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Abstract Coordinated charging of electric vehicles (EVs) is

critical to provide safe and cost effective operation of dis-

tribution systems where household single phase charging of

EV could contribute to imbalance of the distribution system.

To date, reported researches on optimization methods for

coordinated charging aiming at minimizing power losses

have the disadvantages of low calculation efficiency when

applied to large systems or have not taken the voltage con-

straints into account. The phase component and polar coor-

dinates power flow equations of an unbalanced distribution

system are derived. Primal dual interior point dynamic

programming is introduced for coordinated charging of EVs

to minimize distribution system losses where charging

demand, voltage and current constraints have been taken into

account. The proposed optimization is evaluated using an

actual 423-bus case as the test system. Results are promising

with the proposed method having good convergence under

time-efficient calculations while providing optimization of

power losses, lower load variance, and improvement of

voltage profile versus uncoordinated scenarios.

Keywords Electric vehicles (EVs), Coordinated charging,

Primal dual interior point programming, Distribution

system, Power losses

1 Introduction

The worldwide energy sectors face critical challenges

with regards to security of power supply, environmental

impacts and energy costs [1]. As a result, energy invest-

ments are trending towards innovations addressing energy

efficiency and environmental friendliness. EVs present

significant benefits over traditional vehicles with regards to

reliance on oil, reducing harmful gas emissions and low-

ering fluctuation of renewable energy sources. World

market for EVs are developing rapidly, and accordingly,

EVs have become a hot research topic in the field of

electric engineering [2, 3].

Network losses rate is an important economic index of

power system operation and a comprehensive measure of the

power enterprise technology and management level. Distri-

butionnetworkhas the features of lowvoltage, large scale and

many equipments. Losses of distribution network account for

more than 40% of total power system losses and it has rela-

tively large energy loss reduction space. Uncoordinated

charging of a large numbers of EVs can significantly increase

the network losses, lower voltage, and overload distribution

transformers or lines.While coordinated charging of EVs can

significantly reduce power losses and provides safe and

economic operation of the distribution system.
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Researches on coordinated charging of EVs generally

consist of distributed and centralized coordinated charging

technology. The distributed coordinated charging technol-

ogy mainly include fuzzy mathematics theory [4, 5], sen-

sitivity analysis [6], etc. The centralized coordinated

charging technology generally involves simulated sensi-

tivity analysis [7, 8], evolutionary algorithm [9, 10], opti-

mization techniques [11–19], etc. In [7, 8], a real time

smart load management strategy is proposed for coordi-

nated charging of EVs based on sensitivity analysis tech-

nique. But the control variables are the charging locations

rather than charging power of EVs and the results are

therefore not optimal. In [9, 10], a generic algorithm is

employed for coordinated charging of EVs. Nevertheless,

due to the inherent inefficiency of calculations, the generic

algorithm is not well suited to meet requirements on cal-

culation speed for coordinated charging of a large popu-

lation of EVs.

As coordinated charging of EVs is a large scale opti-

mization problem, many techniques are proposed to

improve the calculation speed. In [11], by correcting nodal

voltages iteratively, a linear constrained convex quadratic

programming of coordinated charging of EVs is built at

each iteration. In [12], a sequential non convex quadratic

programming for coordinated charging of EVs is proposed.

However, both of the above methods belong to heuristic

techniques and the simulation results are based on small

systems. When applied to large systems, they could not

converge or converge very slowly. In [13, 14], aiming at

maximizing total charging energy of all EVs, with the

inequality constraints of node voltage and thermal loadings

of distribution transformer and cables linearized, a linear

programming of coordinated charging of EVs is proposed.

In [15], aiming at maximizing the revenue of power cor-

porations with the model of distribution network lin-

earized, a mixed integer linear programming of

coordinated charging of EVs is proposed. As the relation-

ship between losses of distribution system and charging

power of EVs is non-linear, a linear programming is not

applicable to coordinated charging of EVs aiming at min-

imizing distribution system losses.

