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Abstract In recent years, much attention has been devoted

to the development and applications of smart grid tech-

nologies, with special emphasis on flexible resources such as

distributed generations (DGs), energy storages, active loads,

and electric vehicles (EVs). Demand response (DR) is

expected to be an effective means for accommodating the

integration of renewable energy generations and mitigating

their power output fluctuations. Despite their potential

contributions to power system secure and economic opera-

tion, uncoordinated operations of these flexible resources

may result in unexpected congestions in the distribution

system concerned. In addition, the behaviors and impacts of

flexible resources are normally highly uncertain and com-

plex in deregulated electricity market environments. In this

context, this paper aims to propose a DR based congestion

management strategy for smart distribution systems. The

general framework and procedures for distribution conges-

tion management is first presented. A bi-level optimization

model for the day-ahead congestion management based on

the proposed framework is established. Subsequently, the

robust optimization approach is introduced to alleviate

negative impacts introduced by the uncertainties of DG

power outputs and market prices. The economic efficiency

and robustness of the proposed congestion management

strategy is demonstrated by an actual 0.4 kV distribution

system in Denmark.

Keywords Distribution system, Congestion management,

Demand response, Load aggregators, Uncertainty, Robust
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1 Introduction

The past decade has witnessed rapid development and

implementation of smart grid technologies in modern

power systems. Specific to distribution systems, the inte-

gration of distributed energy resources (DERs) such as

distributed generations (DGs) [1], energy storage devices

[2, 3], active loads [4–11] and electric vehicles (EVs)

[10–12], has greatly changed the operation conditions of

the distribution system concerned. DERs are believed to

play critical roles in shifting peak loads [7], improving

power qualities, enhancing operation efficiency [13] and

mitigating possible congestions at distribution system

levels [14] in future power systems. On the other hand, the
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increasing penetration of renewable energy sources as well

as the popularization of plug-in EVs will introduce sig-

nificant uncertainties, and impose challenges to the optimal

operation of distribution systems. As a result, efficient and

reasonable utilization of integrated DERs, especially in the

electricity market environment, will become a more and

more important issue for distribution system operators

(DSOs) in the near future.

Among all negative impacts that DERs may introduce to

the distribution system concerned, congestion is likely to

be the most fatal one as it may directly damage the devices

such as distribution transformers and feeders. In general,

congestions in a distribution system may be caused by

various factors, e.g. very high power consumption during

peak hours, concentrated charging of EVs and excessive

power generation from DGs. Distribution system conges-

tion has been studied in some existing publications, and

two kinds of methods proposed, i.e. market-based methods

and direct control methods. Market-based methods include

the day-ahead dynamic tariff, distribution capacity market,

intra-day shadow price and flexibility service market [14].

For example, a congestion fee based market mechanism is

proposed in [15] where the DSO predicts possible con-

gestions for the coming trading day and publishes tariffs

prior to the clearing of the day-ahead market to alleviate

distribution congestions; the notion of flexibility clearing

houses (FLECH) is proposed in [16] to enable small scale

DERs to participate in flexibility service trading; a novel

plan that establishes an individual charging plan for each

EV to mitigate distribution system congestion while

meeting the requirements of EV owners is developed in

[17]; three potential strategies for congestion management

are presented in [18]. The direct control methods include

network reconfiguration, active power control and reactive

power control. For instance, an optimal reconfiguration-

based dynamic tariff (DT) method considering feeder

reconfiguration in calculating DT is proposed for conges-

tion management and line loss reduction in distribution

networks with high penetration of EVs in [19].

Demand response (DR) programs can be employed to

alleviate system congestions by motivating the interactions

between power system dispatchers and power consumers

[20, 21]. A broad range of potential benefits on system

operations and market efficiencies can be expected by

reasonable implementations of DR programs [22]. In the

long run, the construction investments of transmission and

distribution facilities can also be reduced by implementing

appropriate DR schemes. An energy consumption opti-

mization model for a given customer in response to hourly

electricity prices is formulated in [23]. The locational

marginal price intervals under wind uncertainty are cal-

culated in [24] without the need of Monte Carlo simula-

tions. A distributed real-time DR algorithm to determine

the interactions among multiple utility companies and users

is proposed in [25].

However, there exist technical and economical diffi-

culties for the DSO to directly dispatch numerous dispersed

DR resources. A commonly adopted solution is to intro-

duce aggregators that take responsibilities of integrating

DR resources, actively participating in the electricity

market and managing financial risks of power consumers at

the same time [26, 27]. Nonetheless, the operation of

aggregators is influenced by the price signals in the elec-

tricity market, and their concentrated consumptions during

price valley hours may also result in congestions. To the

best of our knowledge, the distribution congestion man-

agement problem considering the uncertainties of DERs’

power outputs and electricity market prices has not been

studied comprehensively so far.

