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Abstract The usage of each private electric vehicle

(PrEV) is a repeating behavior process composed by

driving, parking, discharging and charging, in which PrEV

shows obvious procedural characteristics. To analyze the

procedural characteristics, this paper proposes a procedural

simulation method. The method aggregates the behavior

process regularity of the PrEV cluster to model the clus-

ter’s charging load. Firstly, the basic behavior process of

each PrEV is constructed by referring the statistical data-

sets of the traditional private non-electric vehicles. Se-

condly, all the basic processes are set as a simulation

starting point, and they are dynamically reconstructed by

several constraints. The simulation continues until the

steady state of charge (SOC) distribution and behavior

regularity of the PrEV cluster are obtained. Lastly, based

on the obtained SOC and behavior regularity information,

the PrEV cluster’s behavior processes are simulated again

to make the aggregating charging load model available.

Examples for several scenarios show that the proposed

method can improve the reliability of modeling by grasping

the PrEV cluster’s procedural characteristics.

Keywords Electric vehicle (EV), Private electric vehicle

(PrEV), Charging load model, State of charge (SOC),

Procedural simulation, Cluster

1 Introduction

Large scale deployment of electric vehicles (EVs) will

provoke considerable impacts on the power system [1]. It is

essential in studying the impacts and how to take advan-

tages of EVs to provide ancillary services [2]. And ag-

gregating the charging load model for EVs becomes a

crucial problem.

A number of approaches have been proposed to forecast

the charging load of EVs. In [3–5], the trip distances, initial

stage of change (SOC) and charging time were simulated

by several independent probability distributions, and then

the charging load model was established. In [6], based on

the data provided by GPS devices, more accurate results

were obtained by conditional probability distribution

function. Besides, to consider the stochastic natures of EV

transportation variables, a joint distribution function with

copula functions was developed in [7]. In [8], a spatial-

temporal model based on intelligent transportation re-

searches was proposed, and the origin and destination (OD)

analysis was introduced to model the mobility of EVs. In

[9], the diversity of vehicle users’ using habits is consid-

ered, and its modified model, which considers the effect of

road slope, was presented in [10]. The distribution of EVs’

parking demand was discussed in [11], and then the spatial

and temporal distribution of EVs’ charging load was

studied. In [12], an EV is assumed to be charged imme-

diately while it parks, and the charging will not stop until it

is fully charged or its next trip begins, then the daily

charging load curves of various typical EVs were achieved.

Potential EV users were screened out by empirical analysis

in [13], and their characteristics were defined as the basic

indicators to predict the charging demand of future EVs. In

[14], an analytical method based on the non-homogeneous

semi-Markov processes was proposed to model the

charging behavior of EVs. The usefulness of the National

CrossCheck date: 27 February 2015

Received: 30 September 2014 / Accepted: 18 February 2015 /

Published online: 7 May 2015

� The Author(s) 2015. This article is published with open access at

Springerlink.com

M. BAN, J. YU, Harbin Institute of Technology, Harbin 150001,

HLJ, China

(&) e-mail: banmingfei@hit.edu.com

123

J. Mod. Power Syst. Clean Energy (2015) 3(2):170–179

DOI 10.1007/s40565-015-0125-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-015-0125-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-015-0125-z&amp;domain=pdf


Travel Survey was investigated in [15], and a generic

charging load modeling method, which considers the de-

tailed using habits of EVs, was proposed.

Current researches have been done with lots of active

explorations. However, although the methods in [4–7] are

easy to implement, their results are not credible enough, as

they lack effective methods to model the inherent ran-

domness of EVs. Despite various improvements have been

presented in [8–11], the behavior characteristics of EVs are

still described by traditional analytical methods. On the

other hand, the method in [12] is clear and articulate, but it

is too idealistic to consider the complex driving and

charging behavior of EVs. As for [13–15], the character-

istics of EVs may well be simulated by using the historical

data, but it is an arduous task to collect the large amounts

of essential data. Meanwhile, the simplification they made

would have serious impact on the accuracy of the results,

thus the role they could play in a specific distribution

network still needs further research.

Oversimplification and data collection difficulty impact

seriously on the modeling accuracy. Meanwhile, various

random factors and the discrepancy between EVs are too

complicated to be directly reflected by the statistical results

or mathematic analysis.

Additionally, the time windows discussed in most of the

related literature are confined to just no more than one day.

