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Abstract In this paper a combined optimization of a

coupled electricity and gas system is presented. For the

electricity network a unit commitment problem with opti-

mization of energy and reserves under a power pool, con-

sidering all system operational and unit technical

constraints is solved. The gas network subproblem is a

medium-scale mixed-integer nonconvex and nonlinear

programming problem. The coupling constraints between

the two networks are nonlinear as well. The resulting

mixed-integer nonlinear program is linearized with the

extended incremental method and an outer approximation

technique. The resulting model is evaluated using the

Greek power and gas system comprising fourteen gas-fired

units under four different approximation accuracy levels.

The results indicate the efficiency of the proposed mixed-

integer linear program model and the interplay between

computational requirements and accuracy.

Keywords Electricity system, Natural gas system, Mixed-

integer (non) linear programming, Extended incremental

method, Outer approximation

1 Introduction

The importance of electric gas units (mainly combined

cycle gas turbines, CCGTs) has been increased during the

recent years due to their attractive features as flexible

resources in view of the increasing renewable energy

sources (RES) penetration. This is attributed to their

increased efficiency, small environmental footprint and

high flexibility.

The popularity of CCGTs has given rise to common

energy infrastructure considerations by regulators and

system analysts, identifying the strong interdependence

between the electricity and gas system in technical, eco-

nomic and operational terms.

Despite their common nature as energy transmission sys-

tems, the operation of the natural gas system is extremely

complex, employing a large-scale, highly nonconvex and

nonlinear problem structure (comprising a group of nonlinear

algebraic equations), which can be modeled as a nonconvex

mixed-integer nonlinear program (MINLP) [1]. Compared to

this, the electricity problem, which is a unit commitment

problem with optimization of energy and reserves, can be

modeled as a mixed-integrater program (MIP) [2].

A review of the developed nonlinear models for com-

bined consideration of the electricity and gas systems is

given in [3] and [4]. In all models, there is a nonlinear

coupling constraint linking the electricity system with the

gas system.

The majority of the research in the gas system focuses

on simplifications of the nonlinear equations that govern
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the physics of gas flow as well as the general representation

of the technical components (e.g. compressor model) of the

gas transmission system. A current useful and efficient way

to alleviate the burden of the nonconvex MINLP gas

problem is the application of mixed integer linear pro-

gramming techniques for piecewise linearization. In this

way, the nonlinear formulation is approached by approxi-

mated linearized functions that render the problem as a

MIP, which enables the computation of global optima

within fast execution times. The most comprehensive

article that studies the advantages and drawbacks of vari-

ous MIP formulations for the gas optimization problem is

[5], where different piecewise linearization approaches are

tested for different test cases in both dynamic and sta-

tionary conditions in order to derive conclusions about the

more accurate and faster approximations. Based on the

results, the authors argue about the effectiveness of the

incremental method and further apply it in [6] and [7] in

order to linearize the transient flow equations for a com-

bined electricity-gas model that is applied on the Belgian

high-calorific gas network, where the effects of initial

linepack in system operation are examined. A simpler

linearization approach can be seen in [8] and [9] for a

stochastic unit commitment and a combined optimal power

flow model, respectively. Simple electricity-gas conversion

factors are applied to all studies and the compressor

machine modeling is also reduced to a compression factor.

The incremental method is again applied in [10] for sta-

tionary gas flow within a large decomposition

framework.

A literature overview of the linearized combined models

discussed above is given in Table 1, according to the lin-

earization approach applied, the modeling of the coupling

constraint and the compressor, as well as the configuration

of the gas flow. The main contributions introduced in this

paper with respect to the current literature are the

following.

1) The extended incremental method is used for the

linearization of the gas physics [11]. This linearization

method builds on the simple incremental method,

exhibiting enhanced features and advantages as com-

pared to standard piecewise linear approximation

methods.

