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Abstract Static security assessment (SSA) is an important

procedure to ensure the static security of the power system.

Researches recently show that cyber-attacks might be a

critical hazard to the secure and economic operations of the

power system. In this paper, the influences of false data

injection attack (FDIA) on the power system SSA are

studied. FDIA is a major kind of cyber-attacks that can

inject malicious data into meters, cause false state esti-

mation results, and evade being detected by bad data

detection. It is firstly shown that the SSA results could be

manipulated by launching a successful FDIA, which can

lead to incorrect or unnecessary corrective actions. Then,

two kinds of targeted scenarios are proposed, i.e., fake

secure signal attack and fake insecure signal attack. The

former attack will deceive the system operator to believe

that the system operates in a secure condition when it is

actually not. The latter attack will deceive the system

operator to make corrective actions, such as generator

rescheduling, load shedding, etc. when it is unnecessary

and costly. The implementation of the proposed analysis is

validated with the IEEE-39 benchmark system.

Keywords Cyber physical power system, Static security

assessment, False data injection attacks, State estimation

1 Introduction

Ensuring the operation security of a power system has

always been a basic yet important requirement. Security

assessment is essential to monitor and control the power

system in near real-time, and also one of the most important

functions of Energy Management System (EMS) [1, 2].

Usually, it consists of static security assessment (SSA) and

dynamic security assessment (DSA). The former one mainly

focuses on branch overflow and bus overvoltage following a

disturbance [3]. The latter onemainly focuses on the stability

criteria (including rotor angle, voltage, and frequency) isCrossCheck date: 20 June 2016
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violatedwhen be subject to a disturbance [4–7]. In this paper,

we focus on the SSA which highly depends on the state

estimation results. Therefore, the accuracy of state estima-

tion result is of high importance for the SSA and the corre-

sponding security enhancement.

Researches recently show that due to the deeper inte-

gration of physical system and cyber system, the security

and economy of the modern power system might be

affected by cyber-attacks. Cyber-attacks have already made

destructions to the control system. For example, in 2003, a

cyber-attack penetrated a computer network at the Davis-

Besse nuclear power plant in the U.S. While in 2010, the

Stuxnet worm attacked Iran’s Natanz nuclear fuel-enrich-

ment facility [8]. The ‘‘BlackEnergy’’ worm has been

confirmed of infecting multiple Ukrainian power substa-

tions in December, 2015. Around half of the homes in the

Ivano-Frankivsk region in Ukraine were left without elec-

tricity for a few hours [9].

False data injection attack (FDIA) is a kind of cyber-

attacks proposed by Liu et al. in 2009, which can make

severely secure and economic impacts on the power system

[10, 11]. Then, researches in FDIA-based cyber-attack

have been extensive. Authors in [12] made a comprehen-

sive review of state-of-the-art in FDIAs against modern

power system. Liang et al. in [13] analyzed the physical

consequences of FDIAs on the power system state esti-

mation. Yu et al. [14] proposed a stealthy and blind attack

without the knowledge of Jacobian matrix and any

assumption about the distribution of stat variables. Hug

et al. [15] studied the vulnerability assessment of FDIAs

based on the AC state estimation model. Kim and Tong in

[16] showed that the power system security and economy

can be affected by the combination of topology attack and

FDIA. The authors in [17–19] made their contributions on

the impacts of FDIAs on electricity market, and proposed

that FDIAs can make huge economic losses to the power

market. Yuan et al. in [20] and [21] proposed that FDIAs

can cheat the control center to do unnecessary load shed-

ding to the power system which is a severely destruction to

the system’s economy and security. Yang et al. in [22]

proposed a Polynomical-based compromise-resilient en-

route filtering scheme to filter FDIAs effectively and

achieve a high resilience to the number of compromised

nodes without relying on static routes and node localiza-

tion. Zhao et al. in [23] and [24] proposed a forecasting-

aided implementation method to detect FDIA based on AC

state estimation model. Chaojun et al. in [25] proposed a

new detection method to detect FDIA by tracking the

dynamics of measurement variations. Hao et al. in [26]

proposed an efficient greedy search algorithm to quickly

find subset of measurements to be protected to defend

against FDIAs. Liu et al. in [27] expanded meters from the

power side to the user side, and proposed an intrusion

detection mechanism that can achieve collaborative

detection of FDIA by setting spying domain randomly in

physical memory in combination with using secret infor-

mation and event log. From the literature, few researches

focus on the impact analysis of FDIAs on the power system

SSA. In this paper, we will analysis this problem based on

nonlinear state estimation model which is more practical to

the actual system operation.