Given this background, a bi-level optimization frame-

work of distribution congestion management is developed

in this paper, where the uncertainties of DG generation

outputs and market prices are modeled through robust

optimization techniques. The economic dispatch of the

distribution system is carried out in the upper-level to attain

the overall energy acquisition and load interruption strat-

egy, and the nodal prices in the distribution system can be

calculated to direct the behaviors of aggregators. Subse-

quently, the aggregators will optimize the detailed energy

consumptions of customers within their control to maxi-

mize their economic profits based on the nodal prices. The

optimized energy schedules in the lower level model will

be returned to the upper level model for verification.

Through iterations between these two levels, distribution

congestions can be relieved through DR schemes.

The remainder of this paper is organized as follows. A

brief introduction to the congestion management frame-

work of smart distribution systems is described in Sect. 2.

In Sect. 3, a deterministic bi-level linear programming

model with interruptible loads (ILs) and flexible loads

coordinated to tackle distribution system congestion is

formulated. A robust optimization model is introduced to

address uncertain factors in Sect. 4. The performance of the

developed model is demonstrated by case studies in Sect. 5.

Finally, conclusions are drawn in Sect. 6.

2 Congestion management in smart distribution
systems

2.1 Structure of smart distribution system

The structure of a smart distribution system is described

in Fig. 1. The electric power consumed by end-users can be

provided not only through the transmission system, but also

by the DG suppliers. On the basis of advanced information
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technology, distributed renewable generations such as wind

turbines and solar panels are compatible with high per-

meability through coordination of energy storage devices

and DR resources in the smart distribution system. For

example, load levels of EVs and smart household appli-

ances can be scheduled to accommodate more renewable

generation output and meanwhile minimize the energy

acquisition costs.

In fact, it is not realistic for numerous dispersed small-

scale participants to directly participate in the wholesale

electricity market. As an indispensable economic entity in

the electricity market environment, aggregators play the

roles of integrating demand side resources, participating in

both electricity wholesale and retail markets, collecting data

and carrying out statistical analysis, as well as communica-

tions with the DSO. By the optimal management of demand

side resources, aggregators can gain profits, and improve the

secure and economic operation of the distribution system.

The whole market structure of a smart distribution sys-

tem is illustrated in Fig. 2 [28]. Numerous DGs, EVs and

other demand side resources are managed by aggregators

acting as emerging market entities in future distribution

systems. With advanced information technology, the DSO

who primarily takes responsibility for system security and

economics could interact with the aggregators for coordi-

nated operation. Bidirectional flows of electric power and

information exist simultaneously in smart distribution

systems. As huge amount of data is expected by commu-

nications with and among numerous dispersed demand side

resources, the data packing technique can be employed to

handle the massive amount of data from smart meters at the

load side.

2.2 Process of congestion management

All entities participating in congestion management can

attain different degrees of benefit. The DSO minimizes the

overall operation cost to meet all load demands in the system

and maintains the load level within the allowed range to

prevent the distribution facilities from being damaged. The

aggregators charge some management fees to cover the

operation and risk costs and make some profits for their

services. The consumers attain professional assistants to

construct their building energy management systems and be

enabled to communicate with the aggregators, so that they

can minimize their energy payment by cooperating with

other consumers and interact with the DSO and power

market operator without affecting their energy use.

Distribution system congestion can be alleviated by the

comprehensive utilization of DR resources through nodal

prices and other incentives. DR resources are assumed to

be divided into flexible loads and ILs considering their

various characteristics. Flexible loads such as EVs and

smart household electric appliances could be transferred

within a prescribed time period without interfering the

electricity usage of consumers if assigned tasks can be

completed. While for ILs such as industrial loads, lighting

loads and others, economic compensation can be offered as

incentives. In this paper, it is assumed that flexible loads

are managed by aggregators, and compensation fees for ILs

are provided to end-users by the DSO for implementing

distribution system optimal scheduling.

Based on the above assumptions, the congestion man-

agement process of a smart distribution system can be

implemented as follows:

1) The dispersed data of end-users including estimated

electricity demands, flexible loads and ILs are col-

lected from terminal smart meters by aggregators.

2) Massive amounts of data are sorted and merged by the

data packing technique to reduce the problem scale by

aggregators.

3) The processed data are submitted to the DSO.

4) DG power outputs, electricity wholesale market prices

and their variable ranges are forecasted by the DSO.

5) Optimal solutions are attained by employing the

presented optimization model.