In [16], with time-of-use power price and battery

degradation costs taken into account, a quadratic pro-

gramming is proposed to optimize charging and discharg-

ing power of EVs. In [17], a coordination strategy for

optimal charging of EVs with congestion of distribution

system taken into account is proposed. In [18], with three-

phase photovoltaic inverters and EV chargers adapted to

transfer power from highly loaded to low loaded phases,

quadratic programming is proposed to minimize the power

losses of the distribution system. In [19], load factor, load

variance, and network losses are proven to be equivalent

under certain conditions. As a consequence, minimizing

network losses can be transformed to minimizing load

factor or load variance. Unfortunately, the voltage con-

straints are not taken into account in the above four models.

When there are a large amounts of EVs connected to low

voltage distribution network, the voltage constraints can be

really a factor that limit the charging power of EVs.

Neglecting the voltage constraints can greatly improve the

calculation speed, but may result in the charging power of

EVs unfeasible.

Against to the discrepancy of inefficiency of calcula-

tions or not taking into account of voltage constraints,

nonlinear primal dual interior point dynamic optimization

algorithm is introduced to solve the problem. Since primal

dual interior point algorithm has been proven to have

polynomial time complexity, it is very suitable for large

scale optimization problems. This paper is structured as

follows: as household single phase charging of EV could

contribute to imbalance of the distribution system, the

phase component and polar coordinates power flow

equations of unbalanced distribution systems are derived

in Section 2. In Section 3, the model for coordinated

charging of EVs is established with charging demand,

voltage and current constraints considered. In Section 4,

the primal dual interior point algorithm is elaborated. In

Section 5, with an actual 423-bus case as the test system,

simulation results indicate that the proposed method is

very promising as it has good convergence performance,

fast calculation speed, can minimize power losses, lower

load variance and improve voltage profile compared to the

uncoordinated scenarios. Section 6 concludes the whole

paper.

2 Model of unbalanced distribution system

Figure 1 is the single line schematic diagram of a simple

distribution system, in which Vg is the ground and refer-

ence voltage and Vn
i is the voltage of neutral wire for node

i. The relationship of voltages and currents between nodes

iþ 1 and i is

_Va
iþ1
_Vb
iþ1
_Vc
iþ1
_Vn
iþ1

2
6664

3
7775 ¼

_Va
i
_Vb
i
_Vc
i
_Vn
i

2
664

3
775þ

Zaa
i Zab

i Zac
i Zan

i

Zba
i Zbb

i Zbc
i Zbn

i

Zca
i Zcb

i Zcc
i Zcn

i

Zna
i Znb

i Znc
i Znn

i

2
664

3
775

_Iaiþ1;i

_Ibiþ1;i

_Iciþ1;i

_Iniþ1;i

2
6664

3
7775

ð1Þ

in which, _Iaiþ1;i
_Ibiþ1;i

_Iciþ1;i
_Iniþ1;i

h iT
are the currents of three-

phase and neutral wire flowing from node iþ 1 to i, and the

element of impedance matrix is the self or mutual

impedance of three-phase and neutral wire between nodes

iþ 1 and i. With voltages and currents of the three-phase

Primal dual interior point dynamic programming for coordinated charging of electric vehicles 1005

123



separated from those of the neutral wire, (1) can be

rewritten as

_Vabc
iþ1
_Vn
iþ1

� �
¼

_Vabc
i
_Vn
i

� �
þ Zabc

i Zn
i

Zn
i

� �T
znni

" #
_Iabciþ1;i

_Iniþ1;i

" #
ð2Þ

In typical case, the neutral wire is connected to the ground

wire. Therefore, it has Vn
i ¼ Vg 8i. By substituting Vn

i ¼
Vn
iþ1 into (2), the current of neutral wire flowing from node

iþ 1 to i can be calculated as

_Iniþ1;i ¼ � znni
� ��1

Zn
i

� �T _Iabciþ1;i ð3Þ

Substituting (3) into (2), the relationship of the three-

phase voltages and currents between nodes iþ 1 and i is

_Vabc
iþ1 ¼ _Vabc

i þ Zabc
eqi

_Iabciþ1;i ð4Þ

in which, the equivalent three-phase impedance matrix

between node iþ 1 and i is

Zabc
eqi ¼ Zabc

i � znni
� ��1

Zn
i Zn

i

� �T ð5Þ

Therefore, the three-phase five wire system is completely

transformed into the three-phase three wire system. As an

outcome, the calculation complexity is greatly reduced.