As shown in Fig. 1, the security enhancement is imple-

mented to the power system according to the SSA results.

While, the SSA is based on the real-time system modeling

and system monitoring. For modeling and monitoring, three

types of measurements (i.e., the analog measurement, logic

measurement, and pseudo- measurement) are gathered by

Supervisory Control and Data Acquisition (SCADA) system

and then transferred to other modules in EMS [28]. In EMS,

topology processor is used to estimate the network topology;

observability analysis represents that the power flow equa-

tions are solvable, which depends highly on the available

measurements and their geographic distribution; and state

estimation and bad data detection are used to estimate the

state variables and filter raw data on the basis of redundant

measurements [28]. Onlywhen there is neither inconsistence

between analog measurements and logic measurements, nor

bad data signal shown in bad data detection module, can the

estimated state variables be used in SSA and other higher

layer applications afterwards.

In this paper, we intend to perform security and economy

analysis of the SSA based on nonlinear power system model

under FDIAs with transmission line real power flow over-

load/non-overload situations. We focus on the analog mea-

surement manipulation situation. The manipulation of logic

measurement, pseudo-measurement, and topology infor-

mation is out of the research range of this paper.We intend to

launch a successful FDIA thatwould evade being detected by

the system and cause adverse SSA results compared to the

actual situations. As a consequence, the corresponding

security enhancement implemented by the system operator

might be deceived to do unnecessary actions or do not do

necessary actions to the power system.

Real-time system measurements

Analog
measurements

Logic
measurements

Pseudo
measurements

Modelling

Topology
processor

State estimation Bad data detection

Observability
analysis Static security assessment

Secure

Security enhancement

Generator
rescheduling

Load shedding

Insecue

Fig. 1 Major processes of the online SSA
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The major contributions of this paper are two-folds:

1) Analyze the influences of FDIAs on the SSA and show

that the secure and insecure SSA results can be

manipulated by the attacker;

2) Propose two targeted attack scenarios: fake secure

signal attack and fake insecure signal attack. The

former one is to convert the insecure situations into

secure circumstances, in such a way that the control

center is cheated to not do the necessary actions; the

latter one is to convert the secure situations into

insecure circumstances, in such a way that the control

center is cheated to operate unnecessary actions.

This paper will be organized as follows. Section 2

introduces the basic theoretical background of launching a

valid FDIA against state estimation based on linear and

nonlinear model; Section 3 introduces the models and

solving method of the proposed two targeted attack sce-

narios. Section 4 demonstrates the effectiveness of the

proposed attack on IEEE benchmark system; Conclusions

are drawn in Section 5.

2 Methodologies for FDIAs

In this section, the background of state estimation, bad

data detection, and FDIA theory based on both linear and

nonlinear power flow model are introduced.

2.1 Assumptions and preliminaries

This paper has the following assumptions:

1) The attacker has full knowledge of power topology

information, system parameters, bad data detection

strategy, etc.

2) The attacker is capable of falsifying any analog

measurements that measured by meters.

Note that the above assumptions are commonly accepted

in this research field [10–32], especially when the Ukrai-

nian regional electric power distribution companies expe-

rienced cyber-attacks and caused serious blackouts on 23

December 2015.

2.2 State estimation and bad data detection

The state estimator provides estimated state variables

(i.e., voltage and phase angle on each bus) based on a

combination of meter measurements. The estimated state

variables are the parameters that reflecting the operation

conditions of the power system for a period of time [21].

