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Abstract The increasing interdependency of electricity

and natural gas systems promotes coordination of the two

systems for ensuring operational security and economics.

This paper proposes a robust day-ahead scheduling model

for the optimal coordinated operation of integrated energy

systems while considering key uncertainties of the power

system and natural gas system operation cost. Energy hub,

with collocated gas-fired units, power-to-gas (PtG) facili-

ties, and natural gas storages, is considered to store or

convert one type of energy (i.e., electricity or natural gas)

into the other form, which could analogously function as

large-scale electrical energy storages. The column-and-

constraint generation (C&CG) is adopted to solve the

proposed integrated robust model, in which nonlinear

natural gas network constraints are reformulated via a set

of linear constraints. Numerical experiments signify the

effectiveness of the proposed model for handling volatile

electrical loads and renewable generations via the coordi-

nated scheduling of electricity and natural gas systems.

Keywords Robust day-ahead scheduling, Electricity and

natural gas coordination, Renewable energy, Power-to-gas,

Column-and-constraint generation

1 Introduction

The rapid growth of natural gas-fired units and the

promising development of power-to-gas (PtG) technologies

[1, 2] have intensified the interdependency of electricity

and natural gas systems. Specifically, for power systems

with a considerate amount of gas-fired units, electricity

generation scheduling can be directly and significantly

impacted by natural gas prices and/or gas production cost;

energy reliability and security issues could be more severe

when peak electrical loads occur coincidently with peak

natural gas loads; and gas supplier outages, gas pipeline

contingencies, and gas pressure losses could lead to the

forced outage of multiple gas-fired units. On the other

hand, natural gas system operators are facing with more

volatile gas loads induced by gas-fired units, whose dis-

patches are often adjusted frequently to offset variations of

electrical loads and renewable generations. As a result, it is

imperative to consider and model the electricity grid and

the natural gas network as an integrated energy system for

achieving the coordinated optimal operation under uncer-

tainties [3, 4].

The coordination of interdependent electricity and nat-

ural gas systems was studied in several literatures. Natural

gas network constraints are incorporated in security-con-

strained unit commitment (SCUC) model for assessing the
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impact of natural gas network on power system operations

[3, 5]. Reference [6] further considers transient character-

istics of the natural gas infrastructure in the coordinated

scheduling of electricity and natural gas systems. On the

other hand, demand response is studied in the stochastic

day-ahead scheduling of electricity and natural gas systems

in [7], while hydro system is considered in the mid-term

stochastic coordination to cover outages of gas units with

insufficient gas supplies [8, 9]. In addition, in [10, 11], the

natural gas production cost is added into the objective

function to seek for optimal solutions of both systems with

a novel mixed-integer linear programing (MILP)

formulation.

The impact of variable renewable generation on the

coordinated operation of interdependent electricity and

natural gas systems is discussed in [12–14]. The influence

of natural gas system on the short-term scheduling of

power system with high penetration renewable energy is

illustrated in [12]. Stochastic programming and robust

optimization approaches are carried out in [13] and [14]

respectively, to study coordinated scheduling of the two

systems in the presence of volatile wind energy.

In fact, a high penetration of large wind farms has posed

a number of challenges in power system operations.

Specifically, as the penetration level of wind generation

increases, wind spillage becomes more frequent with larger

magnitudes. Indeed, due to the fact that large wind farms

are exclusively located far away from load centers, sig-

nificant investments in electrical transmission system have

been required for effectively delivering wind power. On the

contrary, PtG as an alternative energy storage technology

has received increasing popularity for economically facil-

itating a high penetration of large wind farms [15, 16].

Unlike conventional electrical energy storage systems (e.g.,

pump-storage units and batteries) which consume and

generate electrical energy at different time periods, PtG

converts electricity into natural gas and uses natural gas

network as a media to effectively transport/store electricity.

The seasonal storage potential of PtGs is modeled in [17],

and its effectiveness on power system and natural gas

network operations is analyzed via the Great Britain gas

and electrical transmission networks. Reference [18]

investigates different PtG technologies and evaluates their

impacts through a novel integrated model of electricity grid

and gas transmission network. Reference [19] presents a

multi-linear probabilistic energy flow framework while

considering gas-fired generators, electric driven compres-

sors, and PtG facilities. In [20], a robust co-optimization

scheduling model considering the influence of PtG tech-

nology is proposed to coordinate the day-ahead operation

of electricity and natural gas systems with uncertainties.

From existing literature we notice that: � Robust opti-

mization has been successfully used in power system

operations for handling various uncertainties [21–24].

However, prior works on day-ahead robust coordinated

operation of interdependent electricity and natural gas

systems are rather limited; ` Most existing works do not

fully address operation cost of the integrated energy sys-

tem, such as operation cost of gas-fired units or production

cost of the natural gas system; and ´ Gas-fired units and

PtG facilities are treated as independent assets and opti-

mized separately, while the coordination between gas-fired

units, PtG facilities, and natural gas storages has not been

investigated.

In order to address the challenges, this paper proposes

an integrated robust optimization model to coordinate the

operation scheduling of electricity and natural gas systems

while considering electrical load and wind generation

uncertainties. Instead of treading gas-fired units and PtGs

as independent assets, the framework of energy hub is

proposed to facilitate the effective coordination of the two.

That is, the energy hub consists of gas-fired units to gen-

erate electricity when wind generation is low, PtG facilities

to absorb excessive wind generation, and natural gas stor-

ages to store gas produced by PtG facilities and supply gas

fuel to gas-fired units when needed.

The major contributions of this paper are twofold.

1) The proposed integrated robust model coordinates the

day-ahead scheduling of electricity and natural gas

systems while considering power system uncertainties

and natural gas system operation cost. Couplings

between electricity and natural gas systems are

rigorously formulated via the coordinated operation

of gas-fired units and PtG facilities.

2) Energy hubs with collocated gas-fired units, PtG

facilities, and natural gas storages are considered,

which could analogously function as large-scale

electrical energy storages. The role of energy hubs to

better accommodate electrical load and wind uncer-

tainties is further explored for enhancing the econom-

ical and secure operation of integrated energy

systems.

The rest of the paper is organized as follows. Section 2

presents the mathematical formulation of the proposed

robust coordination scheduling model. Section 3 describes

the solution methodology. Case studies on the 24-bus IEEE

RTS system with a 12-node natural gas system are illus-

trated in Sect. 4, and the conclusions are drawn in Sect. 5.