2) The nonlinear and nonconvex compressor operating

range is linearized by an outer approximation

approach. This approach often yields a rather detailed

approximation (as opposed to simple linear approxi-

mations typically used in the literature), while keeping

the computational overhead relatively low compared

to the piecewise linearization of multivariate nonlin-

earities with the extended incremental method.

3) The coupling constraints (originally quadratic func-

tions) are linearized with the extended incremental

method as well, whereas in the literature a simple

linear conversion ratio is applied.

Section 2 describes the nonconvex MINLP, whereas

Sect. 3 presents the corresponding linearized model (MIP).

In Sect. 4, several computations are presented and dis-

cussed afterwards. Lastly, in Sect. 5 the computational

results are summurized.

2 Problem statement

The nonconvex MINLP is composed of an electricity

(MIP) and a gas model (nonconvex MINLP) which are

described in Sects. 2.1 and 2.2, respectively. The coupling

of these models via nonlinear functions is explained in

Sect. 2.3.

2.1 Electricity problem

In this paper, the day-ahead scheduling performed by

the transmission system operator involves the solution of

the unit commitment problem with simultaneous opti-

mization of energy and reserves. The problem objective

function concerns the minimization of the total as-bid cost

for energy and for the provision of reserves plus the unit

start-up/shut-down costs, subject to the following system

operational constraints and unit technical constraints, for

Table 1 Literature overview for linearized models

Reference Gas physics Compressor/ Configuration

coupling

Correa-Posada and Sánchez-Martı́n [6, 7] Incremental Single linear Transient

Correa-Posada and Sánchez-Martı́n [8, 9] Piecewise Single linear Stationary

Wang et al. [10] Incremental Single linear Stationary

Current Extended Linearized Stationary

Incremental Range/extended

incremental
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all dispatch periods t 2 T (typically, the dispatch period is

1 h) [2].

1) Unit start-up/desynchronization constraints.

2) Unit minimum up/down time constraints.

3) Logical status of unit commitment constraints.

4) Unit power output normal and AGC limits.

5) Unit reserve capability constraints.

6) Unit ramp-up/down constraints.

7) The power balance equations.

8) System reserve requirements.

Due to the presence of binary variables for unit com-

mitment and automatic generation control (so-called AGC)

status, the electricity problem constitutes a MIP model. The

objective value is defined as the electricity system cost Ce

for all dispatch periods t 2 T .

2.2 Gas problem

The optimization of gas transport networks has been

recently described in [1] and in the survey article [12]. The

main objective is to find cost optimal operations, which

stick to the required pressure and flow bounds. As gas

mainly flows from higher to lower pressures, it is required

to install compressor machines in order to increase the gas

pressure again. These compressions can be controlled by

the transmission system operator, which adds discrete

aspects to the problem among others. The physics of gas

transport are driven by differential equations, which are

simplified herein for the description of a steady-state

problem. In this subsection, the gas model is analytically

described. It should be noted that in all descriptions of

Sect. 2.2 the dispatch period index is deliberately

ignored.

The gas network is modeled via a directed graph G ¼
ðV;AÞ with node set V and arc set A. The set of gas nodes

u; v 2 V is partitioned into the set of entry nodes Vþ (where

gas is supplied), the set of exit nodes V� (where gas is

discharged) and the set of inner nodes V0 (without any

supply or discharge). Entries can be LNG (liquefied natural

gas) entries Vlng or standard pipeline entries Vent. Exits can

be electric gas loads (power plants) Ve or non-electric gas

loads Vne. The arcs are divided into pipes Api, control

valves Acv and compressor machines Acm.

