram Charlier (3rd) 2.275

Cumulant & Gram Charlier (4th) 2.302

Cumulant & Gram Charlier (5th) 2.322

Cumulant & Gram Charlier (6th) 2.349

Cumulant & Gram Charlier (7th) 3.910

Table 3 ARMS results of state variables in coupled system

State variables ARMS (%)

Case 1 Case 2

Pressure at node 5 0.062 0.128

Pressure at node 11 0.098 0.120

Voltage at bus 3 0.150 0.227

Gas flow in line 1–3 0.075 0.131

Gas flow in line 6–9 0.088 0.112

Active power flow in line 17–18 0.052 0.075

Fig. 7 Probability characteristics of pressure and voltage
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5.4 Piecewise linearization

The effect of the proposed piecewise linearization

method is explored by increasing the capacity of the wind

turbine at node 1–150 MW, so that the wind output has a

very large range, while keeping all other parameters

unchanged. The standard deviation coefficient of the nor-

mal distribution is 0.02 as for case 1 above. The capacity is

divided into three pieces: 1–50, 50–100 and 100–150 MW,

and the expected value and probability of each piece are

shown in Table 4.

The cumulative distribution function of the studied

variables can be obtained by the method proposed in Sect.

4.4. The curve fitting results of direct linearization and

piecewise linearization are shown in Fig. 8 for contrast.

Using piecewise linearization, the precision of curve

fitting is intuitively expected to be much better than that of

direct linearization. In fact, the ARMS of direct lineariza-

tion is 0.650%, while the ARMS of piecewise linearization

is 0.220%. It should be pointed out that the reason why the

piecewise linearization can reduce error is that this method

is equivalent to reducing the fluctuation of random factors.

Another benefit is that, after applying piecewise lin-

earization, the occurrence of negative values of the prob-

ability density function can be avoided.

6 Conclusion

A unified probabilistic gas and power flow calculation

method is proposed to analyze the effect of random factors

on the natural gas and electricity coupled system. The case

study demonstrates that when random factors are intro-

duced into the coupled system, the fluctuation of random

factors usually has a more significant impact on the state

variables of the nearby buses. An increase in the fluctuation

range of the random factors will lead to larger fluctuation

of the state variables, which can result in worse curve fit-

ting of the proposed method.

When the proposed method is applied to calculate the

probabilistic flow in the coupled system, it has the desired

precision and is approximately ten times faster than the

Monte Carlo simulation method for the cases examined.

The new method of piecewise linearization introduced by

this paper can effectively deal with random factors with a

large range of variability, making the proposed method

broadly applicable. By accurately calculating expected

ranges of important state variables, the proposed method

can provide quantitative safety assessment to instruct the

planning and operation of the natural gas and electricity

coupled system.
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