2 Formulation of robust coordination scheduling

This section first presents an overview of gas-fired units

and PtG facilities, which tightly tie the electricity grid and

the natural gas network. The framework of an energy hub is
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further discussed. The robust coordinated scheduling for-

mulation is presented according to similarities and differ-

ences of the two energy systems.

2.1 Overview

2.1.1 Gas-fired units

Gas-fired units consume natural gas to generate elec-

tricity, which leads to the growing reliance of the power

system on the natural gas system in recent years. Accord-

ingly, several concerns on the interdependency and relia-

bility of both energy systems need be considered. � Unlike

coal and fuel oil, natural gas is usually not stored on-site.

That is, gas-fired units rely on real-time delivery of natural

gas fuel through the natural gas network. ` Residential gas

loads have higher priorities than industrial gas-fired power

plants. Thus, peak demands of natural gas end-users would

significantly affect the delivery of interruptible gas trans-

portation service to gas-fired power plants. ´ As an

inspiring feature for offering flexible dispatch and fast

ramping capabilities, gas-fired units are expected to play an

important role in offsetting variability and uncertainty

associated with renewable resources. In turn, the natural

gas network needs to provide enhanced operational flexi-

bility for meeting volatile gas demands of gas-fired units.

2.1.2 PtG technology

PtG as a new promising technology further intensifies

the interdependency of electricity and natural gas systems,

which could effectively convert excessive renewable

energy into compatible natural gas. In addition, the existing

natural gas infrastructure could potentially be used to store,

transport, and reutilize this energy. In turn, the energy

waste in terms of renewable generation curtailment can be

prevented.

PtG consumes electricity to produce hydrogen or syn-

thetic natural gas. PtG contains two main processes as

shown in Fig. 1 [1]: � electrolysis where electrical power

is converted into hydrogen, and ` methanization where

hydrogen along with carbon dioxide is further converted

into methane. Typically, the efficiency of converting

electricity to hydrogen and methane is about 54%–77% and

49%–65%, respectively [25]. In addition, in practice, there

are technical and legislative restrictions on the quantity of

hydrogen that may be blended into the natural gas network,

whereas methane is compatible with natural gas. In this

paper, the PtG process refers to the conversion of elec-

tricity to methane.

2.1.3 Energy hub

An energy hub represents the conversion and storage

process of electricity and natural gas as shown in Fig. 2. In

the figure, a gas-fired power plant, a gas storage device, and

a PtG facility are located at the same geographic place.

Furthermore, the gas-fired power plant and the PtG facility

are connected at the same bus of the electricity grid, while

all three equipment are connected to the same node of the

natural gas network. From the perspective of power system

operators, this energy hub (collocated gas-fired power plant

and PtG facility) works analogous to a pump-storage asset

while using the natural gas infrastructure as a gas reservoir.

The energy hub enjoys the benefit that it could effectively

mitigate variability of renewable generations. That is, the

gas-fired unit can be scheduled to generate electricity when

renewable generation is low, and to operate the PtG facility

for converting excessive electricity into natural gas when

renewable generation is high. Furthermore, as the energy

hub can leverage the entire natural gas infrastructure as a

gas reservoir, the maximum energy storage capability in

the energy hub is not necessarily restricted by the collo-

cated natural gas storage device. From the viewpoint of

natural gas system operators, gas-fired units are considered

as natural gas loads while PtG facilities are natural gas

producers. Natural gas produced by PtG facilities could be

either stored in the on-site gas storage or transported by

natural gas network and consumed by other gas users. It is

expected that when the PtG technology becomes more

mature and economical, a deeper penetration of renewable

generation can be facilitated.

Electrolysis
Electricity

H2O O2

Methanization

CO2 H2O

CH4H2

Fig. 1 Principle of PtG technology

Natural gas 
network

Electricity
network

Renewable 
generation

Gas-fired
power plant

Gas storage

Power-to-
gas facility

Energy
hub

Fig. 2 Energy hub for electricity and natural gas systems
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2.2 Objective function

The robust day-ahead scheduling of integrated electric-

ity and natural gas systems is to minimize the total costs

associated with electric and natural gas energy supply and

gas storage device operations in the base case. The

objective function of the proposed integrated robust model

is as follows:

min
X

t

X

i 62GU
Cfuel
i Fc

i Pb
it

� �
þ SUb

it þ SDb
it

� �
"

þ
X

j

CG
j Gjt þ

X

s

CG
s Q

out
st

# ð1Þ

where GU is set of gas-fired units; Pb
it is the base-case

dispatch of unit i at time t; Fc
i and Cfuel

i are the heat rate

curve and fuel price of unit i; SUb
it and SDb

it are startup and

shutdown costs of unit i at time t; Gjt is the gas production

of natural gas supplier j at time t; Qout
st is the natural gas

outflow of storage facility s; CG
j and CG

s are the production

and storage costs of natural gas supplier j and gas storage

facility s, respectively.

2.3 Operation constraints

1) Energy production: In power systems, power outputs

of individual units and power consumptions of individual

PtG facilities are limited their by minimum and maximum

capacities (2)–(3). Equation (4) indicates that generating

units and PtG facilities connected at the same bus do not

operate simultaneously. Generating units also need to sat-

isfy minimum ON/OFF time limits (5)–(6), startup and

shutdown cost constraints (7)–(8), ramp-up and ramp-down

limits (9)–(10).

Pmin
i Ibit �Pb

it �Pmax
i Ibit ð2Þ

0�Pb
at �Pmax

a Ibat ð3Þ

Ibit þ Ibat � 1; for i; a 2 NðeÞ ð4Þ

Xon
iðt�1Þ � Ton

i

� �
Ibiðt�1Þ � Ibit

� �
� 0 ð5Þ

Xoff
iðt�1Þ � Toff

i

� �
Ibit � Ibiðt�1Þ

� �
� 0 ð6Þ

SUb
it � sui � Ibit � Ibiðt�1Þ

� �
; SUb

it � 0 ð7Þ

SDb
it � sdi � Ibiðt�1Þ � Ibit

� �
; SDb

it � 0 ð8Þ

Pb
it � Pb

iðt�1Þ �URi � Ibiðt�1Þ þ Pmin
i Ibit � Ibiðt�1Þ

� �

þ Pmax
i 1� Ibit

� � ð9Þ

Pb
iðt�1Þ � Pb

it �DRi � Ibit þ Pmin
i Ibiðt�1Þ � Ibit

� �

þ Pmax
i 1� Ibiðt�1Þ

� � ð10Þ

where Ibit and Ibat are commitment statuses of unit i and PtG

facility a; Pmin
i and Pmax

i are minimum and maximum

capacities of unit i; Pb
at and Pmax

a are base-case dispatch and

maximum capacity of PtG facility a; N(e) is set of com-

ponents connected to bus e; Xon
it and Xoff

it are ON and OFF

time counters of unit i; Ton
i and Toff

i are minimum ON and

OFF times of unit i; sui and sdi are startup and shutdown

costs of unit i; URi and DRi are ramp up and down rates of

unit i.