For every arc a ¼ ðu; vÞ 2 A, variables qa are defined,

expressing the gas (mass) flow in arc direction when

qa [ 0 and vice versa, and having certain lower and upper

bounds.

qa 2 ½q�a ; qþa � 8a 2 A ð1Þ

Every node u 2 V has ingoing and outgoing arcs,

defined as dinðuÞ and doutðuÞ, respectively. For every

node u 2 V , a pressure variable pu and a flow variable qu is

defined with certain upper and lower bounds.

pu 2 ½p�u ; pþu � 8u 2 V

qu 2 ½q�u ; qþu � 8u 2 V

�
ð2Þ

The flow variables qu represent the gas inputs

(nonpositive) and outputs (nonnegative) at node u. Flow

bounds are implicitly computed from pressure bounds and

are useful only for preproccessing purposes. The nodal

flow variables are fixed to zero for inner nodes.

q�u ¼ qþu ¼ 0 8u 2 V0 ð3Þ

Moreover, there is a constraint for the outputs at non-

electric gas loads. The forecasted gas demand du for every

u 2 Vne should be fulfilled as far as possible. If this is not

possible, a so-called shedding variable su measures this

deviation according to the following:

qu þ su ¼ du 8u 2 Vne ð4Þ

Using the flow variables, the mass flow conservation

equation is formulated as follows:X
a2dinðuÞ

qa �
X

a2doutðuÞ
qa ¼ qu 8u 2 V ð5Þ

The pipes Api are used to transport gas through the

network and are specified by their length La, diameter Da,

and integral roughness ka. Here the differential equations

of gas dynamics come into play. These gas dynamics

within a single pipe are described by the Euler

equations [13]. However, finishing well-known

simplification steps, an analytic formula of pressure and

flow in a pipe can be given via the Weymouth

equation [1], Chapter 6.

p2v � p2u ¼
LakaRszaT

A2
aDa

jqajqa 8a 2 Api ð6Þ

The specific gas constant Rs depends on the gas

composition, while the friction factor ka is calculated

from the diameter and the integral roughness using the

formula of Nikuradse [14], and za is the average

compressibility factor. Furthermore, the cross-sectional

area of pipe a 2 Api can be calculated with the help of the

diameter as follows:

Aa ¼ D2
a

p
2

8a 2 Api ð7Þ

za of pipe a 2 Api is calculated with an average pressure on

a pipe regarding the bounds, thus

pm;a ¼
max p�u ; p

�
v

� �
þmin pþu ; p

þ
v

� �
2

8a 2 Api
ð8Þ

The formula of the American Gas Association is used to

calculate the compressibility factor [15]:

366 Mathias SIRVENT et al.

123



zðp; TÞ ¼ 1þ ap ð9Þ

where a constitutes a parameter given as a function of the

pseudocritical pressure pc and the pseudocritical

temperature Tc:

a ¼ 0:257
1

pc
� 0:533

Tc

pcT
ð10Þ

The isothermal case assumes constant temperature T ,

which is used for that model. Now, (8)–(10) are combined

for the calculation of za. za ¼ zðpm;a; TÞ;8a 2 Api:

Moreover, so-called short pipes are defined as auxiliary

network elements. They are used to model multiple entries

at a single entry node or to model multiple exits at a single

exit node and can be interpreted as pipes a ¼ ðu; vÞ 2 Api

with length La ¼ 0 and therefore from (6), pu ¼ pv can be

concluded.

Control valves Acv are used to decrease gas pressure.

These elements are modeled with some discrete aspects,

since they can be operated in different modes (active,

bypass and closed). A closed control valve decouples the

in- and outflow pressures and prohibits any gas flow

through a ¼ ðu; vÞ 2 Acv. The bypass mode ensures the

flow through the control valve, but does not influence

pressure, while the active mode ensures the desired pres-

sure decrease within a controllable range Da 2 ½D�
a ;D

þ
a �:

a is active ) pv ¼ pu � Da

a is in bypass mode ) pv ¼ pu
a is closed ) qa ¼ 0

8<
: ð11Þ

Compressor machines Acm are necessary to increase

pressure, in order to transport gas over long distances. As

control valves, a compressor machine can be either active,

closed or in bypass mode. The working ranges of turbo

compressors are typically described by characteristic

diagrams, as shown for example in Fig. 1, where the

admissible operating range is depicted in green.

The horizontal axis in the diagram is labeled with the

volumetric flow rate at inlet conditions.