Fig. 1 Infrastructure of a smart distribution system

Fig. 2 Market structure of smart distribution system
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6) The aggregators are informed in advance of the load

interruption schedule and nodal prices during the day.

7) The schedule of energy acquisition from the transmis-

sion system and load interruptions are carried out by

the DSO, and flexible loads are properly managed

through nodal prices by the aggregators.

3 Deterministic bi-level programming model
for congestion management

3.1 Upper-level model

The congestion management framework developed in

this work consists of two levels. In the upper-level model,

the optimal power flow (OPF) of the distribution system

during the day is conducted to attain the energy acquisition

and load interruption schedule and calculate nodal prices in

each trading period of the day. The DSO, the decision-

maker of the upper-level, aims at minimizing the total

operation cost of the distribution system by appropriately

scheduling energy acquisition and effectively utilizing ILs.

DCOPF is used to attain the nodal prices of active power

since the attained active power flow results by DC power

flow are close to those obtained by AC power flow with

acceptable errors but with much less computation time,

although reactive power flow results and node voltage

magnitudes suffer large errors with the DC formulations.

Extensive simulation results of sample power systems

exhibit good convergence of the DCOPF. Recently, a lin-

earized OPF for active distribution system with reactive

power flow and voltage constraints considered is proposed

in [29] to mitigate the problem of the high R/X ratio and

incapability of addressing losses.

As the compensation fees for ILs are all supposed to be

directly paid to consumers by the DSO and aggregators do not

get any benefit from it, the quantities of load interruption

during the day are globally optimized throughout the distri-

bution system in the upper-levelwith theDSOas the decision-

maker, and meanwhile, flexible loads are properly managed

with nodal prices by the aggregators in the lower-level.

Based on the above description, the decision variables of

the upper-level are the power purchasing quantities from

the transmission system and the loads interrupted in each

period. The objective function of the upper-level could be

formulated as (1) which consists of two components,

namely the power purchasing costs from the wholesale

market and the compensation costs for ILs.

The constraints of the upper-level model include: power

balances constraints (2), distribution line capacity con-

straints (3), IL constraints (4), and constraints of power

purchased from the transmission system (5).

min
XTsum

t

XNd

i¼1

ktPin;i;t þ pIL;i;tPIL;i;t ð1Þ

s:t:

Pin;i;t ¼
XNd

i¼1

PL;i;t � PIL;i;t þ Pa;i;t þ
XNEV ;i

e¼1

Pe;i;t � PDG;i;t

 !

ð2Þ

XNd

i¼1

hmi

 
Pin;i;t þ PDG;i;t � PL;i;t þ PIL;i;t

�����

�
XNSmart;i

a¼1

Pa;i;t �
XNEV;i

e¼1

Pe;i;t

!������Fm

ð3Þ

0�PIL;i;t �PIL;i ð4Þ

Pin;i �Pin;i;t �Pin;i ð5Þ

where kt and Pin,i,t respectively denote the wholesale power

market price and injected power of bus i from the transmission

system at time t; pIL,i,t denotes the load interruption compen-

sation price of bus i at time t; PL,i,t, PIL,i,t, Pa,i,t, Pe,i,t and PDG,i,t

respectively denote the inelastic loads, the ILs, thea-th groupof

smart household appliance loads, the e-th EV loads and theDG

power injection of bus i at time t; hmi denotes the power transfer

distribution factor of branchm;Fm denotes the distribution line

capacity of branchm; PIL;i denotes the upper limit of the ILs at

bus i; Pin;i and Pin,i denote the upper and lower limits of the

power purchased from the transmission system at bus i; Nd,

NSmart,i andNEV,i respectively denote the number of buses in the

distribution system, the number of smart household appliances

and the number of EVs at bus i; Tsum is the number of time

periods.

3.2 Lower-level model

As mentioned above, the aggregators would sponta-

neously schedule the flexible loads under control according

to the nodal prices published by the DSO in the lower-level

to minimize energy consumption costs. The nodal prices

calculated in the upper-level include two parts, namely the

wholesale market prices and the congestion fee which is

additionally charged if congestion occurs. Hence, the nodal

price can not only guide the flexible power consumption in

periods with lower market prices, but also prevent the

distribution system from congestion.

In the lower-level problem, the following assumptions

are made in the decision-making process of each aggre-

gator in the distribution system:

1) Electric power is supplied to end-users at fixed prices.

2) Each aggregator is assumed to be a price taker whose

market power is sufficiently small to influence the

market prices.
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3) A long-term contract is signed with DG suppliers to

purchase renewable energy as much as possible at a

fixed low price on the premise of ensuring the security

of the power system.