By defining the equivalent admittance matrix between

node iþ 1 and i as Yabc
eqi ¼ Zabc

eqi

� ��1

, and applying the

Kirchhoff’s current law, the three-phase currents injecting

into the grid from load i is

_Iabci ¼ Yabc
eqi þ Yabc

eqi�1

� �
_Vabc
i � Yabc

eqi�1
_Vabc
i�1 � Yabc

eqi
_Vabc
iþ1 ð6Þ

Applying (6) to all the nodes, the matrix expression is

_Iabc1
_Iabc2

..

.

_IabcN
_IabcNþ1

2
666664

3
777775
¼ Yabc

_Vabc
1
_Vabc
2

..

.

_Vabc
N

_Vabc
Nþ1

2
666664

3
777775

ð7Þ

Let Yabc
ij be the matrix consisting of the 3ði� 1Þ þ 1

� 3ði� 1Þ þ 3th row, 3ðj� 1Þ þ 1� 3ðj� 1Þ þ 3th column

elements of Yabc. The three-phase apparent power injecting

into the grid from load i is Sabci ¼ _Vabc
i � _Iabci

� ��
, in which,

symbol � indicates component multiplication. Substituting

the ith current in (7) into the above equation, the three-phase

apparent power can be expressed with the voltage vector as

Sabci ¼ _Vabc
i � Yabc

i
_Vabc

� �� ð8Þ

in which, Yabc
i is the matrix consisting of the 3ði� 1Þ þ

1� 3ði� 1Þ þ 3th row elements of Yabc . Separating the

real part from the imaginary one of the admittance matrix

between node i and j, i.e. Yabc
ij ¼ Gabc

ij þ jBabc
ij , and taking

voltage with the polar form, i.e. _Vabc
i ¼ Vabc

i � ejh
abc
i , the

three-phase apparent power can be expressed as

Sabci ¼ Vabc
i � ejh

abc
i

�
XNþ1

k¼1

Gabc
ik þ jBabc

ik

� �
Vabc

k � ejh
abc
k

� � !�

ð9Þ

Separating the real part from the imaginary one of the

apparent power, i.e. Sabci ¼ Pabc
i þ jQabc

i , the three-phase

active and reactive power injecting into grid from load i are
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Fig. 1 Schematic diagram of a simple distribution system

1006 Jian ZHANG et al.

123



Pa
i ¼ Va

i

PNþ1

k¼1

Pc
b¼a

V
b
k G

ab
ik cosðhai � hbk Þ þ B

ab
ik sinðhai � hbk Þ

h i

Qa
i ¼ Va

i

PNþ1

k¼1

Pc
b¼a

V
b
k G

ab
ik sinðhai � hbk Þ � B

ab
ik cosðhai � hbk Þ

h i

8i ¼ 1; 2; � � � ;N; 8a ¼ a; b; c

8>>>>><
>>>>>:

ð10Þ

in which, G
ab
ik , B

ab
ik are the ath row, bth column element of

the 3� 3 matrix Gabc
ik , Babc

ik respectively. When a, b is equal

to a, b, c, the corresponding row and column element of

Gabc
ik , Babc

ik is 1, 2, 3 respectively.

3 Model of coordinated charging of EVs

The objective function for coordinated charging of EVs is

min
Ptmax

t¼t1

PLoss; tDt

PLoss;t ¼
PNþ1

i¼1

PNþ1

k¼1

Pc
a¼a

Pc
b¼a

Va
i;tV

b
k;tG

ab
ik cosðhai;t � hbk;tÞ

8Gab
ik 6¼ 0

8>>>>><
>>>>>:

ð11Þ

in which, PLoss;t is the power losses at time t; Dt is the time

step; t1, tmax is the start and end time for coordinated

charging of EVs respectively; Va
i;t, V

b
k;t is the RMS voltage

of node i, k for phase a, b at time t respectively; hai;t, h
b
k;t is

the voltage angle of node i, k for phase a, b at time t

respectively. By taking the form of (11), it is very easy to

realize on a program.

Constraint on charging power of each EV is

0�Pm;t �Pm;max ð12Þ

in which, Pm;t, Pm;max is the charging power and its maxi-

mum of the mth EV at time t respectively.

Constraint on charging demand of each EV is

q
Xtme
t¼tms

Pm;t ¼ Ecap
m � Eini

m ð13Þ

in which, q is the charging efficiency, Eini
m , Ecap

m is the initial

energy and the battery capacity of the mth EV respectively.

tms, tme is the charging start and end time of the mth EV

respectively.