Qa ¼ quqa ð12Þ

where qu denotes the density at node u. Density is related

to pressure via the equation of state:

pu ¼ quRsTuzu ð13Þ

In the isothermal model presented in this paper, the gas

temperature at the inlet Tu is constant. The vertical axis is

labeled with the specific change in adiabatic enthalpy

Had
a ¼ RsTuzu

j
j� 1

pv
pu

� �j�1
j

�1

" #
ð14Þ

The isentropic exponent j ¼ 1:38 is also a constant in the

model.

In Fig. 1, the dashed lines represent isolines for the

adiabatic efficiency of the compressor and the thin solid

lines are isolines for compressor speed. The upper and

lower bounding curve of the feasible region is given by the

isolines for minimum and maximum speed. To the left, the

working range is bounded by the surgeline. The right

boundary curve is called chokeline. Both surgeline and

chokeline are depicted with thick solid lines. All these

curves result from (bi-)quadratic least squares fits of the

measured data points, which are depicted as crosses in

Fig. 1. The four bounding can be written as nonlinear

inequalities of the form:

f iaðQa;H
ad
a Þ� 0 8a ¼ ðu; vÞ 2 Acm; i ¼ 1; 2; 3; 4

ð15Þ

The power required for compression is given by

Pa ¼
qaH

ad
a

ga
8a ¼ ðu; vÞ 2 Acm ð16Þ

where, ga denotes the adiabatic efficiency of the com-

pressor, which is considered constant in this paper. Further

details on the modeling of compressors can be found in [1],

Sect. 2.

Since the objective is to minimize costs, the combina-

tion of the compressor costs and the shedding costs are

calculated. It should be noted that the gas supply cost of the

power plants is included in their variable cost, which is

implicitly incorporated within their energy offer prices in

the electricity model; thus, they are not included again in

the objective function of the gas optimization problem. The
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Fig. 1 Characteristic diagram of turbo compressor
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compressor costs depend on the power of compressor

machine Pa, while the shedding costs depend on su. The

corresponding parameters ca for Pa and c for su represent

the cost coefficient for compressor machine a 2 Acm and

the cost term (penalty price) for shedded gas flow,

respectively, and are used to compute the objective value.

The overall optimization problem of the gas system is

formulated as follows:

min
X
a2Acm

caPa þ
X
u2Vne

csu ð17Þ

s.t. pressure and flow bounds ð1Þ�ð3Þ ð18Þ
shedding at non-electric gas loads (4) ð19Þ
mass flow conservation (5) ð20Þ
pressure decrease in pipe (6) ð21Þ
control valve model (11) ð22Þ
compressor model ð12Þ�ð16Þ ð23Þ

The overall compressor costs Cc and the overall costs due

to shedded gas flows Cs for all dispatch periods t 2 T can

now be formulated with Cc ¼
P

t2T
P

a2Acm
caP

t
a and

Cs ¼
P

t2T
P

u2Vne
cstu:

Thus (17)–(23) can be extended to all dispatch periods:

min Cc þ Cs ð24Þ

s.t. gas constraints ð18Þ�ð23Þ for all t 2 T ð25Þ

Problem (24)–(25) yields a nonconvex MINLP, since the

control valves and the compressor machines include dis-

crete variables, and (6) and (12)–(16) include nonlinear

functions as equations and nonconvex inequalities. Note

that Problem (24)–(25) is block diagonal, where each block

is made up of the variables and constraints of a single

discrete time step.

2.3 Coupling of gas and electricity problem

The two energy systems are coupled through the gas

consumption of the electric gas loads. The coupling con-

straint can be mathematically formulated with

utu
au þ bue

t
u þ cuðetuÞ

2

H
¼ qtu 8u 2 Ve; 8t 2 T ð26Þ

The binary variable utu and continuous variable etu express

the commitment status of electric gas load u 2 Ve and the

electricity production of unit u 2 Ve, at dispatch period

t 2 T , respectively. The fuel consumption coefficients of

electric gas loads u 2 Ve, which are au, bu, and cu, as well

as the heating value of natural gas H, are needed to cal-

culate the conversion. For simplicity, it is assumed that the

composition of the supplied gas does not vary among the

system entries.