Consider a power system with nþ 1 buses and m

meters. The state estimation problem is to estimate the state

variables x ¼ ðx1; x2; � � �; xnÞTbased on the meter mea-

surements z ¼ ðz1; z2; � � �; zmÞT , under the assumption that

the measurement noise e ¼ ðe1; e2; � � �; emÞT follows

Gaussian distribution (0 mean and r2 covariance).

In linear power flow model, the state estimation model is

formulated as

z ¼ Hxþ e ð1Þ

where H is the Jacobian matrix, and m[ n. Model (1) is

commonly solved by weighted least squares (WLS) method

by achieving the following optimization problem:

min JðxÞ ¼ 1

2
ðz�HxÞTWðz�HxÞ ð2Þ

where W ¼ diagfr�2
1 ; r�2

2 ; � � �; r�2
m g. The solution can be

computed in closed-form:

x
_ ¼ ðHTWHÞ�1HTWz ð3Þ

where x ¼ ½h
_

;V
_

� is the estimated state variable with h
_

as

the phase angle and V
_

as the voltage magnitude.

In nonlinear power flow model, hðxÞ is used to denote

the functional dependency between measurements and

state variables. The model is then formulated as

z ¼ hðxÞ þ e ð4Þ

Then the corresponding optimization objective is:

min JðxÞ ¼ 1

2
ðz� hðxÞÞTWðz� hðxÞÞ ð5Þ

Due to the nonlinear relationship between measurement

variables and state variables, it is difficult to have an

analytical solution. Usually, iterative algorithm is applied

to solve model in (4).

In bad data detection technique, the veracity of the

estimated state variable is detected via the largest nor-

malized residual (LNR) test, where the objective func-

tion JðxÞ is assumed to follow a chi-squared distribution

with at most m� n degrees of freedom, shown in Equa-

tion (6). s is the threshold determined by a certain signif-

icance level.

Jðx_Þ\s ð6Þ

If (6) is satisfied, it shows the estimated state variable is

capable of being used in higher layer applications; if not,

the corresponding raw data should be filtered. The

estimator should re-estimate the state variable until (6) is

satisfied.

2.3 False data injection attack

FDIA is studied on both DC and AC model. In the linear

model, the attacker fools the control center mainly by
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keeping the measurement residual unchanged, although the

attacker has injected bad data into meters.

Denoting a as the vector of malicious data which is

injected into the original measurement data z, therefore, the

measurement vector is polluted as zbad ¼ zþ a after attack.

Denoting c as the deviation vector of the estimated state

variable before and after the attack, the estimated state

variable vector after attack can be represented as

x
_

bad ¼ x
_ þ c, as shown in (7):

x
_

bad ¼ ðHTWHÞ�1HTWzbad ¼ ðHTWHÞ�1HTWðzþ aÞ
¼ x

_ þ ðHTWHÞ�1HTWa ¼ x
_ þ c

ð7Þ

The target of the attacker is to find the vector of

malicious data which keeps the measurement residual

unchanged before and after attack. If a ¼ Hc, then:

zbad �Hx
_

bad

�
�
�

�
�
� ¼ zþ a�Hðx_ þ ðHTWHÞ�1HTWaÞ

�
�
�

�
�
�

¼ z�Hx
_ þ ða�HðHTWHÞ�1HTWaÞ

�
�
�

�
�
�

¼ z�Hx
_ þ ða�HcÞ

�
�
�

�
�
� ¼ z�Hx

_
�
�
�

�
�
�

ð8Þ

In this way, the attacker can make a successful attack

stealthily without being detected by bad data detection.

FDIA theory based on nonlinear model is much more

complicated because the state variable and observation

value has nonlinear relationship. The estimated state vari-

able is gained through iteration algorithm. Therefore, it is

much more difficult to find an analytical function to

express the relationship between the malicious data and the

system parameters. The key idea of AC model based FDIA

is to find a vector of malicious data that makes the objec-

tive function after attack falls below the threshold as

Jðx_badÞ\s ð9Þ

3 SSA under FDIAs

FDIA is a harmful attack to the secure and economic

operations of the whole power system because the esti-

mated state variable used in all the higher layer applica-

tions in the control center is different from the actual one.