Voltage constraint on each node of the distribution

network is

Vmin �Va
i;t
�Vmax ð14Þ

in which, Vmin, Vmax is the lower and upper limit of the

statutory voltage respectively.

Current constraint on each transformer is

IaT ;t � IT ;max

in which, IaT ;t, IT ;max is the RMS current of the Tth trans-

former at time t and its maximum.

Current constraint on each line is

Ial;t � Il;max

in which, Ial;t, Il;max is the RMS current of the lth line at time

t and its maximum.

The constraints on power flow are

�Pa
Li;t � Pa

Vi;t � Pa
i;t ¼ 0

�Qa
Li;t � Qa

i;t ¼ 0

i ¼ 1; 2; � � � ;N
a ¼ a; b; c
t ¼ t1; t2; . . .; tmax

8>>>><
>>>>:

ð15Þ

in which, Pa
Vi;t, P

a
Li;t, Q

a
Li;t is the charging power, active and

reactive power of load at node i, phase a, time t respec-

tively. Pa
i;t, Q

a
i;t is the active and reactive power injecting

into the grid from node i at phase a, time t respectively.

4 Nonlinear primal dual interior point algorithm
[20]

In general, nonlinear programming problem can be

written as the following form

min f xð Þ
s:t: gðxÞ ¼ 0
h� hðxÞ� h

8<
: ð16Þ

in which,

x ¼ x1 x2 � � � xn½ 	T
g xð Þ ¼ g1ðxÞ g2ðxÞ � � � gmðxÞ½ 	T
h xð Þ ¼ h1ðxÞ h2ðxÞ � � � hrðxÞ½ 	T

8<
:

By introducing slack variables l and u, (16) can be

transformed to

min fðxÞ
s:t: gðxÞ ¼ 0
hðxÞ � l� h ¼ 0
hðxÞ þ u� h ¼ 0
l; uð Þ
 0

8>>>><
>>>>:

ð17Þ

By introducing Lagrange multipliers y 2 Rm,

z; ~z; w; ~wð Þ 2 Rr, Lagrange function associated with

(17) can be constructed as

L x; l; u; y; z; w; ~z; ~wð Þ ¼ f ðxÞ � yTgðxÞ
� zTðhðxÞ � l� hÞ
� wTðhðxÞ þ u� hÞ
� ~zl� ~wu

ð18Þ

The KKT equations for (18) is
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Lx ¼ rxf ðxÞ � rxgðxÞTy�rxhðxÞT zþ wð Þ ¼ 0
Ll ¼ z� ~z ¼ 0
Lu ¼ �w� ~w ¼ 0
Ly ¼ �gðxÞ ¼ 0
Lz ¼ hðxÞ � l� h ¼ 0
Lw ¼ hðxÞ þ u� h ¼ 0
L~Ze ¼ 0
U ~We ¼ 0
l; u; ~z; ~wð Þ
 0 y 6¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ

in which, e ¼ ½1 1 � � � 1	T 2 Rr , L; U; ~Z; ~W
� �

2 Rr�r are

the diagonal matrixes, defined as

L ¼ diag l1 � � � lrð Þ
U ¼ diag u1 � � � urð Þ
~Z ¼ diag ~z1 � � � ~zrð Þ
~W ¼ diag ~w1 � � � ~wrð Þ

8>>><
>>>:

By eliminating ~z and ~w, (19) is reduced to

Lx ¼ rxf ðxÞ � rxgðxÞTy�rxhðxÞT zþ wð Þ ¼ 0

Ly ¼ �gðxÞ ¼ 0

Lz ¼ hðxÞ � l� h ¼ 0

Lw ¼ hðxÞ þ u� h ¼ 0

LZe ¼ 0

UWe ¼ 0

l; u; zð Þ
 0;w� 0; y 6¼ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð20Þ

Is it possible to solve (20) by Newton-Raphson’s method

directly? The answer is no. The reason for th is lies in the

special nonlinearity in the fifth and sixth equations of (20).

