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Abstract The impacts of outlying shocks on wind power

time series are explored by considering the outlier effect in the

volatility of wind power time series. A novel short term wind

power forecasting method based on outlier smooth transition

autoregressive (OSTAR) structure is advanced, then, com-

bined with the generalized autoregressive conditional

heteroskedasticity (GARCH) model, the OSTAR-GARCH

model is proposed for wind power forecasting. The proposed

model is further generalized to be with fat-tail distribution.

Consequently, the mechanisms of regimes against different

magnitude of shocks are investigated owing to the outlier

effect parameters in the proposed models. Furthermore, the

outlier effect is depicted by news impact curve (NIC) and a

novel proposed regime switching index (RSI). Case studies

based on practical data validate the feasibility of the proposed

wind power forecasting method. From the forecast perfor-

mance comparison of the OSTAR-GARCH models, the

OSTAR-GARCHmodel with fat-tail distribution proves to be

promising for wind power forecasting.

Keywords OSTAR-GARCH model, Regime switching

index (RSI), Outlier effect, Wind power forecasting

1 Introduction

Wind energy has been the fastest growing renewable

energy resource throughout the world. It is indicated that by

the end of 2014, the global total installed wind power

capacity has reached to 369.6GW, and 24 countries equipped

the installed wind power capacity of more than 1 GW [1]. In

most cases, the clean wind power is dispatched prior to other

types of generation sources. However, due to the uncertainty

of wind [2], the generation of wind power in a wind farm

usually varies over awide range,making it difficult to set up a

dispatch plan accurately. As a result, wind power forecasting

performance is of crucial importance for the secure operation

and economic dispatch of power systems.

Wind power forecasting is a challenging task in power

system research, and some effective methods have been

promptly introduced to address wind power forecasting. Gen-

erally, there are physical models [3], auto-regressive moving

average (ARMA) models [4, 5], Artificial Neural Network

(ANN) methods [6], spatial models [7], Kalman filter tech-

niques [8], Greymodel [9], and volatilitymodel represented by

GARCH model [10] and hybrid approaches [11]. Reference

[10] reported that wind power time series exhibited time

varying volatility and obtained satisfying results with the
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GARCH-M forecasting model. Nevertheless, the volatility

characteristics of the wind power time series are complicated

andmeaningful. The latent news in these characteristics which

can improve forecasting performance remains to be further

explored. Based on the analysis of large amounts of real-world

historical wind power data, it can be frequently found that a

number of recurrent extra-largemagnitude shocks exist inwind

power time series. These shocksmay lead particular impacts on

the future volatility of wind power time series, which can be

regarded as an outlier. In this work, this impact on the volatility

is called outlier effect. This paper reflects efforts in analyzing

outlier effect caused by the idiosyncratic shocks while outlier

smooth transition autoregressive (OSTAR) structure is high-

lighted and the OSTAR-GARCH model is proposed to

improve the performance of wind power forecasting.

This paper is organized as follows. Section 2 proposes

the OSTAR-GARCH wind power forecasting model to

illustrate the outlier effect. Meanwhile, fat-tail distribution

is further employed to generalize the OSTAR-GARCH

model. The outlier effect is investigated by the news

impact curve (NIC) and the proposed regime switching

index (RSI) in Section 3. Section 4 provides a case study

based on practical examples to validate the proposed

models. Moreover, the outlier effect is depicted graphically

by NIC and the extent of regime switching is measured by

RSI quantitatively. Section 5 concludes the discussions.

2 OSTAR-GARCH model

In this section, the OSTAR model is proposed on the basis

of the STARmodel. Furthermore, combinedwith the volatility

model, theOSTAR-GARCHwind power forecastingmodel is

prospectively proposed to capture the outlier effect of wind

power time series. The proposed OSTAR-GARCH model is

further generalized by taking into account the fat-tail effect.

2.1 STAR model

One of leading nonlinear forecasting models is smooth

transition autoregressive (STAR) model proposed by Ter-

äsvirta, which can achieve smooth transition between dif-

ferent regimes in time series [12].

If the time series {yt} satisfies

yt ¼ 1� Fðyt�dÞð Þ c0 þ
Xp

i¼1

/0;iyt�i

 !