4) Flexible loads can be categorized into several different

groups according to their temporal availabilities and

individual characteristics. For example, EVs could

function as flexible loads if and only if they are

physically connected to the distribution system con-

cerned, and their available time periods rely on their

daily mileages, battery characteristics and driving

preferences. On the other hand, the smart household

electric appliances managed by a smart house man-

agement system should accomplish some specified

tasks during specified periods, e.g. air conditioning

devices should maintain the indoor temperatures

within certain intervals throughout the day. Thus, the

flexibility constraints of their electricity consumptions

may change over time, and are greatly influenced by

external factors as well. As a result, these two types of

flexible loads are modeled discriminately in this paper

to embody their own characteristics.

Based on the above assumptions, the optimal con-

sumption schedule of smart household appliances and EVs

for each aggregator is developed. The decision variables of

the lower-level model are the quantities of smart household

appliance loads and EV charging loads consumed in each

period. The objective of each aggregator is to maximize its

profit, as formulated in (6). The profit of each aggregator

can be represented by three parts: the revenues from

electric power sale, the power purchasing costs from the

wholesale market, the DG power purchasing costs.

The lower-level constraints include: the smart household

appliance load constraints (7), the electric consumption

quantity constraints of smart household appliances (8)–

(10), the EV load constraints (11), the EV’s charging

quantity constraints (12)–(14).

max
XTsum

t

X

i2An

"
p PL;i;t � PIL;i;t þ Pa;i;t þ

XNEV ;i

e¼1

Pe;i;t

 !

�ki;t PL;i;t � PIL;i;t þ Pa;i;t þ
XNEV ;i

e¼1

Pe;i;t � PDG;i;t

 !

�pDG PDG;i;t

#

ð6Þ

s:t: 0�Pa;i;t �Pa;i ð7Þ

Q
a;i;n

�
Xta;n

t¼ta;s

Pa;i;tDt�Qa;i;n ð8Þ

ta;s � ta;n � ta;f ð9Þ

Xta;f

t¼ta;s

Pa;i;tDt ¼ Qa;i;sum ð10Þ

PEV �Pe;i;t �PEV ð11Þ

SEV �
Xte;n

t¼te;s

Pe;i;tgcDt� SEV ð12Þ

te;s � te;n � te;f ð13Þ

Xte;f

t¼te;s

Pe;i;tgcDt ¼ QEV ;i ð14Þ

where p, ki,t and pDG respectively denote the fixed retail

price to consumers, the nodal price of bus i at time t, and

the wholesale price of DG; Pa;i denotes the upper limit of

the a-th smart household appliance load; Qa;i;n and Qa,i,n

respectively denote the upper and lower limits of the

electric consumption quantity of the a-th smart household

appliance within a prescribed period of time, and Qa,i,sum

denotes the power consumption for designated tasks; ta,s
and ta,f respectively denote the starting and end time for the

a-th smart household appliance load, and ta,n denotes a

time period between them; PEV and PEV respectively

denote the upper and lower limits of an individual EV load;

SEV and SEV respectively denote the upper and lower limits

of an individual EV’s charging status; gc denotes the

charging efficiency of EVs; QEV,i denotes the total charging

quantity of EVs at bus i; te,s and te,f respectively denote the

starting and end time for the e-th EV load, and te,n denotes

a time period between them.

4 Robust bi-level programming model
for congestion management

4.1 Modeling of uncertain quantities

4.1.1 Modeling uncertain renewable generation outputs

With intermittent, volatile and uncertain attributes,

numerous different types of renewable generations widely

distributed at the load side have various output characteris-

tics, and are difficult to be accurately modeled with proba-

bility. The DG power output of bus i at time t is assumed to

vary in a certain range, which can be described as

~PDG;i;t 2 PDG;i;t � P̂DG;i;t;PDG;i;t þ P̂DG;i;t

� �
ð15Þ

where ~PDG;i;t, PDG;i;t and P̂DG;i;t denote the uncertain DG

power output, the forecasted DG power output, the maxi-

mum deviation of DG power output of bus i at time t,

respectively.
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The constrained variables Pt can be introduced to con-

trol the numbers of DGs with significant deviations of

electric power outputs at time t, so that the conservatism of

the proposed model can be regulated [30, 31]. For instance,

Pt = 0 means that the power deviation at time t is small;

Pt = |JDG|/2 means that at least half of DGs’ outputs may

deviate from the forecasted values significantly. Therefore,

it can be seen that the larger the value of Pt is, the more

conservative the solution could be. Pt B |JDG|, |JDG| is the

number of buses with connected DGs.