For example, by Newton-Raphson’s method, the fifth and

sixth equations of (20) is linearized asZDlþ LDz ¼ �LZe or

ziDli þ liDzi ¼ �lizi, i ¼ 1; 2; � � � ; r. If at the kth iteration,
lki ¼ 0 happens, then Dlki ¼ 0, and lkþ1

i ¼ lki þ Dlki ¼ 0. That

is, once li falls on the boundary of the feasible region, it is

stuck at that point on the boundary. The same situation may

occur for zi. Such an undesirable characteristics preclude the

convergence of the algorithm. For the sake of overcoming this

difficulty, a perturbation factor l l[ 0ð Þ is introduced to

relax the fifth and sixth equations of (20) as

Ll
l ¼ LZe� le ¼ 0

Ll
u ¼ UWeþ le ¼ 0

�
ð21Þ

Therefore, (20) should be replaced with

Lx ¼ rxfðxÞ � rxgðxÞTy�rxhðxÞT zþ wð Þ ¼ 0

Ly ¼ �gðxÞ ¼ 0

Lz ¼ hðxÞ � l� h ¼ 0

Lw ¼ hðxÞ þ u� h ¼ 0

Ll
l ¼ LZe� le ¼ 0

Ll
u ¼ UZeþ le ¼ 0

l; u; zð Þ
 0;w� 0; y 6¼ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð22Þ

From (21), l can be expressed as

l¼ lTz� uTw

2r
ð23Þ

Define the complementary gap as

Cgap ¼ lTz� uTw ð24Þ

In practical application, the central factor r is introduced

to speed up the convergence rate by modifying (23) to be

l ¼ r
Cgap

2r
r 2 0; 1ð Þ ð25Þ

By applying the Newton-Raphson’s method to the

perturbed KKT equations, the correction equations of

(22) are

r2
xxf ðxÞ �

Pm
i¼1

yir2
xxgiðxÞ �

Pr
i¼1

ðzi þ wiÞr2
xxhiðxÞ

� �
Dx

�rxgðxÞTDy�rxhðxÞT Dzþ Dwð Þ ¼ �Lx0

�rxgðxÞTDx ¼ �Ly0

rxhðxÞDx� Dl ¼ �Lz0

rxhðxÞDxþ Du ¼ �Lw0

ZDlþ LDz ¼ �Ll
l0

WDuþ UDw ¼ �Ll
u0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð26Þ

in which, Lx0; Ly0; Lz0; Lw0; L
l
l0; L

l
u0

� �
denote the

residuals of the perturbed KKT equations, r2
xxhiðxÞ,

r2
xxgiðxÞ are the Hessian matrix of hiðxÞ and giðxÞ

respectively.

From the last four equations of (26), the relationships

between Dl, Du, Dz, Dw and Dx, Dy can be expressed as

Dl ¼ rxhðxÞDxþ Lz0

Du ¼ � rxhðxÞDxþ Lw0½ 	
Dz ¼ �L�1ZrxhðxÞDx� L�1 ZLz0 þ Ll

l0

� �

Dw ¼ U�1WrxhðxÞDxþ U�1 WLw0 � Ll
u0

� �

8>>><
>>>:

ð27Þ
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Substituting the last two equations of (27) into the first

two equations of (26), the reduced correction equations

(28), (29) are obtained, in which inequality constraints hðxÞ
are eliminated so that the size of the correction equation is

determined only by that of the equality constraints gðxÞ.

H �ð Þ �rxgðxÞT
�rxgðxÞT 0

� �
Dx

Dy

" #
¼ w �; lð Þ

�Ly0

� �
ð28Þ

H �ð Þ ¼ r2
xxfðxÞ �

Pm
i¼1

yir2
xxgiðxÞ �

Pr
i¼1

ðzi þ wiÞr2
xxhiðxÞ

� �

þrxhðxÞT L�1Z� U�1W
� �

rxhðxÞ
w �; lð Þ ¼ �Lx0 þrxhðxÞT U�1 WLw0 � L

l
u0

� �
� L�1 ZLz0 þ L

l
l0

� �	 


8>>>><
>>>>:

ð29Þ

The proposed primal dual interior point algorithm can be

summarized as follows:

Step 0: Initialization; Set k ¼ 0, K ¼ 50, center factor

r 2 0; 1ð Þ, tolerance n1 ¼ 10�6, n2 ¼ 10�4, in which, k

is the iteration count and its maximum respectively.

Choose x0 to be a solution of the equality constraints,

l0; u0ð Þ[ 0, z0 [ 0, w0\0, y0 6¼ 0.