For natural gas systems, production levels of gas sup-

pliers are limited by their physical characteristics and/or

contracted amount (11).

Gmin
j �Gjt �Gmax

j ð11Þ

where Gmin
j and Gmax

j are minimum and maximum pro-

duction levels of gas supplier j.

2) Energy storage: In power systems, as large-scale

electric energy storage is still uneconomical, power supply

and demand need to be balanced instantaneously. How-

ever, natural gas can be stored in large storage facilities for

ensuring adequate supply of natural gas fuel. Thus, the

flexibility provided by gas storage facilities can balance

daily or seasonal gas demand variations. Indeed, gas stor-

age facilities can be modeled similar as water reservoirs

and batteries in power systems. Natural gas storage con-

straints include storage balance (12), storage capacity limit

(13), as well as minimum and maximum injection and

withdraw rates (14)–(15). Different from electrical energy

storage devices in power systems which are associated with

efficiency factors to account for electricity losses, the

operation cost of gas storage devices is included in the

objective function (1) to consider costs incurred by storing

gas in and withdrawing gas out of gas storage devices.

Est ¼ Esðt�1Þ þ Qin
st � Qout

st ð12Þ

Emin
s �Est �Emax

s ð13Þ

Qmin
s �Qin

st �Qmax
s ð14Þ

Qmin
s �Qout

st �Qmax
s ð15Þ

where Est is the storage volume of gas storage facility s; Qin
st

and Qout
st are natural gas inflow and outflow of storage

facility s; Emin
s and Emax

s are minimum and maximum

capacities of storage facility s; Qmin
s and Qmax

s are minimum

and maximum flow rates of storage facility s.

3) Wind generation: The dispatch of wind power gen-

eration at each time period is limited by the hourly wind

power availability (16). Since wind power does not incur
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operation cost and PtG facilities can convert excessive

wind power into natural gas and consequently reduce the

total gas production cost of natural gas system, wind

energy will be economically utilized as much as possible.

0�Pb
wt �Pb

f ;wt ð16Þ

where Pb
wt and Pb

f ;wt are base-case dispatch and available

wind generation of wind farm w at hour t.

2.4 Network constraints

1) Nodal balance: Both electricity and natural gas sys-

tems need to preserve the conservation of nodal balance of

energy flows in the transmission network. Network nodal

balances of the electricity grid (17) and the natural gas

network (18) represent that the total energy injection is

equal to the total withdrawn at each node.
X

i2NðeÞ
Pb
it þ

X

w2NðeÞ
Pb
wt �

X

sðlÞ2NðeÞ
PLblt þ

X

rðlÞ2NðeÞ
PLblt

�
X

a2NðeÞ
Pb
at ¼

X

d2NðeÞ
Pb
dt

ð17Þ

X

j2G mð Þ
Gjt �

X

s mnð Þ2G mð Þ
GLmn;t þ

X

r mnð Þ2G mð Þ
GLmn;t

þ
X

a2G mð Þ
Gat þ

X

s2G mð Þ

�
Qout

st � Qin
st

�

¼
X

i2G mð Þ
Git þ

X

g2G mð Þ
Ggt

ð18Þ

where PLblt is the base-case power flow of electric trans-

mission line l; s(l)/s(mn) and r(l)/r(mn) are the sending bus/

node and receiving bus/node of line l and pipeline mn; Pb
dt

is base-case electricity demand of electrical load d; G(m) is

set of gas network components connected at gas node m;

GLmn,t is the natural gas flow of pipeline mn; Git and Gat

are gas consumption and production of gas-fired unit i and

PtG facility a; Ggt is gas demand of natural gas load g.

2) Energy flows: Electric transmission network is

modeled via the DC power flow Eqs. (19)–(20) where

power flow of a transmission line is determined by bus

angles and the line impedance.

PLblt ¼
hbsðlÞt � hbrðlÞt

xl
ð19Þ

�PLmax
l �PLblt �PLmax

l ð20Þ

where hbsðlÞt and hbrðlÞt are the sending and receiving bus

angles; xl is the reactance of line l; PLmax
l is the maximum

power flow limit.

Similarly, gas flow in a pipeline can be expressed as a

nonlinear function of nodal pressures and pipeline char-

acteristics. The well-known Weymouth equations can be

used to approximate gas flow equations under certain cir-

cumstances (21)–(22) [6].

GLmn;t ¼ sgn pmt; pntð ÞKmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmt � pntj j

p
ð21Þ

sgn pmt;pntð Þ ¼
1; pmt � pnt

�1; pmt\pnt

(
ð22Þ

where pmt is the pressure square of gas node m; Kmn is

the Weymouth constant depending on pipeline charac-

teristics.

It is worth mentioning that the steady-state natural gas

flow model (21)–(22) would neglect built-in storage

capabilities of pipelines (i.e., line pack) and slow travelling

speeds of natural gas flows, as compared to the transient

gas flow model [6]. Indeed, it is pointed out in [6] that the

steady-state natural gas flow model might result in sub-

optimal schedules in the short-term coordinated operation

of electricity and natural gas infrastructures.

3) Nodal constraints: Bus angles of the electricity grid

and nodal pressures of the natural gas network are limited

by their lower and upper bounds in (23) and (24), respec-

tively. Note that lower and upper bus angle bounds of the

reference bus are set to zero in (23).

hmin
e � hbet � hmax

e ð23Þ

pmin
m � pmt � pmax

m ð24Þ

where hmin
e and hmax

e are the minimum and maximum bus

angle limits of electricity bus e; pmin
m and pmax

m are mini-

mum and maximum nodal pressure square limits of gas

node m.

Normally, natural gas flows of gas pipelines are driven

by pressure difference of two adjacent nodes. With gas

compressors installed in the natural gas network which are

analogous to transformers in the power system, natural gas

can flow from a low pressure node to a high pressure node.

A simplified model of compressors from [26] is adopted in

this paper (25).

pmt �C2
cpnt ð25Þ

where Cc [ 1 is the compressor factor, which facilitates

natural gas flows from a low pressure node n to a high

pressure node m.