More importantly, the control center will be cheated to

believe the false estimated state variable. As a result, any

operations based on the fake information will be imple-

mented onto the actual system.

In this paper, the attacker’s target is considered to make

confusions of the estimated power flow on transmission

lines based on the estimated state variable. In the SSA, if

the calculated power flow on a transmission line is higher

than the limit, it is considered as an insecure situation. The

system operator should take some corrective actions, such

as generator rescheduling, load shedding, etc. If no signal

shows there is insecure situation of the entire system, it is

considered as a secure situation. So, it is unnecessary for

the system operator to do extra corrective actions. As

shown in Fig. 2, there are four scenarios of the SSA when

applying FDIAs into state estimation.

1) The actual SSA result shows the system is insecure,

while it shows secure after attack;

2) The actual SSA result shows the system is secure,

while it shows insecure after attack;

3) The actual SSA result shows the system is secure,

while it shows secure after attack;

4) The actual SSA result shows the system is insecure,

while it shows insecure after attack;

Apparently, the first and second scenarios are the most

serious situations. We focus on these two scenarios in this

paper and name them as fake secure signal attack and fake

insecure signal attack respectively.

3.1 Fake secure signal attack

In fake secure signal attack, we focus on manipulating

the fault condition into normal circumstance. In this sce-

nario, open circuit fault condition is considered as the base

case and causes overload situation. Shown as the first

timeline in Fig. 3, the fault condition and state estimation

procedure happen between two rounds of OPF. Once the

online SSA shows insecure signal to the control center, the

system operator will take corresponding actions immedi-

ately. However, when under attack, the attacker will

deceive the state estimation and online SSA to show secure

signal instead. As a consequence, necessary operations will

not be taken then.

The mathematical model is formulated as:

Actual static security
assessment results

Secure

Insecure

Fake static security
assessment results

No extra operations under
secure situations

Corrective actions under
insecure situations
(rescheduling, load

shedding, etc)

Secure

Insecure

1

2

3

4

Fig. 2 Overview of the main purpose of FDIAs on the SSA
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min ak k0 ð10Þ

s.t. zbad ¼ zþ a ð11Þ

Pij ¼ViGij þ ViVj Gij cos hij þ Bij sin hij
� �

ð12Þ

Qij ¼ViBij þ ViVj Gij sin hij þ Bij cos hij
� �

ð13Þ

Pi ¼Vi

Xn

j¼1

Vj Gij cos hij þ Bij sin hij
� �

ð14Þ

Qi ¼Vi

Xn

j¼1

Vj Gij sin hij þ Bij cos hij
� �

ð15Þ

amin\a\amax ð16Þ

½zbad � h hij;Vi;Vj

� �

�TW½zbad � h hij;Vi;Vj

� �

�\s ð17Þ

Pijmin\P hij;Vi;Vj

� �

\Pijmax ð18Þ

Qijmin\Q hij;Vi;Vj

� �

\Qijmax ð19Þ

where the measurement vector under no attack is expressed

as z ¼ ½zPij; zQij; zPi; zQi�0 which is composed of the real

and reactive measurements from transmission lines and bus

nodes, i.e., zPij, zQij, zPi and zQi, respectively. The vector

of malicious data is expressed as a ¼ ½z�Pij; z �Qij; z�Pi; z �Qi�0

which is the corresponding injection values to the real and

reactive measurements on transmission lines and bus

nodes, i.e., z�Pij, z �Qij, z�Pi and z �Qi, respectively.

Equation (10) is the objective to find the vector of mali-

cious data awithminimumnumber of non-zero valueswhich

means the attackerwillmanipulate lessmeters to achieve his/

her goal. (11)–(15) are the equality constraints; (11) shows

that the vector of measurement used for state estimation is

manipulated as zbad; (12)–(15) are the network equations

with Pij and Qij represent the power flow on transmission

line, Pi and Qi represent the power flow on bus i; hi,hj is the
phase angle on node i; hij ¼ hi � hj; Vi, Vj are voltage

magnitude on node i and node j; Gij and Bij are the real and

imaginary part of admittance matrix on element ij;