þFðyt�dÞ c1 þ
Xp

i¼1

/1;iyt�i

 !
þ et

ð1Þ

where d is lagged order parameter; p is the order of STAR

model; Fð�Þ is smooth transition function satisfying 0�
Fð�Þ� 1; {yt} follows the STAR(p) process of two regimes.

2.2 OSTAR model

In practice, the expression of Fð�Þ in (1) is set to be one

of many classical forms. When the logistic functions or

exponential functions are employed, the model is known as

the LSTAR (logistic STAR) model or ESTAR (exponential

STAR) model, respectively.

The exponential function in the ESTAR model is rep-

resented as

Fðx; cÞ ¼ 1 - exp(� cx2Þ ð2Þ

ESTAR models incorporating (2) can depict the

different impacts at different magnitudes of x. However,

the smooth transition structure of ESTAR is unable to give

useful information on providing clear cutting lines for

differentiating large shocks from others [13].

As a result, it is necessary to activate the threshold

parameter D into smooth transition function in order to

separate the idiosyncratic shocks from others. Meanwhile, to

avoid the ‘‘step change’’ at the threshold point, the slope

parameter c should be refined to achieve gradual switching

and control the transition speed between different regimes.

Therefore, a novel smooth transition function, which is

named tumbler function, is proposed in this work as follows,

Fðx;D; cÞ ¼ 1= 1þ expð�cð xj j � DÞÞð Þ ð3Þ

where D is the threshold parameter; the slope parameter c is
a positive parameter with c � 1=D satisfied.

Equation (3) is effective to depict the outlier effect. As a

result, the STAR model with the tumbler function in (3) is

proposed as the OSTAR model in this work.

The dynamic behavior of F(x,y) with the varying c is

illustrated in Fig. 1. The threshold parameter D is desig-

nated to differentiate the isolated outlier shocks from other

normal shocks.

Fig. 1 OSTAR function with different c
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2.3 Combination of OSTAR model and GARCH

model

GARCH models can provide a systematic framework

for modelling volatility of time series [14, 15]. On the

second order moment level, the OSTAR structure and the

GARCH model can be combined to capture the regime

switching between the outlier shocks and others in the

volatility of the wind power time series.

The specification of OSTAR-GARCH model can be

expressed as conditional mean (4) and variance equation (5).

yt ¼ Eðyt wt�1Þj þ et ð4Þ

ht ¼ a0 þ
Xp

j¼1

bjht�j þ
Xq

i¼1

aie
2
t�iþ

Xr

k¼1

kke
2
t�kFðet�kÞ ð5Þ

where et ¼
ffiffiffiffi
ht

p
mt; mt � i:i:d:, with EðmtÞ ¼ 0, Eðm2t Þ ¼ 1

satisfied. Also, Eðyt wt�1Þj is the conditional mean consid-

ering the information set at t - 1. Fðet�kÞ ¼
1= 1þ expð�ckð et�kj j � DÞÞð Þ follows the OSTAR function

structure, and kk is called outlier effect parameter. The

parameters p, q, r are the order parameters of OSTAR-

GARCH, respectively. To apply the new model to practice

conveniently, all order parameters are set to 1 in the fol-

lowing discussion.

The following analysis can be provided from the spec-

ification of OSTAR-GARCH.

1) In the conditional variance equation in (5), If k is

negative, the outlier shocks will have weaker impact

on the conditional variance than others, and vice versa.

2) D in the OSTAR structure is used to quantitatively

differentiate the outlier shocks and analyze the outlier

effect, theoretically, D 2 ð0;1Þ. To effectively exam-

ine the outlier effect in the case study, D is assigned to

be twice the estimate of the residuals’ standard

deviation r̂. As a result, the outlier shocks are defined

as outside the interval �2r̂; 2r̂½ �.
3) c in tumbler function represent the transition smooth-

ness between different regimes. Considering c � 1=D,
when et�1j j ! 1, then Fðet�1Þ ! 1; on the contrast,

when et�1j j ¼ 0, then Fðet�1Þ ! 0. Specially, if

et�1j j ¼ D, then Fðet�1Þ ¼ 0:5. As a result, no non-

continuous point exists even near threshold point.

According to the analysis above, the OSTAR-GARCH

model can depict the outlier effect in the volatility and

achieve a smooth transition between isolated outlier shocks

and others in wind power time series.