2.5 Coupling constraints between electricity

and natural gas systems

Gas-fired units represent the largest industrial natural

gas consumer, and each gas-fired unit is considered as a

natural gas load in the natural gas network. On the other

hand, PtG facilities are regarded as natural gas producers in

the natural gas system.
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Natural gas consumption of gas-fired units and natural

gas production of PtG facilities are determined by their

hourly operation levels. In this paper, operation cost of gas-

fired units is measured in terms of the natural gas pro-

duction cost. The heat rate curve and high heating value

(HHV) are used to model the relationship between gas

consumption and electricity generation of gas-fired units

(26). PtG facilities are modeled using energy conversion

factor /, efficiency gPtGa , and HHV as in (27) [16, 27],

where HHV = 1.026 MBtu/kcf and / = 3.4 MBtu/ MWh.

Git ¼
Fc
it P

b
it

� �
þ SUb

it þ SDb
it

HHV
; i 2 GU ð26Þ

Gat ¼
/Pb

atg
PtG
a

HHV
ð27Þ

2.6 Constraints for uncertainties

In this paper, the power system is designed to operate

under the base case with unit commitment and generation

dispatch decisions corresponding to forecasted values of

electrical loads and wind generations in the day-ahead

market, while generation dispatches can be adaptively and

securely adjusted when possible realizations of uncertain-

ties happen in real time. Only wind and electrical load

uncertainties in power systems are considered in this paper.

The reasons are twofold: 1) Electrical load uncertainty is a

very important factor that will impact day-ahead power

system operation schedules [21, 22, 24]. Thus, following

the convention of traditional robust optimization based

power system operation models, this paper considers

electrical load uncertainty. 2) Natural gas system is

regarded as highly reliable with sufficient line-pack

capacities for handling gas load uncertainties [13], and in

turn natural gas load uncertainty is usually not included. In

addition, due to the nonlinearity of natural gas Weymouth

flow equation, gas load uncertainty is very hard to be

incorporated into the second-stage max–min robust

framework. This mathematical challenge will be investi-

gated in authors’ future work.

In order to ensure the operational security, the largest

possible security violation DD under uncertainties should

not exceed the preset security threshold eRO (28). A bi-level

max–min problem (29) is used to identify the largest pos-

sible security violation under uncertainties. Uncertainty

sets of electrical loads and wind generations are described

in (30)–(32). Adjusted dispatches need to satisfy nodal

balance (33), power flow and bus angle constraint (34),

power flow limit (35), bus angle limit (36), capacity limits

(37)–(39), corrective ramp capabilities for coupling base-

case dispatches and dispatch adjustments under uncertainty

(40), as well as ramp up and down limits (41)–(42). In

(33)–(43), Pu
it, Pu

at, and Pu
wt are adjusted dispatches of

generating units, PtG facilities, and wind farms in response

to uncertainty realizations of electrical load Pu
dt and wind

generation Pu
f ;wt.

DD� eRO ð28Þ

DD ¼ max
Pu
dt
;Pu

f ;wt

	 
 min
v1t; v2t;P

u
it;P

u
wt;

Pu
at;PL

u
lt; h

u
et

� �
X

t

v1t þ v2tð Þ ð29Þ

D ¼
Pu
dt 2 RND�NT :

X

t

zþdt þ z�dt �Dd; z
þ
dt þ z�dt � 1

Pu
dt ¼ Pb

dt þ zþdt � ~Pdt � z�dt � ~Pdt; z
þ
dt þ z�dt 2 0; 1f g

8
<

:

9
=

;

ð30Þ

W ¼
Pu
f ;wt 2RNW�NT :

X

t

zþwtþ z�wt�Dw;z
þ
wtþ z�wt�1

Pu
f ;wt ¼Pb

f ;wtþ zþwt � ~Pwt� z�wt � ~Pwt;z
þ
wtþ z�wt 2 0;1f g

8
<

:

9
=

;

ð31Þ
Pu
dt 2 D;Pu

f ;wt 2 W ð32Þ
X

i2NðeÞ
Pu
it þ

X

w2NðeÞ
Pu
wt �

X

sðlÞ2NðeÞ
PLult þ

X

rðlÞ2NðeÞ
PLult

�
X

a2NðeÞ
Pu
at þ v1t � v2t ¼

X

d2NðeÞ
Pu
dt : k1;et

� � ð33Þ

PLult ¼
husðlÞt � hurðlÞt

xl
: k2;lt
� �

ð34Þ

�PLmax
l �PLult �PLmax

l : k4;lt; k3;lt
� �

ð35Þ

�hmax
e � huet � hmax

e : k6;et; k5;et
� �

ð36Þ

Pmin
i Ibit �Pu

it �Pmax
i � Ibit : k8;it; k7;it

� �
ð37Þ

0�Pu
at �Pmax

a Ibat : k9;at
� �

ð38Þ

0�Pu
wt �Pu

f ;wt : k10;wt
� �

ð39Þ

�Rdown
i Ibit �Pu

it � Pb
it �R

up
i Ibit : k12;it; k11;it

� �
ð40Þ

Pu
it � Pu

iðt�1Þ �URi � Ibiðt�1Þ þ Pmax
i 1� Ibit

� �

þ Pmin
i Ibit � Ibiðt�1Þ

� �
: k13;it
� � ð41Þ

Pu
iðt�1Þ � Pu

it �DRi � Ibit þ Pmax
i 1� Ibiðt�1Þ

� �

þ Pmin
i Ibiðt�1Þ � Ibit

� �
: k14;it
� � ð42Þ

v1t; v2t � 0 ð43Þ

where v1t and v2t are slack variables; D and W are uncer-

tainty sets of electrical loads and wind generations; NT,

ND, and NW are numbers of hours, loads, and wind farms;

zþdt, z�dt, zþwt, and z�wt are binary indicators to describe

uncertainty sets; Dd and Dw are uncertainty budgets which

take values from 0 to NT; ~Pdt and ~Pwt are load and wind

deviations; PLult and huet are adjusted power flows and bus
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angles; k are dual variables of corresponding constraints;

Rdown
i and R

up
i are corrective ramp up and down capabilities

of units [21].

3 Solution methodology

The proposed robust coordination scheduling model is a

large-scale, nonlinear, nondeterministic polynomial-time

hard problem with uncertainty parameters. Benders

Decomposition [21, 22] and Column-and- Constraint-

Generation (C&CG) [23, 24] have been used to solve two-

stage adjustable robust optimization problems. In this

paper, the C&CG is employed to solve the proposed inte-

grated robust scheduling model in a master-subproblem

framework, by taking the advantage of its computational

performance.