Based on the above description, it can be assumed that

in extreme scenarios, DG power outputs at a designated bus

may reach the upper limit, the lower limit or the forecasted

value, and the number of buses whose power outputs reach

the limits will not be larger than Pt. As a result, the

uncertain set of DG power outputs can be represented as

P ¼ ~PDG;i;t 2 < Ij j� Tj j : ~PDG;i;t

�

¼ PDG;i;t þ xDG;i;tP̂DG;i;t; 8t 2 T; 8i 2 I
� ð16Þ

where

�1� xDG;i;t � 1 ð17Þ

�Pt �
X

i2JDG
xDG;i;t �Pt ð18Þ

where xDG,i,t represents the deviation degree of DG power

outputs. If xDG,i,t = 1/-1/0, then the DG power output of

bus i at time t reaches the upper limit/the lower limit/the

forecasted value. T and I respectively denote the set of time

periods during the day and buses with connected DGs.

4.1.2 Modeling uncertain electricity market prices

Suppose that the day-ahead market price at time t varies

in a certain range, as described by

~kt 2 �kt � bkt; �kt þ bkt
h i

ð19Þ

where ~kt, kt and bkt denote the uncertain electricity market

price, the predicted electricity market price and the maxi-

mum price deviation at time t, respectively.

To regulate the conservatism of the solution, a con-

strained variable C is employed to control the total elec-

tricity price offset, C B 24. Conservatism of the solution

changes as the value of C varies. The smaller the value of C
is, the less uncertain the market prices will be. The

uncertain set of day-ahead electricity market prices can be

described as follows:

C ¼ ~kt ¼ ktþDkt; 8t 2 T
n o

ð20Þ

where

�k̂t �Dkt � k̂t ð21Þ

�Ck̂t �
X

t2T
Dkt �Ck̂t ð22Þ

When C = 0, the market price fluctuation in each period is

small; When C = 8, the market prices significantly deviate

in at least 8 periods; C = 24 represents extreme scenarios

that market prices of all 24 periods may reach their limits.

4.2 Robust optimization theory

A robust approach to solve linear programming prob-

lems with uncertain data was first proposed in 1970s by

Soyster [30]. With this approach, a suboptimal solution that

is feasible for all data in a convex set can be attained so that

the impact of data uncertainties on the quality and feasi-

bility of solutions can be considered. However, optimality

may be sacrificed in order to ensure the robustness. To

address the issue of over-conservatism, an uncertain linear

problem with ellipsoidal uncertainties is considered to

attain a less conservative solution [31].

An initial programming problem with uncertain data is

formulated as follows:

min
x

cTx ð23Þ

s:t: Ax� b ð24Þ
l� x� u ð25Þ

where c [ Rn, x [ Rn, A [ Rm9n, b [ Rm, l [ Rn, u [ Rn.

In the above model, only matrix A includes uncertain

data. Considering the ith row of matrix A, let Ji represents

the set of coefficients in row i that are subject to uncer-

tainty. Each entry aij (j [ Ji) is modeled as a symmetric and

bounded random variable that takes values in [āij - âij, āij
? âij]. The robust peer model can be formulated as

min
x;y;p;q

cTx ð26Þ

s:t:
Xn

j¼1

aijxj þ Ciqi þ
X

j2Ji
pij � bi; 8i ð27Þ

qi þ pij � âijyj; 8i; j 2 Ji ð28Þ

�yj � xj � yj; 8j ð29Þ

l� x� u ð30Þ
pij � 0; 8i; j 2 Ji ð31Þ

yj � 0; 8j ð32Þ

qi � 0; 8i ð33Þ

where an integer Ci is introduced to restrict variation

degrees of each inequality constraint; Ci takes values in [0,

|Ji|]; |Ji| represents the element number in set Ji.

The parameter Ci controls the trade-off between the

probabilities of constraint violations. When Ci = |Ji|, a
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robust solution will be deterministically feasible as all

possible values of uncertain coefficients being taken, even

if more than |Ji| changes, the robust solution will be fea-

sible with a very high probability. The probability bounds

of constraint violation can be calculated as within

exp(-Ci
2/2|Ji|), which can be utilized to evaluate the

solution robustness when the probability distribution of

random variables cannot be precisely described.

Considering uncertainties in the coefficients of the

objective function, the model could be transformed into the

following form

minz ð34Þ

cTx� z ð35Þ

where z is an auxiliary variable that transforms the model

into forms of uncertain coefficients only existing in

constraints.

4.3 Robust bi-level programming model

for congestion management

The decision-making process of a bi-level programming

problem can be classified into the decentralized and cen-

tralized modes. The decentralized mode is employed in this

work. The definition of the robust solution of a bi-level

programming problem with uncertain coefficients can be

influenced by the dependency degree between the upper

and lower levels in the decision-making process. In the

decentralized decision-making mode, the uncertain factors

in each level will not influence the decision-making pro-

cess of the other one. So the robust peer model of each

level can be derived independently. Based on the above, a

robust peer model of the bi-level programming problem

with uncertain values of DG power outputs and electricity

market prices considered can be attained by utilizing the

robust linear optimization theory.