Intertemporal constraints between dispatch periods are

only present in the electricity unit commitment problem in

Sect. 2.1, while the gas model (24)–(25) can be separated

for every dispatch period. The overall optimization prob-

lem is expressed as a minimization problem where the

respective costs of the two systems are combined to

express the overall objective function. It is a nonconvex

MINLP:

min Ce þ Cc þ Cs ð27Þ

s.t. electricity constraints in chapter 2.1 ð28Þ
gas constraints (25) ð29Þ
coupling constraints (26) ð30Þ

3 Linearized formulation

Two linearization techniques are used to tackle the non-

linearities of (27)–(30). The nonlinear functions in (6), (16),

and (26) are linearized with the so-called extended incre-

mental method [11]. The nonlinear and nonconvex set of (15)

is linearized with outer approximation constraints [16].

Both techniques ensure the relaxation property, which

means that each solution to the nonlinear model (27)–(30)

is also feasible for the linearized model. This is important

as pure approximations tend to be infeasible even if the

underlying nonlinear model is feasible [17].

3.1 Extended incremental method

First of all, it should be mentioned that the incremental

method as basis of the extended incremental method is just

one of various methods to linearize nonlinear functions.

MIP-relaxations may be formulated with alternative

methods, for instance with a convex combination model

that introduces only a number of extra binary variables and

constraints that is logarithmic in the number of break-

points [18]. However, the incremental method is used in

this paper, since it performs best for gas transport problems

[5, 17, 19].

The extended incremental method works by first intro-

ducing a new finitely bounded variable for each nonlinear

term, and by then computing a piecewise linear approxi-

mation of it. The approximation is constructed such that an

a priori given upper bound on the approximation is satis-

fied, while introducing as less breakpoints as possible.

Using the known values of the resulting approximations

error, a MIP-relaxation model for the nonlinearities is

derived.

To be more precise, for a constraint of the form

cTxþ f ðyÞ ¼ 0, with f : R ! R nonlinear, and finitely

bounded y 2 ½ymin; ymax�, a new variable z is introduced,
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reformulating the constraint as cTxþ z ¼ 0, and a piece-

wise linear approximation UðyÞ ¼ z of f(y) over ½ymin; ymax�
with maxymin � y� ymax

jUðyÞ � f ðyÞj � e is computed.

Assuming that UðyÞ is defined over n intervals, subdi-

vided by breakpoints ymin ¼ b0\b1\. . .\bn�1 ¼ ymax,

the overall MIP-relaxation model of the constraint cTxþ
f ðyÞ ¼ 0 is reformulated as follows:

y ¼ b0 þ
Pn
i¼1

ðbi � bi�1Þdi

z ¼ f ðb0Þ þ
Pn
i¼1

f ðbiÞ � f ðbi�1Þð Þdi þ e

diþ1 �wi � di i ¼ 1; 2; . . .; n� 1

di 2 ½0; 1� i ¼ 1; 2; . . .; n

wi 2 0; 1f g i ¼ 1; 2; . . .; n� 1

e 2 ½�e; e�
z 2 R:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð31Þ

Each of the d-variables is associated with a discretization

interval. With the so-called filling condition diþ1 �wi � di,
we make sure that di [ 0 requires dj ¼ 1 for all j\i and

that di\1 requires dj ¼ 0 for all j[ i. This way, there can

be at most one index i of an interval with 0\di\1. In this

case, y lies within the ith interval. Assuming e ¼ 0, the

point (y, z) would lie on the ith line segement of the

piecewise linear function. However, with e 2 ½�e; e�, the
point (y, z) lies within a box of height 2e that encloses the
graph of the piecewise linear function. Since e has been

chosen such that also the graph of the approximated non-

linear function is contained in the boxes, model (31) yields

a relaxation.