2.4 Fat-tail OSTAR-GARCH model

To effectively capture the fat-tail effect in the wind

power time series, mt, in the OSTAR-GARCH wind power

forecasting model, is generalized from normal distribution

to non-Gaussian distributions. As the most popular non-

Gaussian distributions, t distribution [16], Laplace distri-

bution [17], and generalized error distribution (GED) [18]

are employed, respectively.

1) t distribution

The probability density function (PDF) of t distribution

is given by

f ðx; nÞ ¼ C nþ 1ð Þ=2ð Þ
ðnpÞ1=2C n=2ð Þ

1þ x=nð Þ2
� �� nþ1ð Þ=2

ð6Þ

where C �ð Þ is the Gamma function and n is the degree of

freedom. In this work, the OSTAR-GARCH model that

follows the t distribution is called OSTAR-t model for

short.

2) Generalized error distribution

The PDF of generalized error distribution (GED) is

f ðx; vÞ ¼ v � exp �0:5 � x=kj jvð Þ
k � 2 1þ1=vð ÞC 1=vð Þ ð7Þ

where k ¼ 2�2=vC 1=vð Þ=C 3=vð Þ
� �1=2

is a function of the

distribution shape parameter v; when v\2, GED will have

a fatter tail than normal distribution. In this work, the

OSTAR-GED model is derived when OSTAR-GARCH

model follows GED.

3) Laplace distribution

Laplace distribution is with the following probability

density function,

f ðxÞ ¼ exp � xj j=bð Þ
2b

ð8Þ

If the parameter b is set to be
ffiffiffi
2

p
=2, the Laplace distribution

can be standardized, satisfyingmean= 0 and variance= 1.The

standardized Laplace distribution possesses fatter tail than

normal distribution spontaneously. In this paper, the OSTAR-

GARCH model that follows the standardized Laplace

distribution is named OSTAR-Laplace model for short.

2.5 Parameter estimation

Nonlinear least squares (NLS) or conditional maximum

likelihood estimation (CMLE) [13, 19], can be used to

estimate the OSTAR-GARCH model. Considering that the

log-likelihood function of the OSTAR model can be

obtained conveniently, CMLE is employed to estimate the

OSTAR-GARCH model in the case study. At the same

time, BHHH algorithm [20] is used to control the iteration

process.
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Furthermore, the parameters of the fat-tailed OSTAR-

GARCH models are estimated by CMLE as well, with the

assumption that et follows t distribution, GED, or Laplace
distribution (for OSTAR-t, OSTAR-GED, or OSTAR-

Laplace model), respectively.

3 Regime switching index

OSTAR-GARCH wind power forecasting model is

effective to capture the outlier effect in wind power time

series. To analyze how outlier shocks affects the next

period variance in time series, NIC based on OSTAR-

GARCH model is used to analyze outlier effect graphi-

cally. Moreover, to provide a quantitative evaluation to

measure the extent of regime switching, the regime

switching index (RSI) is proposed.

NIC was proposed [21] as a standard measure to analyze

how new information affects the next period variance in

time series.

Holding constant the information dated t - 2 and

earlier, the implied relation between et�1 and ht can be

illustrated. With all lagged conditional variances evalu-

ated at the level of the unconditional variance of the wind

power time series, the curve relates past wind power

shocks (news) to current volatility, so it is named the

news impact curve.

In classical GARCH model, the NIC based on GARCH

is a quadratic curve centered on et�1 ¼ 0. Originally, the

standard version of NIC in [21] was used to analyze the

asymmetry effect in the volatility, and the attention was

paid to the comparison of the symmetric relationship

between the left and right branches of the NIC. Never-

theless, in this paper, the application of NIC is generalized.

NIC is employed to analyze the different impacts of the

amplitude of shocks, that is, the focus here is to investigate

the distortion of the NIC shape caused by the outlier effect.

Further discussion about NIC based on OSTAR-GARCH

model is in the case study.

Though NIC can graphically judge the extent of regime

switching by the shape of NIC, the quantitative evaluation

method is still necessary. In this paper, the regime

switching index (RSI) is proposed to give a quantitative

index to judge the extent of regime switching as follows.

An OSTAR-GARCH model can be decomposed as

gðhtÞ ¼ cþ f et�1; et�2; � � �ð Þ þ
Xn

i¼1

kiFið�Þgi et�1; et�2; � � �ð Þ

ð9Þ

where kiFi �ð Þgi etð Þ is a function decided by F �ð Þ 2 0; 1½ �;
f ðet�iÞ has no relevance with Fð�Þ; c includes the term

which has no relevance with et.