WHILE k�Kð Þ DO

Step 1: Compute the complementary gap as (24).

If Cgap � n1& g xð Þk k1 � n2
� �

, then output the optimal

solution and stop.

Step 2: Compute the perturbed factor as (25).

Step 3: Solve the correction equations (28), (27) for

Dx; Dyð Þ and Dl; Du; Dz; Dwð Þ.
Step 4: Perform the ratio test to determine the maximum

step size in the primal and dual space by

stepP ¼ 0:9995min min
i

�li

Dli
; Dli\0

� �
; min

i

�ui

Dui
; Dui\0

� �
; 1

� 


stepD ¼ 0:9995min min
i

�zi

Dzi
; Dzi\0

� �
; min

i

�wi

Dwi

; Dwi [ 0

� �
; 1

� 


8>>><
>>>:

ð30Þ

Step 5: Update the primal and dual variables by

x kþ1ð Þ ¼ x kð Þ þ stepPDxðkÞ y kþ1ð Þ ¼ y kð Þ þ stepDDy kð Þ

l kþ1ð Þ ¼ l kð Þ þ stepPDl kð Þ u kþ1ð Þ ¼ u kð Þ þ stepPDu kð Þ

z kþ1ð Þ ¼ z kð Þ þ stepDDz kð Þ w kþ1ð Þ ¼ w kð Þ þ stepDDw kð Þ

k ¼ kþ 1

8>>><
>>>:

ð31Þ

END DO

Step 6: Print ‘‘Computation does not converge’’ and stop.

5 Simulation case

5.1 Simulation conditions

Shown as Fig. 2, an actual distribution network con-

taining 423 single phase nodes (141 three-phase nodes) is

introduced to test the capability of the proposed method for

coordinated charging of EVs. Length, impedance and rated

current of lines are shown in Table 1. The transformer’s

Table 1 The parameters of the distribution network

Line Length (m) R1 Xð Þ X1 ðXÞ R0 Xð Þ X0 Xð Þ IN Að Þ

MV 10000 20.8 4 10 12 1000

1-2 190 0.0032 0.014 0.095 0.041 510

2-3 27.5 0.008 0.002 0.024 0.006 368

3-4 85 0.024 0.006 0.073 0.018 368

4-5 97.5 0.028 0.007 0.084 0.021 368

5-6 154 0.062 0.011 0.185 0.033 300

4-7 119 0.048 0.009 0.143 0.026 300

2-8 32.5 0.009 0.002 0.028 0.007 368

8-9 59 0.017 0.004 0.051 0.013 368

9-10 106 0.030 0.008 0.091 0.023 368

10-11 95 0.027 0.007 0.082 0.021 368

9-12 217.5 0.087 0.016 0.261 0.047 368
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Fig. 2 The diagram of an actual distribution system
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rated capacity is 400 kVA with both positive and zero

sequence impedance are 0:06þ j0:0125 p.u. Shown as the

arrows in Fig. 2, there are total 165 households in the

distribution network. The lumped load connected to phase

A indicates 31 single phase household loads of another

area, while the rest 134 household loads indicate three-

phase symmetrical ones. It is assumed that the maximum

active power of each household load is 4 kW, and power

factor is 0.95. As the load curve of each household is not

available, typical summer load curves between 18:00-8:00

shown as Fig. 3 is assigned to each household. Different

load curves may result in different optimal charging power

curves for each EV. But, the capability of the algorithm is

independent of load curves.

Other simulation conditions are set as follows:

1) All EV owners are willing to participate in coordinated

charging and charging power of each EV is fully

controllable. Charging time period is between 18:00-

8:00. Charging demand is fully charged.

2) Maximal charging power of each EV is 4 kW. The

capacity of battery of each EV is 20 kWh. Charging

efficiency is 0.98.

3) Shown as the small black circles in Fig. 2, there are 67

EVs distributed in the distribution network. Taking

one EV per household for example, the permeability of

EV is 50%. Charging locations of each EV is the same

as the household load. Each EV adopts single phase

charging mode. EVs located at area 1, 2 and 3 are

connected to phase A, B and C respectively.

4) The optimization time interval is 1 hour. That is, the

household load and charging power of each EV are

kept constant in each hour.