Given the electricity market price ~kt 2 ½kt � k̂t; kt þ k̂t�,
a robust model derived from the upper-level can be for-

mulated as follows:

min
XTsum

t

Tt ð36Þ

s:t:

� Tt þ Cwþ
X

t2T
vt þ kt

XNd

i¼1

Pin;i;t þ
XNd

i¼1

�pIL;i;tPIL;i;t � 0

ð37Þ

wþ vt � k̂tyt ð38Þ

�yt �
XNd

i¼1

Pin;i;t � yt ð39Þ

w� 0 ð40Þ
vt � 0 ð41Þ
yt � 0 ð42Þ

Pin;i;t ¼
XNd

i¼1

PL;i;t � PIL;i;t þ Pa;i;t þ
XNEV;i

e¼1

Pe;i;t � PDG;i;t

 !

ð43Þ

hmi Pin;i;t þ PDG;i;t � PL;i;t þ PIL;i;t � Pa;i;t �
XNEV ;i

e¼1

Pe;i;t

 !�����

������Fm

ð44Þ

0�PIL;i;t �PIL;i ð45Þ

Pin;i �Pin;i;t �Pin;i ð46Þ

where C is a constrained variable used to limit the variation

degree of electricity market prices and it is supposed to be

no more than 24; w and vt are both dual variables; Tt is an

auxiliary variable. Other variables are defined before.

Given the DG power output ~PDG;i;t 2 ½PDG;i;t � P̂DG;i;t;

PDG;i;t þ P̂DG;i;t�, a robust model can be derived from the

lower-level as

min
X

i2An

Ri ð47Þ

s:t:

�Riþ
XTsum

t

ðki;t � pÞ Pa;i;t þ
XNEV;i

e¼1

Pe;i;t

 !"

þ Ptft þ
X

k2JDG
gk;t

 !#
�
XTsum

t

ðp� ki;tÞðPL;i;t �PIL;i;tÞ
�

þðki;t � pDGÞPDG;i;t

�

ð48Þ

ft þ gk;t � P̂DG;k;tðkk;t � pDGÞ; 8k 2 JDG ð49Þ

ft � 0 ð50Þ
gk;t � 0; 8k 2 JDG ð51Þ

0�Pa;i;t �Pa;i ð52Þ

Q
a;i;n

�
Xta;n

t¼ta;s

Pa;i;tDt�Qa;i;n ð53Þ

ta;s � ta;n � ta;f ð54Þ

Xta;f

t¼ta;s

Pa;i;tDt ¼ Qa;i;sum ð55Þ

PEV �Pe;i;t �PEV ð56Þ
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SEV �
Xte;n

t¼te;s

Pe;i;tgcDt� SEV ð57Þ

te;s � te;n � te;f ð58Þ

Xte;f

t¼te;s

Pe;i;tgcDt ¼ QEV ;i ð59Þ

where Pt is a constrained variable used to limit the vari-

ation degree of DG power outputs. Pt B |JDG|, and |JDG|

represents the number of buses with DG injections, ft and

gk,t are both dual variables, Ri is an auxiliary variable.

Other variables are defined before.

4.4 Solving approach

The mathematical model presented in Sect. 4.3 is a bi-

level linear programming problem, and can be solved with

a highly efficient commercial solver CPLEX 12.4 in

MATLAB environment. The iteration of the two levels

continues until the convergence criterion is reached. In this

work, the convergence criterion is specified as: the varia-

tion of the system operation cost, namely the total cost of

power purchasing and load interruption, between two

adjacent iterations is less than a prespecified e.

5 Case studies and discussions

A Danish 0.4 kV distribution system from the Bornholm

Island with topology described in [32] is employed to

demonstrate the performance of the proposed model. There

are 33 cables and 33 buses in this system, and 12 DGs are

assumed to be connected to the 0.4 kV buses of the system.

Electric power from the transmission system is injected into

the distribution system through a 10/0.4 kV transformer. The

buses of the above test system are assumed to bemanaged by

3 aggregators. The parameters of the smart household

appliance loads, EV loads and inelastic loads of each

aggregator are shown in Table 1 and Fig. 3, respectively.

The total load demand of the ILs is assumed to be 1/9 of the

inelastic load power. The line capacities of this system and

the predicting wholesale market prices throughout the day

are listed in Tables 2 and 3, respectively.