The RSI is defined by

KRSI ¼
f et�1; et�2; � � �ð Þ þ

Pn

k¼1

kþk g et�1; et�2; � � �ð Þ

f et�1; et�2; � � �ð Þ þ
Pn

k¼1

k�k g et�1; et�2; � � �ð Þ
ð10Þ

where kþi ¼ maxðki; 0Þ; k�i ¼ minðki; 0Þ.
As is readily apparent, if GARCH model has no regime

switching structure, the KRSI is fixed at 1, consequentially,

KGARCH
RSI ¼ f et�1; et�2; � � �ð Þ þ 0

f et�1; et�2; � � �ð Þ þ 0
¼ 1 ð11Þ

Then, with the assumption of k� 0, KRSI is applied to

OSTAR-GARCH (1, 1) models as follows.

KOSTAR
RSI ¼ a1e2t�1

a1e2t�1 þ ke2t�1

¼ a1
a1 þ k

[ 1 ð12Þ

It is apparent that the index KRSI is related to the

parameter a1 and k. By means of the KRSI, the extent of

regime switching of different OSTAR-GARCH models can

be compared quantitatively. For example, if the KOSTAR
RSI is

further beyond 1, the outlier effect is more significant.

4 Case study

4.1 Data

The historical wind power data from a coastal wind farm

group in Jiangsu Province is used to examine the proposed

forecasting models. The sample is the 5-minute wind

power data set from April 1, 2013 to April 7, 2013.

The 5-minute ahead forecasting of wind power onApril 8,

2013 is studied using the proposed OSTAR-GARCH wind

power forecasting models. NIC and RSI are employed to

investigate on the outlier effect in thewind power time series.

Forecasting performance of the proposedmodels is validated

by a comparison using 3 statistical indices.

4.2 Stationary test result

Stationary tests are first carried out by augmented dickey

fuller (ADF) test and Phillips-Perron (PP) test to examine

the stationarity of the wind power time series. The results

of the two tests consistently report that the wind power

series Yt is not stationary at the 5% significance level.

Then, differencing is used to obtain the first differenced

series, It.

It ¼ Yt � Yt�1 ð13Þ

At this time, ADF and PP tests are both statistically

significant at the 5% significance level, indicating that it is

stationary, and the stationary precondition of modelling is
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met. Consequently, the following study is based on the

series of It.

4.3 Modelling with OSTAR-GARCH models

Considering serial dependence in wind power series,

ARMA structure is employed in the mean equation of the

OSTAR-GARCH model. The mean equation of the

OSTAR-GARCH model is shown below.

It ¼ xþ
Xp

j¼1

/jIt�j þ et þ
Xq

i¼1

wiet�i ð14Þ

Based on the routine from [11], the orders of ARMA are

determined as ARMA (4, 5)- OSTAR-GARCH (1, 1) with

the specification of (5) (OSTAR, for short). Consequently,

the parameter set HOSTAR ¼ x;/;w;X; a1; b1; kð Þ is

obtained by CMLE. Parameter estimates of OSTAR

models are shown in Table 1.

With the CMLE, parameter estimate is calculated for the

OSTAR model.

Taking into account the fat-tail effect in wind power

time series, the OSTAR-t, OSTAR-Laplace, OSTAR-GED

models are presented. Furthermore, the parameters of all

the fat-tail version of OSTAR models are estimated as

shown in Table 1.

According to Table 1, some discussions are reported as

follows:

1) Firstly, the conditional variance is examined. The

outlier effect parameters in the four OSTAR-GARCH

models are -0.148684, -0.15329, -0.16414,

-0.21517, respectively. The realistic meanings impli-

cated by the signs of parameter k are consistent;

moreover, all the k are negative, so it is indicated that

the impact on the conditional variance of outlier

shocks is suppressed. Ulteriorly, the volatility of wind

power time series might be over-rated, on condition

that the outlier shocks are treated the same as ordinary

shocks, and this error evaluation of volatility may

harm the performance of wind power forecasting.

Therefore, the OSTAR-GARCH models are formu-

lated to incorporate outlier effect in the volatility of

wind power time series.