However, the realistic charging and discharging cycle of an

EV, especially a PrEV, is much longer. Hence it is prone to

misalignment in describing the EV cluster’s SOC and be-

havior process, which will result in serious distortions in

modeling.

The characteristics of different EVs are distinctive,

specifically, we only studies the PrEV in this paper. PrEVs

usually have different behavior processes on weekdays and

weekends, and the majority of them can complete one

charging-discharging process within one week, herein one

week is assigned as the time window.

The proposed method could depict the behavior of a

PrEV in a long time window. And based on readily ac-

cessible data, it can effectively aggregate the behavior

process regularity and SOC distribution of the PrEV cluster

from individual level. Then by simulating the continuous

driving and charging process of each PrEV, the total

charging load curves are obtained.

The remainder of this paper is organized as follows:

Sect. 2 describes the procedural characteristics of the

PrEV cluster and the overall modeling approach. Sec-

tion 3 covers the information about the reference datasets

and related parameters. Sections 4 and 5 study the PrEV

cluster’s behavior process regularity and SOC distribu-

tion respectively. Section 6 introduces the aggregated

model and the cases study, and then the conclusions are

given in Sect. 7.

2 Procedural characteristics and modeling approach

2.1 Procedural characteristics analysis

Generally, similar to the non-electric private vehicles,

the travel destinations of PrEVs can be classified into three

categories [14]: � Home, ` Work, ´ Else. And as shown

in Fig. 1, the behavior process of a PrEV can be depicted

by several basic driving routes, Route 1 to 4, or their

combinations.

A PrEV’s behavior can be portrayed by two typical pro-

cesses. One is the daily driving and parking process, which

cycles day by day. The other is the charging and discharging

process, which tends to have a longer cycle. The latter usu-

ally contains several ones of the former. As the two processes

continuously interweave in the time domain, it provides a

good basis for aggregating the charging load model of the

PrEV cluster with procedural simulation.

Since historical data can not directly provide detailed

discharging-charging data of the PrEVs, it is important to

make rational use of the PrEV cluster’s procedural be-

havior characteristics to obtain necessary information.

With the promotion of the charging facilities at work-

places and public parking stations, the charging behaviors

of PrEVs will become more flexible and diversified.

However, due to the time-of-using price and the customer

habits, most charging will take place after the daily last trip

[16]. To facilitate subsequent analysis, the following as-

sumptions and simplifications are considered.

1) PrEV’s charging only takes place after the daily last

trip, and only at home or the residential area.

Route 2
Route 3 Work

Route 1

Route 4

Charges

P

P P

Completely 
discharged

Completely
charged

Home Else

Fig. 1 PrEVs’ typical process of mobility
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2) PrEV’s usage is classified into two patterns: weekdays

and weekends.

3) Bidirectional energy transferring modes, such as V2G

[17] and V2B [18], are not considered.

Then, a PrEV’s behavior processes before the daily last

trip mainly influence its total trip distance, which can be

reflected by its SOC decrease. In practice, we mainly

consider the arriving moment of the last trip and the SOC

before charging, rather than all the details. Thus the PrEV’s

behavior processes before the daily last trip can be sim-

plified, and the remaining processes related with the

charging load become even more prominent.

Figure 2 shows the typical behavior process of PrEVi at day

j. It can be simply portrayed by SOC and a series of serialized

time indicators. In Fig. 2, SOCi,j is the SOC of PrEVi when it

finishes the jth day last trip, and SOCOi,j is the original SOC of

PrEVi before the first trip’s, while SOCMAXi is the maximum

SOC of PrEVi. And the serialized time indicators include the

departing moment ti,j-b, the midway sojourn time Ti,j-s, the

driving time Ti,j-t, the arriving moment ti,j-a, the delay time

Ti,j-d and the charging starting moment ti,j.

Since each time indicator could represent a time period

or a time period’s starting/ending point in the behavior

process of a PrEV, the serialized time indicators may well

portray a PrEV’s behavior process. Hence, grasping these

indicators is helpful to grasping the behavior process reg-

ularity of a PrEV.

2.2 Overall modeling approach

The modeling approach consists of two consecutive

parts as shown in Fig. 3. The first part aims at aggregating

information about the SOC and serialized time indicators

for all the PrEV individuals. And the second part models

the charging load of the cluster based on the converged

solution of the first part.