5) The legal lower voltage limit of each phase is assumed

to be 0.9 p.u..

Node 141 is taken as the slack node, and its voltage is

kept constant as 1.05 p.u.. The rest of the nodes are taken as

PQ nodes. The three-phase base power of the system is

chosen to be 160 kVA.

5.2 Simulation results

All of the programs are written by MATLAB. The

central factor r is set to be 0.1. To validate the proposed

coordinated charging algorithm, scenarios without EV and

that of uncoordinated charging are introduced as the con-

trol groups. Under the uncoordinated charging scenario,

once an EV is connected to distribution network, it starts

charging with maximal power until fully charged. Since

most EVs are connected to distribution network between

18:00-21:00, the charging start time of EVs are selected

with Monte Carlo method between 18:00-21:00. The initial

SOC of each EV is selected with Monte Carlo method as

well. The average losses of distribution system are obtained

by implementing the simulation for 500 times. Under the

coordinated charging scenario, generally the programs

converge after 10 to 40 iterations shown as Fig. 4 and

Fig. 5.

Curves of Average losses under different scenarios are

shown as Fig. 6. It is evident that uncoordinated charging

will result in sharp increase of losses during the peak time.

While the average losses of coordinated charging are flat

over the whole charging time period. Under the uncoor-

dinated charging scenario, the average of total energy

losses is 458.1 kWh, while under the coordinated charging

scenario, that is 192.6 kWh. The average of total energy

losses under the coordinated charging scenario is much less

than that under the uncoordinated charging scenario, which

is reduced by 57.97%.

The three-phase typical voltage profiles of node 6,

which is located at the terminal of distribution network

under different scenarios, are shown as Fig. 7. Clearly,

under the scenario without EVs, as the lumped load is

connected to phase A, the voltage of phase A for node 6 is

slightly lower than that of phase B and C. Under the

uncoordinated charging scenario, a large number of EVs

start charging at the peak time, cause a sharp drop in

voltage, far beyond the statutory lower limit, especially for

phase C which is located at the terminal of the distribution

network. Under the coordinated charging scenario, because

EVs mainly charge at the off peak time, node voltages are

greatly improved over the uncoordinated chargingFig. 3 Load curves of household
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scenario. Compared to the scenario without EV, the three-

phase voltage decreases a little, but not beyond the statu-

tory voltage limit. As node 6 is located at the terminal of

the distribution network, voltage of phase C for node 6 is

close to the lower limit all the time under the coordinated

charging scenario. Thus, the voltage is really a binding

constraint when there are a large amount of EVs connected

to the distribution network.

Charging power of some EVs are shown as Fig. 8. It can

be seen that, charging power of EVs located at different

nodes vary from each other greatly. When the household

load is low at late night and early morning, the charging

power of each EV is high while in the early evening when

the household load is high, the charging power of each EV

is low or even zero. That is, charging power curve of each

EV is closely associated with household load curves.

Coincidently, charging power curves are also closely

associated with charging locations. In the same charging

area, closer to the power supply point is the charging

location, higher is the maximal charging power. For

Fig. 4 Change curve of dual gap

Fig. 5 Maximum flow deviation curve

Fig. 6 Network loss curves under different scenarios

Fig. 7 The three-phase voltage curves of node 6 under different

scenarios
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example, in area 1, the maximal charging power of EV

located at node 15 is higher than that at node 91. Similarly,

in area 2 and 3, the maximal charging power of EV located

at node 108 and 30 is higher than that at node 126 and 140

respectively. This is because in the same area, all the EVs

are connected to the same phase, the closer the charging

location is to the power supply point, the more relaxed

voltage constraint becomes, and as a result, the higher is

the maximal charging power. However, where EVs’

charging locations are not in the same area, and therefore

not connected to the same phase, this no longer holds true.

For example, maximal charging power of EV located at

node 15 is lower than that located at node 30, but node 15

is closer to the power supply point than node 30.

Curves for total charging power of EVs, total load of

household and total power of the distribution system are

shown as Fig. 9. Evidently, the changing trend of the curve

for total charging power is opposite to that of total

Fig. 8 Optimal charging power of electric vehicles at typical nodes

Fig. 9 Relationship between electric vehicle charging load and

conventional load

Fig. 10 Currents of transformer

Fig. 11 Currents of main cable

1012 Jian ZHANG et al.

123



household load. At the peak of the total household load, the

total charging power is minimal while at the bottom of the

total household load, the total charging power is maximal.