2) Secondly, the shape parameter v of OSTAR-GED is

1.429912, which is significantly less than 2.0. Simi-

larly, the freedom degree n of the OSTAR-t models is

in a low level, 7.981401 and the corresponding

z statistics is 7.467363, indicating that parameter n is

significant. Consequently, the estimated values v and

n from the non-Gaussian distributions explicitly reflect

the fat-tail effect in wind power time series. Moreover,

the Laplace distribution of the OSTAR-Laplace model

also performs fat-tail effect naturally. The estimate

results validate that the employment of three types of

non-Gaussian distribution is appropriate and essential

for modelling wind power time series.

3) The conditional mean equation is concerned. It is

noted that the estimate values of the corresponding

mean equation parameters of these models are close

to each other, respectively, though the conditional

variance specifications of these models are rather

different. Hence, it is indicated that some inherent

characteristics on the mean level is depicted by these

models.

4) Finally, according to the iteration times on Table 1,

OSTAR-GARCH models with non-Gaussian distribu-

tion require less iterations of estimate than the original

version of OSTAR-GARCH model, even if the

Table 1 Parameter estimate

Parameter OSTAR z statistic OSTAR-t z statistic OSTAR-GED z statistic OSTAR-Laplace z statistic

C 0.073863 0.492185 0.115118 0.811103 0.117536 0.843076 0.183172 1.604704

AR(1) 0.824019 18.72579 0.779991 15.00577 0.797732 16.31459 0.817413 18.60698

AR(5) 0.052947 2.990433 0.074576 2.959214 0.063191 2.889227 0.048745 2.115314

MA(1) -0.610316 -11.4261 -0.54548 -8.65647 -0.5725 -9.5677 -0.59589 -11.2584

MA(4) -0.048761 -2.01377 -0.05866 -2.30675 -0.05304 -2.18874 -0.04566 -2.19562

X 0.226097 7.778948 0.089953 2.486439 0.149603 4.161117 0.118236 2.632174

a1 0.258815 7.004207 0.225204 5.769015 0.250134 5.815598 0.298513 4.6186

b1 0.802584 69.78173 0.84824 46.93244 0.824241 49.13585 0.832825 36.69629

k -0.148684 -2.45979 -0.15329 -2.74315 -0.16414 -2.46054 -0.21517 22.25272

n – – 7.981401 7.467363 – – – –

v – – – – 1.429912 28.14074 – –

AIC 4.971914 4.930923 4.939895 4.972126

SIC 4.997005 4.958801 4.967774 4.997217

Iteration 50 9 27 25
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conditional log likelihood function structures of fat-

tail OSTAR-GARCH models are more complicated.

Moreover, owing to the decrease of iterations, the total

calculation time of parameter estimate are not

prolonged considerably.

4.4 NIC analysis

As it can show the response in the volatility to the dif-

ferent characteristic of shocks, NIC is employed to witness

the outlier effect in wind power time series in this work.

The NIC of the OSTAR-GARCH model determined by

the conditional variance function in (4) and the tumbler

transition function in (3) is represented as the black line in

Fig. 2. After all, to simplify the comparison and highlight

the outlier effect of et�1 on ht, all the lowest points of NICs

are moved to the origin point, respectively.

Consequently, two extreme cases should be considered:

1) Let F(et�1) in (5) equals to 0. The OSTAR structure is

smoothed out and the OSTAR-GARCH model is

degenerated into a special GARCH model with

ht ¼ a0 þ b1ht�1 þ a1e2t�1. In this case, the corre-

sponding GARCH NIC is abbreviated to NIC-A.

2) Let F(et�1) equals to 1. the OSTAR-GARCH model

degenerated into another special GARCH model with

ht ¼ a0 þ b1ht�1 þ a1þkð Þe2t�1. In this case, NIC-B is

correspondingly obtained.

In our case study, NIC-A is represented in the blue dash

curve and NIC-B is expressed as the red dash curve. Fur-

thermore, owing to k \ 0, e2t�1 expressed in NIC-A has

more significant impact on the ht of wind power time series

than that in NIC-B, as shown in Fig. 2.

From Fig. 2, the following conclusions can be drawn:

When et�1 ! 0, the NIC of OSTAR-GARCH model is

verging to NIC-A, while et�1j j � D, it is verging to NIC-B.
In other words, the larger the et�1j j is, the weaker the

impacts from the large shocks to conditional variance

become gradually, and the outlier shocks receive less

weight than others when et�1j j increases over a threshold

value. Hence, the outlier effect in wind power time series is

clearly witnessed.