1) Part 1: In order to get the SOC and serialized time

indicators of the PrEV cluster, the temporary behavior

process of each PrEV individual is iteratively struc-

tured and simulated. By dynamically calibrating and

restructuring the processes in each procedural

simulating cycle, the regular distributions of the

SOC and serialized time indicators for the PrEV

cluster are gradually refined. This part includes the

following two parallel sub-processes.

Sub-process 1: To study the behavior process regularity

of the PrEV cluster, several data-subsets about the time

indicators and trip distance are generated. And the

samples are extracted from them to characterize a

temporary behavioral process for each PrEV individual.

Then procedural simulation is conducted on these

temporary behavior processes, and the simulation results

are compared with the actual surveys. The untrustworthy

ones are dynamically updated and reconstructed to make

the total behavior process regularity of the PrEV cluster

more consistent with actual statistics. Its detailed process

is given in Sect. 4.

Sub-process 2: To study the SOC distribution of the PrEV

cluster, driving and charging processes of all the PrEVs are

continuously simulated week after week. Then the daily

SOC information of each PrEV is available, and the overall

SOC distribution of the PrEV cluster is dynamically

monitored and saved. The simulation ends when the SOC

distribution tends to stabilize within appropriate criterions.

More details are described in Sect. 5.

2) Part 2: Taking the SOC distribution and the behavior

process regularity information obtained in Part 1 as

initial and constraints respectively, a new simulation

begins. The driving and charging and process of each

PrEV is continuously simulated. Meanwhile, various

random influencing factors and different charging

scenarios are embedded. In this way, the SOC and

charging starting moment information of each PrEV

individual becomes available. Then the charging load

curves of the PrEV cluster can be obtained.

3 Datasets and parameters

3.1 Datasets

To get the serialized time indicators and SOC distribu-

tion of the PrEV cluster, statistical data about the driving

(Ti, j-t1)

(ti,j-b)

(Ti, j-t2)(Ti, j-s)

Departing moment Arriving moment Charging starting moment

Sojourn timeDriving time Driving time

(ti, j-a) (ti, j)

Delay time
Simplified
processes

(SOCi, j)

(Ti, j-d)

P
SOCOi, j SOCOi,( j+1)=SOCMAX i

Beginning on day j End on day j

Last trip

charges

Home Work / Else Else Home / Residential area

P P P P P

Fig. 2 Typical behavior processes of a PrEV
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behavior are extracted from the 2011 Transportation Re-

port provided by the Beijing Transportation Research

Center [19]. The datasets include information about the trip

distance, departing moment, midway sojourn time, arriving

moment, traffic conditions and so on.

It should be pointed out that the data utilized in this

paper are easily accessible, and can also be obtained from

other practical traffic statistics for specific area, thus the

applicability of the proposed method is enhanced.

3.2 Time indicators related parameters

As shown in Fig. 2, if PrEVi charges on the jth day, its

charging starting moment ti,j is decided by the arriving

moment ti,j-a and the delay time Ti,j-d, which can be de-

scribed as

ti;j ¼ ti;j�a þ Ti;j�d ¼ ti;j�b þ Ti;j�s þ Ti;j�t þ Ti;j�d ð1Þ

In (1), ti,j-b and Ti,j-s derive from traffic statistics [19], and

Ti,j-s is determined by sojourn behavior. In general, sojourn

behavior can be fixed (i.e. sending and picking up children) or

random (i.e. shopping, visiting) [19]. Ti,j-d is determined by

the charging scenarios. While, the driving time Ti,j-t is related

with the last trip distance Si,j and the driving speed vi,j.

For PrEVi, Si,j can be defined as sum of half the daily

basic trip distance di,j and the random additional trip dis-

tance on the way home d?i,j. Basic trip distance probability

density function on weekdays ywd [20] and weekends ywe

[19, 20] can be described by

ywd ¼ 1

baða� 1Þ! x
a�1
1 e�

x1
b

ywe ¼ r

r1

ffiffiffiffiffiffi

2p
p e

�ðx2�l1Þ2

2r2
1 þ 1 � r

r2

ffiffiffiffiffiffi

2p
p e

�ðx2�l2Þ2

2r2
2

8

>

>

>

<

>

>

>

:

ð2Þ

where x1 and x2 are the trip distance on weekdays and

weekends respectively; a the shape parameter; b the scale

parameter; r the weight of bimodal-normal distribution;

and r1, r2, l1, l2 the standard deviations and expectations

of corresponding normal distributions respectively.

d?i,j is related with the random sojourn behavior and can

be determined by corresponding distribution. It has little

effect on the modeling result, thus we do not place em-

phasis on it.