3.1 Master problem

The master UC problem minimizes the operation cost of

the base case (1), subject to base-case constraints (2)–(27)

and constraints (44)–(67) corresponding to worst case

realizations of electrical load Pworst
dt;k and wind generation

Pworst
f ;wt;k identified in each iteration k of the subproblem.

In addition, as mixed-integer nonlinear programming

problems are generally more difficult to solve, and power

system operators exclusively use MILP models to solve

day-ahead operation problems with stringent time

requirements, this paper follows the convention to convert

nonlinear natural gas flow Eqs. (21)–(22) into an MILP

formulation with a better computational performance. That

is, (21)–(22) are piecewisely linearized, which would

convert the master UC problem into an MILP model. The

detailed linear approximation of (21)–(22) are provided in

‘‘Appendix’’. New solutions Îbit, Î
b
at, P̂

b
it, and P̂b

at are derived

to securely handle all worst case realizations.

DDk � eRO ð44Þ

DDk ¼
X

t

v1t;k þ v2t;k
� �

ð45Þ

X

i2NðeÞ
Pworst
it;k þ

X

w2NðeÞ
Pworst
wt;k �

X

a2NðeÞ
Pworst
at;k þ v1t;k � v2t;k

þ
X

rðlÞ2NðeÞ
PLworstlt;k �

X

sðlÞ2NðeÞ
PLworstlt;k ¼

X

d2NðeÞ
Pworst
dt;k

ð46Þ

PLworstlt;k ¼
hworstsðlÞt;k � hworstrðlÞt;k

xl
ð47Þ

�PLmax
l �PLworstlt;k �PLmax

l ð48Þ

�hmax
e � hworstet;k � hmax

e ð49Þ

Pmin
i Ibit �Pworst

it;k �Pmax
i Ibit ð50Þ

0�Pworst
at;k �Pmax

a Ibat ð51Þ

0�Pworst
wt;k �Pworst

f ;wt;k ð52Þ

�Rdown
i Ibit �Pworst

it;k � Pb
it �R

up
i Ibit ð53Þ

Pworst
it;k � Pworst

iðt�1Þ;k �URi � Ibiðt�1Þ þ Pmax
i 1� Ibit

� �

þ Pmin
i Ibit � Ibiðt�1Þ

� � ð54Þ

Pworst
iðt�1Þ;k � Pworst

it;k �DRi � Ibit þ Pmax
i 1� Ibiðt�1Þ

� �

þ Pmin
i Ibiðt�1Þ � Ibit

� � ð55Þ

v1t;k; v2t;k � 0 ð56Þ

Gmin
j �Gworst

jt;k �Gmax
j ð57Þ

Eworst
st;k ¼ Eworst

sðt�1Þ;k þ Q
in;worst
st;k � Q

out;worst
st;k ð58Þ

Emin
s �Eworst

st;k �Emax
s ð59Þ

Qmin
s �Q

in;worst
st;k �Qmax

s ð60Þ

Qmin
s �Q

out;worst
st;k �Qmax

s ð61Þ
X

j2G mð Þ
Gworst

jt;k �
X

s mnð Þ2G mð Þ
GLworstmn;t;k þ

X

r mnð Þ2G mð Þ
GLworstmn;t;k

þ
X

a2G mð Þ
Gworst

at;k þ
X

s2G mð Þ
Q

out;worst
st;k � Q

in;worst
st;k

� �

¼
X

i2G mð Þ
Gworst

it;k þ
X

g2G mð Þ
Gworst

gt;k

ð62Þ

GLworstmn;t;k ¼ sgn pworstmt;k ;p
worst
nt;k

� �
Kmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pworstmt;k � pworstnt;k










r
ð63Þ

pmin
m � pworstmt;k � pmax

m ð64Þ

pworstmt;k �C2
cp

worst
nt;k ð65Þ

Gworst
it ¼

Fc
i Pworst

it;k

� �
þ SUb

it þ SDb
it

HHV
; i 2 GU ð66Þ

Gworst
at ¼

/Pworst
at;k gPtGa

HHV
ð67Þ

3.2 Worst case identification subproblem

Equations (29)–(43) is a bi-level max–min problem for

identifying the largest possible security violation. It can be

recasted into a single-level equivalent bilinear maximiza-

tion problem by applying the duality theory on the inner
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linear programming (LP) problem. The resulting bilinear

maximization problem is presented as follows:

DD ¼ max
nX

t

X

d2NðeÞ
Pu
dtk1;et þ

X

t

X

l

PLmax
l k3;lt þ k4;lt

� �
:

þ
X

t

X

e

hmax
e k5;et þ k6;et

� �
þ
X

t

X

i

Pmax
i Îbitk7;it

�
X

t

X

i

Pmin
i Îbitk8;it þ

X

t

X

i

Pmax
a Îbatk9;at

þ
X

t

X

i

Pu
f ;wtk10;wt þ

X

t

X

i

Pb
it þ R

up
i Îbit

� �
k11;it

�
X

t

X

i

Pb
it � Rdown

i � Îbit
� �

k12;it

þ
XNT

t¼2

X

i

URi � Ibiðt�1Þ þ Pmax
i 1� Ibit

� �h

þPmin
i Ibit � Ibiðt�1Þ

� �i
k13;it

þ
XNT

t¼2

X

i

DRi � Ibit þ Pmax
i 1� Ibiðt�1Þ

� �h

þPmin
i Ibiðt�1Þ � Ibit

� �i
k14;it

o

ð68Þ
s:t: � 1� k1;et � 1 ð69Þ

�
X

sðlÞ2NðeÞ
k2;lt þ

X

rðlÞ2NðeÞ
k2;lt þ k5;et � k6;et ¼ 0 ð70Þ

�k1;sðlÞt þ k1;rðlÞt þ xl � k2;lt þ k3;lt � k4;lt ¼ 0 ð71Þ

k1;et þ k7;it � k8;it þ k11;it � k12;it � k13;i tþ1ð Þ

þ k14;i tþ1ð Þ � 0; t ¼ 1; i 2 NðeÞ
ð72Þ

k1;et þ k7;it � k8;it þ k11;it � k12;it þ k13;it � k14;it
� k13;i tþ1ð Þ þ k14;i tþ1ð Þ � 0;

t ¼ 2; . . .;NT � 1; i 2 NðeÞ
ð73Þ

k1;et þ k7;it � k8;it þ k11;it � k12;it þ k13;it
� k14;it � 0; t ¼ NT ; i 2 NðeÞ

ð74Þ

�k1;et þ k9;at � 0; a 2 NðeÞ ð75Þ

k1;et þ k10;wt � 0;w 2 NðeÞ ð76Þ

k3;lt; k4;lt; k5;et; k6;et; k7;it; k8;it; k9;at; k10;wt;