Note that the NIC of OSTAR-GARCH is continuous and

differentiable at every point, and the curve is still smooth

even at the threshold, on account of the structure of tumbler

transition function. As a result, the specification without

non-differentiable point is qualified at satisfying the

physical circumstances of the wind power.

4.5 Calculation of RSI

With the help of the results in Table 1, the RSI value of

each model is calculated in Table 2.

As shown in Table 2, the extent of regime switching is

measured quantitatively. It is obvious that the four condi-

tional distribution specifications of the OSTAR-GARCH

model induce the RSI values, respectively. The model with

fat-tail distributions obtained larger RSI.

4.6 Wind power forecasting performance

According to the estimate result of Table 1, the 5-min-

ute wind power forecasting for April 8, 2013 (containing

288 points) is implemented with the OSTAR-GARCH

models.

Wind power forecasting using the selected models is

performed based on the following formation

Ŷt ¼ Yt�1þÎt ð15Þ

where Ît is modelled by the proposed OSTAR-GARCH

wind power forecasting models: OSTAR, OSTAR-t,

OSTAR-GED, OSTAR-Laplace models, respectively. At

the same time, the t-1 hour time persistence (TP) model

(which is widely used in the electric power industry) and

the classical GARCH model are employed in the case study

as reference models.

To verify the forecasting performance of the proposed

models, the forecasting results based on the proposedmodels

are compared by means of 3 statistical indices: root mean

squared error (RMSE), mean absolute error (MAE), and

mean absolute percentage error (MAPE). The specifications

of these 3 indices are shown in (16)–(18). The comparison of

forecasting performance is summarized in Table 3.

ERMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTþh

t¼Tþ1

ŷt � ytð Þ2=h

vuut ð16Þ

EMAE ¼
XTþh

t¼Tþ1

ŷt � ytj j=h ð17Þ

250

200

150

100

50

-30
0

-20 -10 0 10 20 30

h t

ε t-1

NIC of OSTAR-GARCH

NIC-A

NIC-B

Fig. 2 NIC of OSTAR-GARCH
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EMAPE ¼
XTþh

t¼Tþ1

ŷt � ytð Þ=ytj j=h� 100% ð18Þ

From Table 3, it can be witnessed that the forecasting

performance of all the proposed OSTAR-GARCH models

is significantly better than TP mode and even better than

the classical GARCH model. Moreover, based on the

criteria of RMSE and MAE, it can be consistently

concluded that the OSTAR-t wind power forecasting

model excels other models. Based on the criterion of

MAPE, the OSTAR-Laplace outperforms the others.

Overall, the OSTAR-GARCH models following non-

Gaussian distributions outperform the original OSTAR-

GARCH model and GARCH model.

In brief, considering the existence of outlier effect and

the fat-tail effect in the wind power time series, it is a

reasonably good practice to combine STAR structure and

GARCH models with non-Gaussian distributions.

5 Conclusion

The OSTAR-GARCH models are proposed in this study

for wind power forecasting, and the impact of outlier

shocks in wind power time series is analyzed quantitatively

by the proposed RSI. Forecasting performance comparison

is achieved based on different criteria.

The OSTAR-GARCH model can depict the outlier

effect in wind power time series. Case studies demonstrate

that outlier shocks show more restrained impacts on the

conditional variances. By employing the classical NIC, the

outlier effect is clearly demonstrated graphically. With the

proposed RSI, the extent of regime switching is quantita-

tively measured. When a high RSI reports the existence of

regime switching, the implementation of OSTAR-GARCH

models can provide prospective wind power forecasting

precision.

Taking into account the existence of fat-tail effect of wind

power time series, the innovation of the proposed OSTAR-

GARCH model is refined from classical Gaussian distribu-

tion to fat-tail distribution. Case studies demonstrate that the

OSTAR-GARCH models with fat-tail distribution can give

more efficient forecasting performance.

In conclusion, with new challenges of wind power

analysis, it is necessary to highlight novel wind power

forecasting models to analyze and explore the inherent

volatility characteristics of wind power time series, such as

to contribute to the improvement of wind power forecast-

ing performance.
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