In addition, in order to consider the impact of main

random factors on the modeling, no trip and long-distance

extra trip are considered. The proportions of PrEVs with no

trip on weekday and weekend are rnw and rne respectively,

and the corresponding trip distances are 0 for the day. The

proportions of PrEVs with long-distance extra trip on

weekday and weekend are raw and rae respectively, and

their trip distance can be described by normal distribution

N1 and N2.

As for vi,j, it can be given by the fitting function of traffic

survey. Yet for PrEVs with sojourn behavior, it is hard to

accurately describe vi,j. To expedite following simulation,

the sojourn behavior is assumed to occur in the middle of

the last trip.

Then ti,j-a can be obtained from

Z ti;j�a

i;j�b

vi;jðtÞdt ¼ Si;j ð3Þ

3.3 SOC related parameters

SOCi,j is determined by PrEVi’s driving and charging

behavior and directly related with the trip distance, which

can be described as

SOCi;j ¼ SOCi;0 �
di;j

sið1 � giÞ

þ
X

j�1

h¼1

DSOCi;h �
di;h

sið1 � giÞ

 !

ð4Þ

where SOCi,0 is the initial SOC; si the nominal mileage; di,h
the trip distance at day h; DSOCi,h the SOC increment at
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Part 1  Gather information for modeling Part 2 Model the aggregating charging load
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Fig. 3 Framework of the overall modeling approach
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day h, and 0 B DSOCi,h B SOCMAXi–SOCi,h; and gi an

efficiency and aging coefficient [21], it is introduced to

consider the capacity and mileage decreases of PrEVi,

while it can be determined by

gi ¼ f ðCtotal;Dtotal; TtotalÞ ð5Þ

where Ctotal, Dtotal and Ttotal are the total charging energy,

trip distance and usage time respectively, and concrete

formula of f could be given based on actual situation.

The criteria for PrEVi needing to be charged is defined

as

di;jþ1 þ li;jþ1

sið1 � giÞ
[ SOCi;j ð6Þ

where di,j?1 is the planned trip distance for next day, and it

is usually decided by (2) or depends on specific scenario;

and li,j?1 the margin, which can be adjusted according to

actual cases.

Herein, considering the impact of practical habits of

private vehicles owners and battery lifespan, it is assumed

that once the charging process starts, it will not abort until

the battery is fully charged. For other complex cases, they

will be studied further in future work. Then if PrEVi

charges, SOCOi,j?1, the initial SOC of the next day, equals

to SOCMAXi, otherwise it equals to SOCi,j.

4 Behavior process regularity of the PrEV cluster

For large-scale PrEV cluster, it is hard to directly obtain

the behavior regularity of each PrEV. Generally, more re-

alistic approach is to generate several data sub-sets of the

serialized time indicators with referring to the traditional

non-electric private vehicles and sample corresponding

indicator from the data sub-sets for each PrEV to complete

its overall behavior process.

However, the approach is not accurate enough as the

sampling is random and uncontrolled. Therefore, a proce-

dural simulation method to obtain the basic behavior pro-

cesses regularity of the PrEV cluster is presented in this

section.

4.1 Modeling approach

The timeline of one typical day is divided into m se-

quential segments, and in subsequent work, the processes

are conducted segment by segment. Then the presented

method is illustrated in Fig. 4, it mainly consists of the

following steps.

1) Data preparation: Two data sub-sets about the basic

trip distance and departing moment are generated

respectively. They have the same size with the PrEV

cluster. Then all the departing moment data are

classified into the corresponding time segments (from

1 to m).

2) Constraints setting: When it progresses to the lth

segment, to improve the accuracy and credibility,

several constraints are set. These constraints are

related with the specific circumstances of the lth

segment, including the average speed, the average trip

distance and the ratio of in-transit vehicles, etc.

3) Data combination: For the lth segment, according to

the traffic survey, a certain percentage of the departing

moment data are extracted, and the related PrEVs are

assumed to have sojourn behavior. Meanwhile, the

sojourn time range is given. Thereby, the data

combinations of departing moment and midway

sojourn time become available. After that, the basic

trip distance data are extracted, according to the

constraints, and added to these data combinations.