The wholesale electricity market prices are assumed to

be variable within 90%*110%; DG power outputs are

supposed to be injected into buses from 10146 to 10157

with forecasted values of 200 kW and possible deviations

of ±20%. The charging efficiency of an EV is set as 0.95.

The negotiated price for purchasing distributed renewable

generation is supposed to be 0.35 DKK/kWh; the retail

price to consumers is fixed at 0.6 DKK/kWh; the IL

compensation price is 0.6 DKK/kWh. The following three

scenarios are considered:

1) The deterministic model with sufficient distribution

line capacities;

2) The deterministic model with insufficient distribution

line capacities;

3) The robust model with insufficient distribution line

capacities.

5.1 Deterministic model with sufficient distribution

line capacities

Doubling the given value of each distribution line

capacity so that the system congestion would not happen, a

Table 1 Parameters of smart household appliance loads and EV charging loads

Aggre-

gator

Bus number Time

period

Smart household

appliance load (kW)

Power consumption of smart

household appliance (kWh)

EV’s charging

load (kW)

EV’s charging

quantity (kWh)

A 528–538,

9922–9925

8:00–19:00 0–150 1200 0 0

20:00–7:00 0–150 1200 0–120 910

B 359-360,

389, 540

8:00–19:00 0–160 1280 0 0

20:00–7:00 0–160 1280 0–130 990

C 10146-10157 8:00–19:00 0–100 800 0 0

20:00–7:00 0–100 800 0–120 910

Fig. 3 Inelastic load parameters

Congestion management with demand response considering uncertainties of distributed… 73

123



deterministic solution can be attained with the proposed

model in Sect. 3. A situation is first examined that the smart

household appliances and EVs start to consume electric

power at the starting point of their available time periods

without the DR management scheme. The optimization

results with and without DRs are compared in Table 4, and

it is known that the total operation costs of the distribution

system can be reduced by 14.15% with the coordinated

utilization of DR resources.

The energy consumption schedules and nodal prices at

bus 10155 throughout the day are depicted in Figs. 4 and 5,

respectively. The nodal price of each bus is consistent with

the wholesale electricity market price and no congestion

fee is incurred. As can be observed, smart household

appliance loads and EV charging loads, which can be

freely managed if only given tasks are accomplished within

a specified time duration, are automatically transferred to

periods with lowest nodal prices since each distribution

line capacity is sufficient. Moreover, if the wholesale

electricity market price exceeds the IL price, the operation

cost can be reduced by activating load interruptions.

Table 2 Line capacities of Danish 0.4 kV distribution system

Line number Line capacity (MW)

125LV-528, 125LV-533 20

Others 13

Table 3 Predicted wholesale market prices of a given day

Time 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

Market price (DKK/kWh) 0.54 0.56 0.58 0.59 0.57 0.54 0.51 0.56

Time 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Market price (DKK/kWh) 0.58 0.58 0.50 0.67 0.68 0.64 0.60 0.53

Time 24:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Market price (DKK/kWh) 0.45 0.40 0.40 0.40 0.43 0.43 0.55 0.56

Table 4 Optimization results with and without DRs in Scenario I

Parameters Power purchase from wholesale market Load interruption Sum

With DR Without DR With DR Without DR With DR Without DR

Energy quantity (MWh) 525.876 610.463 7.516 0 533.392 610.463

Corresponding cost (DKK) 276686.0 327530.0 4510.0 0 281196.0 327530.0

Fig. 4 Energy consumption schedule of bus 10155 in Scenario I

Fig. 5 Nodal price of bus 10155 in Scenario I
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5.2 Deterministic model with insufficient

distribution line capacities

With the given parameters, the deterministic model

presented in Sect. 3 is implemented to demonstrate the

effectiveness of the proposed congestion management

method. Comparisons of day-ahead schedules of Scenario I

and Scenario II are shown in Table 5. Compared with

Scenario I, it can be inferred that the overall operation cost

of the distribution system increases when the distribution

line capacities are insufficient. There are two reasons for

this: 1) smart household appliance loads and EV charging

loads are guided to periods with relatively higher market

prices for alleviating the system congestion; 2) compen-

sation incentives are provided to customers for participat-

ing in load interruption schemes.

The loading levels of the line from bus 528 to bus 529

with and without DRs are compared in Fig. 6. From Fig. 6,

it can be found that the power flow through the distribution

line 528–529 would exceed its upper limit during peak

periods with concentrated energy consumption. The over-

load problem can be mitigated by flexible loads as guided

by nodal prices and ILs as motivated by compensation

fees.