k11;it; k12;it; k13;it; k14;it � 0
ð77Þ

The extreme point method is applied to further convert

the bilinear maximization problem (68)–(77) into an MILP

problem. Specifically, in the objective function (68), bi-

linear terms represent products of primal and dual

continuous variables, such as Pu
dt � k1;et. Such bilinear

terms can be linearized by the extreme point method

with auxiliary binary variables, because continuous

uncertainty parameters always take either upper/lower

limits or forecasted values [28] in the worst case. For

instance, using the extreme point method, the bilinear term

Pu
dtk1;et can be linearized as in (78)–(83).
X

d2NðeÞ
Pu
dtk1;et ¼

X

d2NðeÞ
Pb
dtk

0
1;et þ Pb

dt þ ~Pdt

� �
kþ1;et

h

þ Pb
dt � ~Pdt

� �
k�1;et

i ð78Þ

k1;et ¼ k01;et þ kþ1;et þ k�1;et ð79Þ

l0et þ lþet þ l�et ¼ 1 ð80Þ

�l0etM� k01;et � l0etM ð81Þ

�lþetM� kþ1;et � lþetM ð82Þ

�l�etM� k�1;et � l�etM ð83Þ

where k01;et, kþ1;et, and k�1;et are auxiliary continues vari-

ables corresponding to situations when Pu
dt takes the

forecasted value, the upper bound, and the lower bound;

l0et, lþet , and l�et are auxiliary binary variables corre-

sponding to situations when Pu
dt takes the forecasted

value, the upper bound, and the lower bound; M is a large

enough positive number.

3.3 Implementation of the algorithm

The detailed solution procedure for implementing the

C&CG algorithm is shown in Fig. 3. The major steps are

described as follows.

Step 1: Set the maximum level of system power security

violation under the worst-case scenario eRO and the

iteration counter k = 1.

N

Y

k=k+1
Master UC problem

Worst case identification subproblem

Final optimal solution

worst &dt,kP P worst
f,wt,k

ROεSet iteration counter k=1 and

End

Start

?ROεViolation<

Fig. 3 Flowchart of C&CG algorithm

382 Chuan HE et al.

123



Step 2: Solve the master problem as described in Sect.

3.1, and pass the optimal solution Îbit, Î
b
at, P̂

b
it, and P̂b

at to

the security checking subproblem (68)–(77).

Step 3: Solve the worst case identification subproblem

(68)–(77) as described in Sect. 3.2 with respect to Îbit, Î
b
at,

P̂b
it, and P̂b

at, and identify the worst case electrical load

Pworst
dt;k and wind generation Pworst

f ;wt;k which lead to the

largest possible security violation.

Step 4: If the largest possible security violation is

smaller than eRO, terminate; Otherwise, generate C&CG

constraints according to the worst case Pworst
dt;k and Pworst

f ;wt;k

in current iteration k, set k = k ? 1, and go back to

Step 2.

By iteratively solving the master problem, checking

system security violations in the worst case identification

subproblem, and consequently feeding identified worst

cases back to the master problem, the C&CG algorithm can

mathematically guarantee the global optimality of robust

optimization problems [23]. Moreover, the worst case

identification subproblem searches for worst case realiza-

tions within the uncertainty set that will lead to the largest

possible security violations, while the number of identified

worst cases is equal to the number of iterations of the

C&CG algorithm. This number is system specific, which

depends on factors like uncertainty budgets, load and wind

profiles, and other system parameters.

4 Case studies

In this section, the 24-bus IEEE RTS system [29] with a

12-node natural gas system [30] is used to demonstrate the

performance of the proposed approach. The 24-bus power

system includes 26 generation units and 38 branches, with a

peak electric demand of 2850 MW. 7 out of the 26 gener-

ation units in the 24-bus power system are gas-fired units.

Generators 1–4 at buses 1, generator 5 at bus 16, and gen-

erators 6–7 at bus 23 are gas-fired units with capacity of 155

MW each, which are supplied by natural gas nodes 11, 5,

and 12, respectively. The electric load profile in the winter

weekday is chosen for the study. Capacities of all trans-

mission lines are reduced to 60% of their original capacities

[31]. Hydro units at bus 22 are replaced by a wind farm with

the same capacity of 300 MW. In addition, another wind

farm with the capacity of 200 MW is added at bus 18.

The 12-node natural gas system is shown in Fig. 4. The

natural gas system includes 3 gas suppliers, 8 pipelines, 2

compressors, and 8 gas loads. Natural gas load demands at

nodes 5, 11, and 12 are set as 500, 900, and 1600 kcf/h,

respectively. One gas storage facility is added at node 5.

Maximum inflow, maximum outflow, and maximum stored

energy are 500, 500, and 4000 kcf, respectively. Other

detailed system parameters are given in [30].

Fuel price for non-gas-fired units is 2.5$/MBtu. Pro-

duction costs of the three gas suppliers are 2 $/kcf, 2 $/kcf,

and 2.1 $/kcf, respectively. Operation cost of the gas

storage is 0.3 $/kcf, to account for costs incurred by storing

gas in and withdrawing gas out of gas storage devices. Two

PtG facilities are included in the integrated energy system.

The two PtG facilities are connected at buses 16 and 17 of

the power grid, and at nodes 5 and 3 of the natural gas

network. Capacities of PtG1 and PtG2 are 100 and 50 MW

respectively with efficiency of 0.64. Note that gas-fired unit

and PtG facility at electricity bus 16 and gas node 5 along

with the gas storage form an energy hub in the integrated

energy systems.

The following five cases are studied for illustrating the

proposed robust coordination approach of electricity and

natural gas systems. All case studies are implemented in

MATLAB and solved using Gurobi 6.5 on a personal laptop

with Intel Core i7 2.6 GHz processor and 12 GB memory.

Case 1: Deterministic case without PtGs.

Case 2: Case 1 with PtGs.

Case 3: Robust coordination is considered in Case 1.

Case 4: Robust coordination is considered in Case 2.

Case 5: Case 4 with different uncertainty budget

levels.

Case 1: Power system uncertainties and PtG technology

are not considered in this case. In this case, wind genera-

tion peaks occur during hours 3–6 where electrical loads

are at off-peak. Due to ramping capacity limits and mini-

mum down time constraints of generating units as well as

transmission congestions, available wind energy cannot be

fully utilized. As a result, a total amount of 89.72 MWh of

wind generation is spilled during these 4 h in the early

morning. The total operation cost of electricity and natural

gas systems is shown in Table 1. In the deterministic day-

ahead coordination scheduling, a total number of 477 units

are committed during the 24-h horizon as shown in

Table 1.