Equation (16)–(19) are the inequality constraints; (16) is

the constraint for the vector of malicious data a with amin and

amax as the lower and upper boundary. In practical applica-

tions, the determinations of these boundary values can be

determined by analyzing the historical operation data of the

utility; (17) shows the bad data detection should be satisfied

although the original measurements are manipulated; In

(17), hðhij;Vi;VjÞ ¼ ½Pijðhij;Vi;VjÞ;Qijðhij; Vi;VjÞ;Piðhij;
Vi;VjÞ;Qiðhij;Vi;VjÞ�0, Wis a diagonal matrix, s is the bad

data detection threshold; (18) and (19) show that the real and

reactive power flow based on the estimated state variables on

transmission lines should be within limit, with Pijmin, Qijmin,

Qijmax and Qijmax as the lower and upper boundary.

By solving the proposed mathematical model, the

attacker can successfully convert the insecure signal into

secure signal by injecting the malicious data a. Since the

necessary corrective actions are not taken, before operating

the next round of OPF, the physical system may experience

the following two kinds of situations:

Scenario 1: the overloaded transmission lines can sur-

vive for a period of time until the next round of OPF;

Scenario 2: the overloaded transmission lines cannot

survive for a period of time until next round of OPF.

Apparently, scenario 2 is much more dangerous than

scenario 1 because scenario 2 may cause chain reaction so

that the system is pushed to an emergency condition, and

may even cause blackout. As to which kind of influence the

attack will make, depends on the specific network opera-

tion condition.

3.2 False insecure signal attack

In fake insecure signal attack, we focus on manipulating

the normal situation into transmission line overload

circumstance.

Shown as the first timeline in Fig. 4, the system operator

will do nothing until the next round of OPF because the

online SSA sends secure signal to the control center.

However, when under attack, the secure condition is con-

verted into insecure condition. As a consequence, firstly,

the system operator will reschedule OPF immediately;

secondly, based on the real-time monitoring by meters, the

measurement values will be updated as the ones that reflect

the condition after rescheduling. By re-estimating the

system variable and redoing online SSA,if the SSA shows

secure signal, the system operator will do nothing until the

next round of OPF; otherwise, the system operator will

believe that rescheduling is not helpful and will take cor-

responding actions according to the SSA result, mostly it

will be the load shedding.

OPF OPF

OPF OPF

Fault
condition

State
estimation Online SSA

Fault
condition

Time-step between two rounds of OPF

Corrective
Actions

Insecure

Secure

Online SSA

Without

Attack

Under

Attack State
estimation

Inject malicious data

Fig. 3 Schematic diagram of fake secure signal attack
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Denoting the state estimation before rescheduling as the

first round of state estimation, and the state estimation after

re-scheduling as the second round of state estimation,

whether the attacker injects malicious data into both rounds

of state estimation depends on his/her purposes. In situation

like this, the attacker will have the following two kinds of

targets.

Target 1: The attacker launches fake insecure signal

attack for the purpose of making the system operator do

unnecessary rescheduling.

The attacker based on target 1 only need to focus on the

first round of state estimation and online SSA. For injecting

the appropriate malicious data that causes rescheduling, the

mathematical model is formulated as

min ak k0 ð20Þ

s.t. Eq:ð11Þ�Eq:ð17Þ ð21Þ
9Pij [Pijmax; Pij 2 Pijðhij;Vi;VjÞ ð22Þ

where the explanation of (20) and (21) is similar with that

of (10)–(17). (22) represents that as long as there is at least

one calculated power flow out of limit, it is a valid attack.

This model means by injecting the malicious data into

original measurements, the SSA will always show that

there is overloaded circumstance.

Target 2: The attacker launches fake insecure signal

attack for the purpose of making the system operator per-

form unnecessary and costly load shedding.

Load shedding is a costly operation for the power grid.