As an outcome, the total power of distribution system

which is the sum of total household load, charging power

of EVs and losses, is relatively uniform over the whole

charging time period. The proposed coordinated charging

method can shave peaks and fill valleys, thus lowering the

variance of total power of distribution system.

Currents of transformers and main cables are shown as

Fig. 10, Fig. 11 respectively. It can be seen that under

uncoordinated charging scenario, transformers and main

cables are overloaded at the peak time. While under

coordinated charging scenario, currents are far from the

limit. It is evident that neither the currents of transformer

nor those of main cable are the binding constraints on this

network. Clearly, the network equipment is more than well

suited to accommodate the additional load required by the

high penetration of EVs, assuming the proposed coordi-

nated charging scheme is introduced.

From the simulation results, it can be seen that the

proposed method has a rapid convergence rate in the

optimization of large-scale coordinated charging of EVs,

and can greatly reduce power losses, improve voltage and

lower the variance of load compared to uncoordinated

charging scenario.

5.3 Relationship between populations of EVs

and losses of distribution system

Average energy losses under uncoordinated and coor-

dinated charging scenarios with different penetration levels

of EVs are shown as Table 2. Clearly, as the numbers of

EVs connected to distribution network increase linearly

approximately, the average losses of energy under unco-

ordinated charging scenario aggrandize super linearly. This

is because when the number of EVs charging at the peak

time increase, the voltage drops deteriorate. Since the loads

are constant, currents rise drastically. Power losses increase

super linearly, since power losses is proportional to quad-

ratic current. Nevertheless, under coordinated charging

scenario, the ascent rate of energy losses are relatively

uniform compared to that under uncoordinated charging

scenario. This is because the proposed algorithm makes

most of the EVs charging at valley time, which results in

voltage profile higher and flatter than that under uncoor-

dinated charging scenario. With the popularity of EVs, the

amounts of EVs that can be dispatched are more and more.

As a consequence, the economic benefits generated by the

optimization algorithm will be more and more significant

compared to uncoordinated charging scenario.

6 Conclusions

In this paper, the component and polar coordinates

power flow equations of unbalanced distribution system are

derived. The coordinated charging model of EVs is

established aiming at minimizing losses with the con-

straints of voltage and currents of transformers and lines

taken into account. Primal dual interior point algorithm is

introduced to solve this nonlinear dynamic programming

problem. As the primal dual interior point algorithm has

been proven in terms of polynomial time complexity, the

efficiency of the algorithm is theoretically validated, and is

therefore very suitable for large scale optimization prob-

lems. The simulation results of an actual 423-bus distri-

bution system indicate that:

1) The proposed method for coordinated charging of EVs

can significantly reduce losses. In the case of 50%

EVs’ penetration, compared to the uncoordinated

charging scenario, the proposed method can reduce

power losses by 57.97% on average.

2) Charging at peak times can be avoided by the

proposed coordinated charging method, and therefore,

upgrade of distribution transformer and line can be

deferred. Charging power at valleys is increased and

total load variance is lowered and utilization of assets

is improved.

3) Compared to uncoordinated charging, the proposed

coordinated charging method can avoid sharp voltage

drop, overloading of transformer and line, and improve

the voltage profile. As a result, safety and economics

of the power supply are guaranteed.

4) Charging power of EVs are not only closely associated

with load curves, but are closely associated with

Table 2 Energy losses of uncoordinated and coordinated charging with different penetrations levels

Populations

of EVs

Penetration

levels (%)

Losses of uncoordinated

charging (kWh)

Losses of coordinated

charging (kWh)

Reduced

losses (kWh)

Percentage of

reduced losses (%)

54 40.30 360.6 172.4 208.2 52.19

40 29.95 278.1 153.1 165.0 44.95

27 20.15 211.3 134.7 96.6 36.25

13 9.70 160.5 117.2 43.3 26.98
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charging location. When there are a large numbers of

EVs connected to distribution network, charging at the

start of the distribution network is safer, more

economical and efficient than at the end of the

distribution network. Therefore parking lots should

be built nearer to rather than farther from the power

supply point in order to obtain maximal energy and

increase the distribution network’s holster capability

for EVs.
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