Case 2: PtG is considered in this case for economically

converting excessive wind energy to compatible natural

W1

W2

W3

21

34

5

12

6 7 8 9

10

11

S1

PtG1

PtG2

Fig. 4 12-node natural gas system
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gas, which is otherwise spilled in Case 1. Natural gas

produced by PtG facilities is transported and consumed by

other natural gas loads. Since this amount of natural gas is

produced by excessive wind energy which is otherwise

spilled, the total system operation cost is reduced to

$1220094.8 as shown in Table 1.

Case 3: Variations of electrical loads and wind genera-

tions are taken into account in this case by the robust

coordination strategy. Uncertainty intervals of electrical

loads and wind generations are considered as 10% and 20%

of their forecast values, respectively, i.e. ~Pdt ¼ 0:1 � Pb
dt and

~Pwt ¼ 0:2 � Pb
f ;wt in (30)–(31). Uncertainty budgets Dd and

Dw are both set as 24. The security violation threshold eRO

in (28) is set to 0.01 MW, which means that the system will

be immune against all possible realizations of electrical

loads and wind generations within the predefined uncer-

tainty set.

The forecasted value, lower bound, upper bound, and

identified worst case of electrical loads and wind genera-

tions are shown in Figs. 5 and 6, respectively. It can be seen

that at hours 5–6, electrical load is low and wind generation

is high, whereas electrical load is high and wind generation

is low during load peak hours 16–20. In addition, the situ-

ation becomes even worse in the worst case situations. The

day-ahead robust security-constrained unit commitment

(SCUC) is designed to handle worst case situations while

avoiding electrical load shedding. Compared with Case 1,

484 units are committed which indicates that more ramping

capabilities are needed to handle uncertainties of electrical

loads and wind generations. As a result, the total operation

cost is increased to $1223397.5.

Case 4: PtG facility in the energy hub is considered

based on Case 3. In this case, PtG can provide ramping

down capabilities for power systems by converting exces-

sive wind energy into natural gas. With more ramping

capabilities, other units can operate at more economical

states. In addition, natural gas produced by PtG can reduce

the gas production cost for supplying natural gas loads. In

turn, the total operation cost is decreased to $1222210.4 as

compared to Case 3.

In Case 4, the energy hub plays an important role in the

conversion and storage of energy, in order to ensure eco-

nomic and secure operation of interdependent systems. The

collocated gas-fired unit and PtG facility behave like a

pump-storage unit while using the natural gas infrastruc-

ture as reservoir, which can help reduce variations of

electrical loads and wind generations. The combined net

power outputs of gas-fired unit and PtG facility under the

base case and the worst case are further shown in Fig. 7,

where positive and negative values represent power gen-

eration of gas-fired unit and power consumption of PtG

facility, respectively. Inflows and outflows of the gas

storage facility are further shown in Fig. 8 as positive and

negative values.

As shown in Fig. 7, the PtG facility is operated in hours

1–6 while the gas-fired unit works for the rest of the day. It

is observed in Figs. 5 and 6 that wind generation is rela-

tively high in hours 1–6 where the system cannot provide

enough down ramping capabilities to effectively utilizing

available wind energy. In turn, PtG is called to help con-

verting excessive wind energy into natural gas, which will

Table 1 Total cost and total committed units in Cases 1–4

Case Total cost ($) Total committed units in all 24 hours

1 1221184.3 477

2 1220094.8 477

3 1223397.5 484

4 1222210.4 484
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prevent wind spillage and facilitate an economic operation.

For the remaining hours where electrical load is relatively

high, the gas-fired unit is operated to generate electricity

and maintain power system security by providing up/down

ramping capabilities to handle worst cases. It should be

noted that power outputs of gas-fired unit and power con-

sumptions of PtG facilities increase in worst cases.

Figure 8 further shows that natural gas storage facility is

used more frequently under the worst case, in response to

frequent hourly dispatch changes of gas-fired unit and PtG

facility as shown in Fig. 7. Because operating natural gas

storage facility incurs costs, it is rarely used in the base

case unless operational economics can be improved.

Specifically, in hours 5–6 of the base case when wind

generation is high, natural gas produced by the PtG facility

cannot be transported to gas loads due to natural gas net-

work congestion caused by gas nodal pressure limits, and

in turn a certain amount of natural gas is stored on site in

the storage facility and used later at hour 7. On the other

hand, in the worst case, more natural gas is injected into

and withdrawn out of the storage facility to provide enough

gas fuel for supporting ramping and generating capabilities

of the gas-fired unit when electrical load is high. In addi-

tion, in hours 21–23, natural gas is injected into gas storage

facilities to secure gas fuel supply to gas-fired units in the

next operation day.

Case 5: In this case, the impact of different uncertainty

budget levels on the total cost and worst-case load shed-

ding of the integrated energy system is studied. Worst-case

load shedding cost is set as $1000/MWh. The results are

reported in Table 2. Specifically, when the uncertainty

budget is 0, the integrated robust model degrades to the

deterministic model because no uncertainty is considered.

As uncertainty budget increases, results are more conser-

vative and the system is immune to a higher level of

uncertainties since a larger total deviation of load and wind

generation is considered. In turn, the total cost increases

monotonously as a wider range of uncertainties is covered.

On the other hand, worst-case operation cost decreases

because load shedding in the worst case is reduced. When

uncertainty budget reaches 16, the total cost does not

increase any further and worst-case operation cost does not

change any more, which indicates that enough generators

have been committed online and adequate system flexi-

bilities are readily available for handling uncertainties. In

addition, load shedding quantity is smaller than the security

threshold eRO of 0.01 MW under any possible load and

wind generation realizations within the uncertainty set,

which justifies that the proposed robust model can derive

secure operation solutions for the integrated energy system

with uncertainties.

As robust optimization and stochastic programming

have been recognized as two effective approaches for

handling uncertainties in optimization problems, solutions

of the proposed robust model and the stochastic program-

ming model [31, 32] are further compared. In the stochastic

programming model, electrical load and wind power

uncertainties are assumed to follow uniform distributions.