Usually, when the system is under the insecure situation,

the operator would do re-scheduling to try to solve the

problem. Only when re-scheduling does not work, load

shedding is then taken as an emergency action to avoid the

situation become worse. Different from target 1, target 2

requests the attacker has multiple injections. The attacker

in this scenario not only needs to manipulate before the

rescheduling, but also needs to manipulate after

rescheduling. Normally, the attacker will solve model in

(20)–(22) based on the measurement value after the first

round of OPF, and solve model (20)–(22) again based on

the updated measurement value after the rescheduling.

Shown in Fig. 4, the rescheduling is actually in between

two rounds of OPF, followed by the second round of state

estimation. The attacker should calculate the malicious

data for the first and second round of state estimation based

on the corresponding measurements. Therefore, by multi-

ple injections, the attacker will successfully make the

system take further corrective actions, i.e., load

shedding.

Apparently, target 2 is much more dangerous to the

power system than target 1 because implementing target 2

will cause costly load shedding. Usually, the system

operator chooses to use the power transfer distribution

factors (PTDFs) to determine the load shedding value for

emergency measures. The PTDF is a sensitivity matrix that

represents the sensitivities of branch flows to changes in

nodal real power injections. The mathematical model is

formulated as

min cðDPDÞ ð23Þ
s.t.DPbus ¼ DPD ð24Þ
DPf ¼ Hnbr�nbDPbus ð25Þ

Pijmin\Pijðhij;Vi;VjÞ � DPf\Pijmax ð26Þ

where DPD is the vector of load shedding value; in (23),

cð�Þ represents the cost function of load shedding; usually,

it is a linear relationship between the cost and the load

shedding value; (24) refers to the energy imbalance equa-

tion when shedding load, i.e., the vector of the decreased

injected power DPbus equals to the decreased load value

DPD; (25) is the PTDF sensitivity model for the change in

the real power flow in branches given a unit decrease in the

power injected node, where Hnbr�nb is the PTDF sensitivity

matrix, and DPf is the corresponding decreased power

flow; (26) shows that the power flows after load shedding

should still be within limits.

3.3 Solution method

For the proposed fake secure signal attack and fake

insecure signal attack models, intelligence algorithms are

usually used to find the solutions. In this paper, differential

evolution (DE) method is used to solve this problem. DE

method is a simple and efficient heuristic algorithm to

optimize certain properties of a system by pertinently

choosing the system parameters [32]. In this paper, by

applying DE algorithm, we are interested in finding the

appropriate malicious data which will neither lead to sys-

tem unobservable nor be detected by bad data detection

when adding malicious data to the meter measurements

within iteration time.

OPF OPF

OPF OPF

State
estimation

Online
SSA

Time-step between two rounds of OPF

Rescheduling

Insecure

Secure

Online
SSA

Without

Attack

Under

Attack State
estimation

State
estimation

Online
SSA

Secure/Insecure
Inject malicious data

Fig. 4 Schematic diagram of fake insecure signal attack
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4 Simulation results

In this section, we simulate the problems of FDIAs on

the SSA on the modified IEEE-39 benchmark system. All

simulation programs presented in this paper are imple-

mented on MATLAB using MatPower. The IEEE-39 bus

system has 10 generators and 46 branches. Each trans-

mission line deploys a meter which measures the corre-

sponding real and reactive power flows. The bad data

detection threshold is set to be 70.993 (freedom

m� n ¼ 46� 2� 39; a ¼ 0:05) in this paper. The maxi-

mum power flow on transmission lines is set to be 2 (p.u.).

Table 1 shows the load value used by the OPF dispatch

during this period of time. Table 2 is the DE parameter

setting for solving the problem.

4.1 False secure signal attacks

In the case of fake secure signal attacks, the open circuit

fault condition is assumed to happen on the 30th trans-

mission line in IEEE-39 bus system.

With the demand value provided in Table 1, some of the

actual power flows on transmission lines exceed the limit

because of the fault condition, shown as the orange bar in

Fig. 5. It is clearly seen that the open circuit fault condition

causes overload on transmission line 3 and 25. When under

no attack, the online SSA will immediately react to the

situation and send insecure signal to control center. Then,

control center will take corrective actions.