The extended incremental method is used for the non-

linear terms in (6), (16), and (26). In order to rewrite (16)

as a sum of univariate nonlinear expressions, we plug in

Eq. (14) and apply the standard reformulation xy ¼ �ððx�
yÞ2 � x2 � y2Þ=2 for bilinear expression two times, before

the extended incremental method is applied. It should be

also noted that that after linearization, (26) is still a product

of a binary variable utu and a newly defined continuous

variable according to (31). This resulting nonlinear term

can be linearized without an error by the well-known bigM

method.

3.2 Outer approximation

Outer approximation is a well-known linearization

method for convex nonlinear programs [16]. In this paper,

it is used for the linearization of (15), although a noncon-

vex operating range is involved. The idea is to compute a

convex envelope of the operating range and to add

tangential hyperplanes to the envelope during optimization.

More details on this technique can be found in [1].

4 Case study

The developed model is tested on the Greek power

system together with the Greek natural gas transmission

system. The description of these networks is given in

Sect. 4.1, while the computational results are presented in

Sect. 4.2. First, the linearized formulation of Sect. 3 is

tested in Sect. 4.2.1. Afterwards, the results are compared

with a single electricity model in Sect. 4.2.2, where the gas

network is not taken into account.

4.1 Real-world test system

The Greek power system is operated by ADMIE (In-

dependent Power Transmission Operator S.A.) [20]. The

generation mix and the marginal cost range for each unit

category is presented on Table 2. In the test case, each

thermal unit is considered to submit one price/ quantity

offer at its minimum variable operating cost. The oppor-

tunity cost of hydro units (cost of replacement of a thermal

MWh) is considered for the generation of the respective

energy offers. This has been considered slightly higher than

the variable cost of the most expensive thermal units.

Indeed, in countries with a low portfolio of hydro resources

(e.g., in Greece), such opportunity cost is significantly

high, since hydro units essentially operate as peakers

(peak-shaving units), replacing expensive (high-cost)

thermal units. Finally, the system load is considered

inelastic.

The Greek natural gas transport network is operated by

the Greek natural gas transmission operator DESFA [21].

Figure 2 shows the network topology and Table 3 gives

some statistical information about the network.

The system constitutes a radial network consisting of

three entry points, namely two pipeline entries in the

northern part of the country in Sidirokastro and Kipi, and

Table 2 Greek power system generating units’ data with unit type,

number of unit types, installed capacity, and marginal cost range

Unit type Number Capacity Marginal cost

(MW) (€/MWh)

Lignite units 16 4302 43.18–51.20

CCGTs 11 5026 76.30–85.00

OCGTs 3 147 150

Hydro units 15 2997 90

RES 50 4191 –
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an LNG entry in the southern part, in the island of

Revythousa close to the metropolitan area of Athens. The

electric gas loads are mainly located in the south, while the

system is supplemented by a compressor station in Nea

Messimvria (close to Thessaloniki) to maintain gas flows

from the northern entries. Moreover, a control valve is

located at the Lavrio branch.

4.2 Computational results

All computations have been performed on a computer

with an Intel i7-4770 CPU with 4 cores running at 3.4 GHz

each, and 16 GB of main memory.

The electricity model was developed with GAMS

24.4.6 [22], while the linearized gas model was built with

the C?? software Framework LaMaTTo?? [23]. GAMS

was used to combine these models and to linearize the

coupling. As MIP solver, Gurobi 6.0.4 was used [24].

A MIP gap tolerance of 0.01% was selected. Moreover, a

time limit of 1 h was set as the electricity unit commitment

problem has to be solved in 1 h.

As instances, the days with highest non-electric gas

loads
P

t2T
P

u2Vne
dtu out of all days of every quarter of the

years 2013–2015 were chosen yielding in total twelve

instances.

Regarding the approximation accuracy, two varying

parameters have been allowed. The first parameter e1 is the
maximum error of the approximation of the nonlinear

pressure loss function (6) in bar. The second parameter e2
is the maximum error allowed for e2u in MW2. Four dif-

ferent pairs of values for e1 and e2 are compared in the

computations that are performed as shown in Table 4.