The energy consumption schedule and nodal prices at

bus 10155 in a given day are depicted in Figs. 7 and 8,

respectively. By comparing Figs.7 and 8, it can be inferred

that system congestion may be caused by intensive power

consumption at 11:00 PM—02:00 AM when the nodal

price is lower. Through the congestion charge, some smart

household appliance loads and EV charging loads are

transferred to other periods so that the system congestion is

alleviated. However, the nodal prices maintain consistent

with the electricity wholesale market prices and no con-

gestion fee is incurred to the buses whose load levels have

nothing to do with the line loading of line 528–529.

5.3 Robust model with insufficient distribution line

capacities

The uncertain model of the congestion management

problem presented in Sect. 4 is implemented to attain the

robust solution that is immune to the uncertainties of DG

power outputs and wholesale market prices in this

Table 5 Comparisons of day-ahead schedules of Scenario I and Scenario II

Parameters Power purchase from wholesale electricity market Load interruption Sum

I II I II I II

Energy quantity (MWh) 525.876 525.193 7.516 8.197 533.392 533.4

Corresponding cost (DKK) 276686.0 277386.8 4510.0 4918.7 281196.0 282305.5

Fig. 6 Comparisons of line loading levels with and without DRs in

Scenario II

Fig. 7 Energy consumption schedule of bus 10155 in Scenario II

Fig. 8 Nodal prices of bus 10155 in Scenario II
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section. Suppose that DG power outputs and wholesale

market prices vary in their respective ranges, various robust

solutions can be attained with constrained variables C and

Pt for regulating the trade-off between the optimality and

robustness. The value of C is taken in [0, 24], and the value

of Pt in [0, 16], t = 1,2, …, 24. In order to illustrate the

performance of the developed model, solutions for 5 dif-

ferent scenarios are compared: A) C = 0, Pt = 0; B)

C = 6, Pt = 4; C) C = 12, Pt = 8; D) C = 18, Pt = 12;

E) C = 24, Pt = 16, t = 1,2, …, 24. The results are listed

in Table 6.

As shown in Table 6, from scenario A to scenario E,

some economic efficiency is sacrificed for attaining more

robustness in the decision-making process of the conges-

tion management in the distribution system. When C = 0

and Pt = 0, the most economical solution is achieved, but

the uncertain factors are not taken into account; when

C = 24 and Pt = 16, the robust solution is sufficiently

conservative to ensure the solution feasibility as all possi-

ble values of DG power outputs and wholesale market

prices are within the respective ranges, or even if they are

not in the ranges, the robust solution is still feasible with a

very high probability. The trade-off between efficiency and

robustness is well coordinated in scenarios B to D.

Comparisons of DRs from 10:00 PM to 7:00 AM and

nodal prices throughout the day at bus 10155 in different

scenarios are shown in Figs. 9 and 10, respectively. It can

be seen that as the robust requirement changes, the ILs

change accordingly and the nodal prices as well so as to

guide the flexible loads to adjust their demands. Different

economic and robustness requirements can be met by

Table 6 Comparisons of various indexes under different robustness requirements

Scenario A B C D E

Energy acquisition from day-head wholesale market (MWh) 525.193 522.573 515.180 513.155 511.845

Interrupted load quantity (MWh) 8.198 10.767 17.928 19.875 21.186

Power purchasing cost from wholesale market (DKK) 277387 275859 271580 270537 270021

Load interruption cost in a day (DKK) 4919 6461 10757 11925 12711

Fig. 10 Comparisons of nodal prices at bus 10155 under different

scenariosFig. 9 Comparisons of DRs at bus 10155 in different scenarios
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implementing various congestion management strategies

by the DSO.

In conclusion, negative impacts brought about by

uncertainties can be alleviated by employing the robust

linear programming approach. The trade-off between the

economical efficiency and robustness of the optimization

problem can be regulated according to various require-

ments. The characteristics of different kinds of DR

resources, namely flexible loads and ILs are well utilized to

alleviate the system congestion and minimize the total

operation cost. A compromising solution which is able to

balance the conservatism and optimality through coordi-

nating various DR resources involved can be attained by

the proposed robust congestion management model.

6 Conclusion

A robust congestion management model is developed

for the DSO in this work. In the proposed model, the DR

resources are coordinated to alleviate distribution system

congestion. The economical efficiency and robustness of

the congestion management strategies are balanced through

robust optimization with uncertainties of DG power outputs

and wholesale market prices taken into consideration. The

structure and congestion management framework of a

smart distribution system are first described. Subsequently,

a robust bi-level programming model for the day-ahead

congestion management in distribution systems is devel-

oped. Then, a highly efficient commercial solver CPLEX

12.4 is utilized in the MATLAB environment to solve the

developed model. Finally, a Danish 0.4 kV distribution

system is employed to demonstrate the basic characteristics

of the presented method.
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