5000 scenarios are generated via the Latin hypercube

sampling method for simulating uncertainties of electrical
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Fig. 8 Inflows and outflows of gas storage facility in base case and

the worst case

Table 2 Result comparisons

Uncertainty budget Base-case operation cost ($) Worst-case operation cost ($) Worst-case load shedding (MWh)

0 1220094.8 1328133.0 55.4558

1 1221641.0 1295770.2 20.8411

2 1221708.5 1292626.8 17.7175

4 1222037.1 1280501.8 5.9118

8 1222112.9 1280653.6 5.8358

10 1222148.1 1280781.0 5.5479

12 1222183.1 1274832.4 0.0947

16 1222210.4 1274739.7 0

20 1222210.4 1274739.7 0

24 1222210.4 1274739.7 0

Stochastic 1221105.9 1301534.2 27.2761
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loads and wind generations in a 24-h period. Then the

number of reduced scenarios is chosen to be 10 as a trade-

off between computational speed and solution quality [32].

The worst-case load shedding and the operation cost of the

stochastic programming model are reported in Table 2. It is

observed in Table 2 that the stochastic programming model

derives results closer to that of the proposed robust model

with uncertainty budget of 1. Specifically, results obtained

by the stochastic programming model could yield a smaller

cost for covering high-probability scenarios, while the

system may not be robust because it could lead to relatively

high system load shedding when low-probability high-im-

pact worst case occurs.

Computational performance of the proposed robust

model and the stochastic model is further compared in

Table 3. The proposed robust model with uncertainty

budget of 1 has identified 12 worst cases and yields a total

computational time of 4441 s. This high computational

time is mainly caused by 12 C&CG iterations and the

complexity of worst-case natural gas constraints. In com-

parison, the stochastic model with 10 scenarios achieves a

shorter computational time of 709 s, partly because the

worst-case identification subproblem is not involved. In

addition, uncertainty budget would also impact computa-

tional performance of the proposed robust model. Indeed,

total computational time of the proposed robust model with

uncertainty budget of 24 is reduced to 142 s, because the

identified worst-case scenario is reduced to 1 and the

number of C&CG iterations has been greatly reduced.

5 Conclusion

This paper proposes an integrated robust model to

coordinate the day-ahead scheduling of electricity and

natural gas systems. The energy hub with collocated gas-

fired unit, PtG facility, and natural gas storage is explored.

The integrated robust model is solved by C&CG algorithm

under a master-subproblem framework. Nonlinear natural

gas constraints are piecewisely linearized and added into

the master problem for the optimal solution. The bi-level

subproblem which identifies the worst case situations is

recasted into a single-level bilinear problem and then

further reformulated an MILP problem via the extreme

point method.

Simulation results indicate that PtG facilities can posi-

tively contribute to wind spillage mitigation by effectively

converting excessive wind generation into natural gas. The

robust optimization technique ensures the security of the

interdependent energy system with volatile electrical loads

and wind generations by committing more units to provide

enough ramping capabilities. Furthermore, energy hubs

with collocated gas-fired units, PtG facilities, and natural

gas storages can be operated analogously as a pump-stor-

age device, which further enhance system flexibilities.

Indeed, the energy hub could help achieve an economical

and secure operation scheduling by firming the variability

of wind generations and electrical loads. In turn, the pro-

posed integrated robust model would enable system oper-

ators to securely and economically schedule the

interdependent energy system under different levels of

uncertainties.
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Appendix A

Equations (21)–(22) is presented as a group of nonlinear

equations. Here an auxiliary binary variable f is introduced

to reformulate (21)–(22) as (A1)–(A4).

GL2mn;t ¼ K2
mn fþmn;t � f�mn;t

� �
pmt � pntð Þ ðA1Þ

fþmn;t � 1
� �

M�GLmn;t � 1� f�mn;t

� �
M ðA2Þ

fþmn;t � 1
� �

M� pmt � pnt � 1� f�mn;t

� �
M ðA3Þ

fþmn;t þ f�mn;t ¼ 1 ðA4Þ

where fþmn;t and f�mn;t are the gas flow direction of pipeline

mn, i.e., fþmn;t ¼ 1 means natural gas flows from node m to

node n.

The auxiliary variable r is further introduced in (A5) to

represent the bilinear products. Well-known algebra results

in [33] are used to equivalently recast (A5)–(A6).

rmn;t ¼ fþmn;t � f�mn;t

� �
pmt � pntð Þ ðA5Þ

Table 3 Comparison of computational performance

Uncertainty budget Total time (s) No. of worst cases/scenarios

0 36 0

1 4441 12

24 142 1

Stochastic 649 10
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rmn;t � pnt � pmt þ fþmn;t � f�mn;t þ 1
� �

plmt � punt
� �

rmn;t � pmt � pnt þ fþmn;t � f�mn;t � 1
� �

pumt � plnt
� �

rmn;t � pnt � pmt þ fþmn;t � f�mn;t þ 1
� �

pumt � plnt
� �

rmn;t � pmt � pnt þ fþmn;t � f�mn;t � 1
� �

plmt � punt
� �

8
>>>>>>>><

>>>>>>>>:

ðA6Þ

where plmt and pumt are the lower and upper limits of pres-

sure square of node m at time t.

Furthermore, the univariate squared function y ¼ x2 of

gas flow square defined within an interval can be piece-

wisely approximated [34, 35] as in (A7)–(A9), which is

further shown in Fig. 9. Continuous variable x is divided

into h segmental values dl starting from �x0, as described in

(A7). The linearized function value is calculated via (A8).

Binary variable zl is used to force the so-called ‘‘filling

condition’’ (A9)–(A10), i.e. dl [ 0 implies that dl�1 is at its

upper bound.

x ¼ �x0 þ
Xh

l¼1

dl ðA7Þ

y ¼ �y0 þ
Xh

l¼1

�yl � �yl�1

�xl � �xl�1

dl ðA8Þ

�xl � �xl�1ð Þzlþ1 � dl; 8l 2 1; 2; . . .; h� 1f g ðA9Þ
dl � �xl � �xl�1ð Þzl; 8l 2 1; 2; . . .; hf g ðA10Þ

Reference [35] compared three different models to lin-

earize nonlinear gas flow constraints, including convex

combination model, multiple choice model, and incre-

mental model. Theoretical and computational analysis in

[35] indicates that the incremental model outperforms the

other two techniques. Indeed, the most promising advan-

tage of incremental model is its computational performance

for optimizing gas network operations. Thus, the incre-

mental model is adopted in this paper. Regarding squared

nodal gas pressure, the operating interval is usually given

according to technique limitations, security reasons, or

contracted quantities. Once the intervals of nodal gas

pressure are defined, intervals of gas flows can be calcu-

lated via Eq. (21). Normally, operating intervals of gas

flows can be tuned according to real operation conditions

for further improving computational performance and

solution quality.
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