Moreover, preprocessing according to chapter 6 in [1] is

used for the gas problem. These methods tighten the

bounds of flow variables and reduce the number of lin-

earized functions. If a squared variable x2 occurs in the

problem without the use of the variable x itself, then x2 can

be used without a linearization and x can be calculated a

posteriori.

Regarding the entries, two different scenarios were

examined.

Case I For the first case, the historical gas entry distri-

bution of Kipi, Sidirokastro and Revythousa from 2013 to

2015 was averaged. Therefore, Kipi and Revythousa pro-

vide upto 20% of the gas each and the remaining upto 60%

are supplied at Sidirokastro. In the present model, the

optimizer is allowed to deviate from this distribution by at

most ten percent at each entry.

Case II Another case with closed LNG entry is imple-

mented, due to its periodic maintenance or outage. The entry

distribution of Kipi and Sidirokastro can be chosen freely by

the optimizer in this case. However, it is required that at least

20% of consumed gas has to be supplied from Kipi.

4.2.1 Linearized formulation

The average solution time and problem size for each

accuracy level from Table 4 is given in Table 5, while the

Control valve; Electric gas loads
Pipeline entries; LNG entry; Compressor machine

Fig. 2 Greek gas network

Table 3 Data of Greek gas network with 134 nodes and 133 arcs

134 nodes 133 arcs

Type Quantity Type Quantity

Pipeline entries 2 Pipes 86

LNG entries 1 Short pipes 45

Non-electric 34 Control valves 1

Gas loads

Electric gas 11 Compressor 1

loads machines

Inner nodes 86

Table 4 Approximation accuracy levels

Label e1 e2

A 1.5 1

B 2.5 10

C 5.0 100

D 15.0 1000
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day with the highest non-electric gas load, the 18/02/2015,

is presented in Table 6 in detail.

Table 5 shows the growing amount of variables and

constraints for tighter linearizations leading to higher

solution times. While the number of variables and con-

straints only slightly deviates from the average within each

row, the solution time is in general higher for higher non-

electric gas loads. Moreover, Case II turns out to be harder

than Case I, which can be seen from the average solution

time and the higher number of instances that hit the time

limit.

Table 6 shows an instance, where solution times are

higher than the averages from Table 5. The overall

objective function (sum of Ce, Cc, and Cs) is always

higher for tighter approximations due to reduced feasible

sets. This is mainly driven by the compressor costs Cc for

Case I and by the compressor costs Cc and especially the

shedding costs Cs for Case II. This can be verified by the

average power of the compressor in every dispatch period

for all instances, as shown in Fig. 3 for Case I and II. The

average power is in general higher for tighter approxi-

mations and moreover higher for higher non-electric gas

loads, thus especially during the evening. Higher com-

pressor power leads to higher compressor costs due to

(17)–(23).

As Case II prohibits incoming flow from the south, all

exits, e.g. the electric gas loads in the south, have to be

served by the northern entries. This leads to higher com-

pressor costs for Case II compared to Case I, which

follows from the necessary compression for the gas from

the north. This can be seen in Fig. 3 again, where the

average compressor power is much higher for Case II than

Case I. Even if the compressor in Case II is able to fulfill

the requirements of the electricity problem in Sect. 2.1, it

is not able to guarantee the demands of the non-electric gas

loads any more, thus su [ 0 in (4). Figure 4 visualizes the

average of all these sheddings according to Case II. As all

sheddings occur in the south, therefore a zoom is per-

formed into this region in Fig. 4. Yellow circles represent

non-electric gas loads without shedding, while magenta

circles represent non-electric gas loads with shedding. The

higher the averaged shedding, the bigger the radius of

these circles. As the LNG entry is closed for Case II, the

non-electric gas loads in the south will suffer according to

the model.