However, by injecting malicious data into the original

measurements, the overloaded situation is manipulated

within limit shown as the blue bar in Fig. 5. It is clearly

seen that no line is in overload situation. Since the real

power flow overload situation is of the most concern, we

only compare the real power flow on transmission lines in

this paper. Shown in Fig. 6, the orange bar represents the

original real power flow measurements on transmission

lines, while the blue bar represents the corresponding

injection data. Consequently, the control center will do

nothing during this period of time.

4.2 False insecure signal attacks

In the case of fake insecure signal attack, no matter the

attacker’s target is to make system do rescheduling or load

shedding, he/she needs to manipulate the normal situation

to overload situation by solving Equation (20)–Equa-

tion (22) based on the corresponding measurements. For

the IEEE-39 bus system, the original real power flow

measurements on transmission lines before re-scheduling

Table 1 Demand parameters of the IEEE-39 benchmark system

Bus Demand (MW) Bus Demand (MW) Bus Demand (MW)

1 100 14 – 27 70

2 – 15 80 28 50

3 100 16 80 29 70

4 155 17 – 30 –

5 – 18 80 31 50

6 – 19 – 32 –

7 80 20 200 33 –

8 150 21 80 34 –

9 50 22 – 35 –

10 – 23 80 36 –

11 – 24 80 37 –

12 80 25 80 38 –

13 – 26 30 39 100

Table 2 Differential evolution parameter setting for solving the

models

Population size 100

Maximum iteration time 100

F 0.9

Cr 0.1
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Fig. 5 State estimation result with and without attack (fake secure signal attack)

502 Jiongcong CHEN et al.

123



are the values shown as the orange bar in Fig. 7. Then the

state estimation calculates the corresponding state vari-

ables. As a consequence, the calculated power flow values

are shown as the orange bar Fig. 8. It is clearly seen that

the system is operating in good condition.

However, by injecting malicious data (blue bar in

Fig. 7) into the original real power flow measurement on

transmission lines, the attacker causes fake overloaded

situations shown as the blue bar in Fig. 8. It is clearly seen

from Fig. 8 that the secure situation is converted into

insecure situation with overload situation on transmission

line 27, 33, 34, 35, 37, 39, 41 and 46.

Based on the insecure signal sent by the online SSA, the

control centerwill do rescheduling.As discussed in Section 3,

the attacker calculates themalicious data by solving (20)–(22)

using the updated measurements, then injects malicious data

after rescheduling. Load shedding is then implemented as an

emergency measure. As shown in Table 3, the load shedding

value for the IEEE-39 bus system is displayed, which is also

calculated using DE algorithm. It can be seen from Table 3

that the total load shedding value is 123.65MW.The unit load

shedding cost is set to be 3:00� 104 $/MW. Therefore, it
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Fig. 8 State estimation result with and without attack (fake insecure signal attack)

Table 3 The load shedding value of the IEEE-39 benchmark system

Bus Value (MW) Bus Value (MW)

1 4.20 21 14.04

2 – 22 –

3 0 23 34.41

4 0 24 2.14

5 – 25 7.65

6 – 26 9.36

7 0 27 20.45

8 0 28 13.06

9 0 29 0

10 – 30 –

11 – 31 0

12 0 32 –

13 – 33 –

14 – 34 –

15 0 35 –

16 5.61 36 –

17 – 37 –

18 0 38 –

19 – 39 0

20 12.71
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Fig. 6 Measurement data and injection data (fake secure signal

attack)
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Fig. 7 Measurement data and injection data (fake insecure signal

attack)
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takes the power system 3:71� 106 $ as the extra increased

cost which is actually unnecessary at all.

5 Conclusions

The cyber-attack is a harmful threat to the security and

economy of modern power system. This paper analyzes the

influences of FDIA, which is a kind of cyber-attack, on the

SSA based on nonlinear power flow model. It shows that

the attacker can make confusions of the secure and insecure

signal to the control center by injecting malicious data into

meter measurements. The system operator is therefore

operating based on the false information which would

make economic losses and may even lead to blackouts.

Therefore, researches on how will cyber-attacks manipu-

late the power system and what influences will cyber-at-

tacks make to the power system would have significant

importance to enhance power system security.
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