4.2.2 Comparison with single electricity model

An additional way to depict the effect of the combined

optimization of the two systems is by comparing it with the

single electricity model, which is the solution of the elec-

tricity problem in Sect. 2.1 without any consideration of

the coupling to the gas network. The solution of the single

electricity model constitutes the optimal values of the

energy production of all power plants, including CCGTs as

electric gas loads. The differences of these values com-

pared to the values of the combined optimization problem

Table 5 Average number of continuous variables, discrete variables, constraints, and average solution time. The numbers in parentheses denote

the number of instances that hit the time limit

Accuracy Case I Case II

Continuous Discrete Constraints Solution Continuous Discrete Constraints Solution

variables time (s) variables time (s)

A 136570.00 54913.58 186217.00 500.18 (0) 134467.50 53826.33 183706.50 1762.09 (5)

B 81756.17 27506.67 108507.17 96.05 (0) 80845.67 27015.42 107188.67 917.54 (2)

C 61030.83 17144.00 80413.83 26.57 (0) 60696.33 16940.75 79671.33 516.91 (1)

D 54284.83 13771.00 71411.83 8.72 (0) 54212.83 13699.00 70931.83 142.51 (0)

Table 6 Electricity costs Ce, compressor costs Cc, shedding costs Cs, and solution time for instance 18/02/2015

Accuracy Case I Case II

Ce (€) Cc (€) Cs (€) Solution time (s) Ce (€) Cc (€) Cs (€) Solution time (s)

A 4155106.61 1918.72 0.00 593.54 4652407.31 4563.49 900463.23 3600.00

B 4155105.52 1587.34 0.00 166.86 4642512.18 4408.67 900418.07 3600.00

C 4155095.11 1219.04 0.00 34.65 4642326.27 3856.23 899957.85 3600.00

D 4155000.91 865.70 0.00 10.05 4642212.69 2912.82 895779.05 1089.00
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are investigated. Figure 5 shows the average difference of

all values per hour for all instances and accuracy levels.

It can be seen that the average production of the electric

gas loads is reduced for many dispatch periods for both

cases. The sharpest decline takes place during the evening

peak hours and is even more evident for Case II.

The reduced energy production can be attributed to the

fact that the gas network cannot allocate the desired

amount of gas to the electric gas loads according to the

optimal solution of the single electricity model. The dif-

ference is more evident in Case II when the supply capacity

of the gas network is further reduced.

The lost production of the gas-fired power plants is

compensated by an increase from the other, more expen-

sive electricity production sources. This leads to higher

electricity costs Ce, which can be seen in Table 7 for both

cases.

Non-electric gas loads without shedding
LNG entry; Non-electric gas loads with shedding

Fig. 4 Southern part of the network from Fig. 2 without the control

valve

Table 7 Average increase of Ce for both cases

Accuracy Case I (€) Case II (€)

A 2536.80 118771.41

B 2534.28 117864.75

C 2530.43 117841.05

D 2520.40 117779.13
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5 Conclusion

In this paper, the coupled optimization of electricity and

natural gas systems was investigated for the real-world test

system of Greece. The extended incremental method, as

well as the outer approximation method, were applied for

the linearization of the nonlinear equations that govern the

physics of gas transport and for the coupling constraint of

the two energy systems. Four different discretization

accuracy levels were selected and the experiments were

conducted on real system data for two distinct test cases.

The computed results showed the effectiveness of the

proposed combined optimization method by depicting.

1) The increase of objective function costs and solution

times with respect to tighter approximations for all

instances examined.

2) The appearance of shedded non-electric gas loads

during certain instances, caused by the need to provide

the demand of the electric gas loads, in order to

maintain the electricity system balance.

3) The effect of the gas system’s constraints on the

electricity model, which was expressed in the increase

of the electricity unit commitment cost.

This work is intended to act as a basis for further

investigation into computations and comparisons of the

coupled optimization problem, with additional considera-

tion of stochasticity for the electricity system and the

implementation of instationary gas flows for the gas

system.
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