Then the roughly driving time can be calculated, and

the temporary behavior process sample for each PrEV,

whose departing time distributes in the lth segment,

can be assembled.

4) Data inspection: Based on the samples above, the

number of PrEVs arrived in the lth segment is

obtained. It is inspected that if its proportion of the

PrEV cluster is consistent with statistics. Namely if the

error el is less than the reference e0l, the serialized time

indicator samples are retained and they can represent

the basic behavior regularity of the PrEVs distributed

in this segment. Otherwise, the samples with their

arriving times in the center part of this segment,

namely the credible part, are saved to improve the

odds of success in the next simulation cycle, and this

segment will be reprocessed.

5) Reverse process: When it comes to the last segment, if

the remaining data do not meet the accuracy require-

ments, the samples in previous segments will be

added. Then from the last segment to the 1st segment,

similar iteration and combination will be conducted.

When the requirements of all the segments are met, the

temporary process regularity of the PrEV cluster is

obtained.

6) Procedural simulation and calibration: Based on the

temporary behavior regularity, procedural simulation

is conducted. In each simulation cycle, each segment’s

uncertain factors, such as random sojourn behavior are

re-distributed, and the departing moment of each PrEV

is set to fluctuate within a certain range. And the

untrustworthy ones are dynamically updated and

reconstructed to make the total behavior process

regularity of the PrEV cluster more consistent with

actual statistics. This procedural simulation process
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will be implemented again and again till the last

several inspection results are stable.

Finally, the stable serialized time indicators of each

PrEV are obtained, and then the PrEV cluster’s behavior

process regularity can be represented.

4.2 Simulation cases

Referring to [19], parameters are set as follows: a = 3,

b = 9 km, r = 0.65, r1 = 6 km, l1 = 20 km, r2 = 15 km,

l2 = 80 km. When taking a weekday as example, ac-

cording to the departing moment, the PrEVs are divided

into three parts, 16:00–18:00, 18:00–20:00 and 20:00-next

day. Assuming that there are 5000 PrEVs in the cluster, and

35 % and 25 % PrEVs in the first two parts have relatively

fixed sojourn behavior, and their sojourn time evenly dis-

tributed between 10 and 40 min. The simulating result is

shown in Fig. 5.

Simulation result shows that the obtained distribution is

broadly consistent with actual statistical results. It indicates

the behavior process regularity of the PrEV cluster

obtained from procedural simulation is close to the actual

situation.

5 SOC distribution

The driving and charging behaviors of PrEVs are relatively

regular, thus the overall SOC distribution of PrEV cluster is

bound to stable. In this part, a procedural method is presented

to reveal the regularity of the SOC distribution.

5.1 Modeling approach

The flow chart of modeling the SOC distribution of the

PrEV cluster is given in Fig. 6, in which [a] represents the

integer part of a, and i = 1, 2, 3…, n.

To start with, a group of rational SOC values are gen-

erated to serve as initial for the studied PrEV cluster. To

facilitate aggregating a comprehensive model, the vehicle-

numbers and corresponding basic trip distances of Sect. 4

are still employed. Besides, parts of the PrEVs are set to

have no-trip or long-distance trips in each simulation cycle.

Then procedural simulation is conducted day by day to

study the SOC information of each PrEV.

During the simulation, the daily SOC distribution in-

formation of the PrEV cluster, namely the daily SOC of

each PrEV, is saved in every week unit. The SOC dis-

tributions in the last k weeks are compared with each

other. If the daily SOC distribution differences of the

same day among these weeks are all maintained within a

certain range, including expectation, variance and pro-

portion of each sub-interval, it is determined that the SOC

distributions of the PrEV cluster have tended to stabilize.

Otherwise, the above simulation continues. If the daily

SOC distributions of the PrEV cluster sustain convergent

continuously, it is safe to say the distributions are closer to

actual situations. Thus they can be applied to the follow-

up researches to remove the adverse initial effects of

defining the SOC distribution with some probability

assumptions.

Start

l=l+1

Save the credible part

l=m-1?

Y

Y

N

N

Y

N

Initialization, l=1;
Data preparation

Data inspection for segment l
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x xe e≤
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Y
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Fig. 4 Flow chart of modeling the behavior process regularity
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5.2 Cases study of the SOC distribution

Herein, taking Nissan Leaf and BYD E6 (two types of

EV) as examples respectively, the parameters are given in

Table 1, and the aging affect is ignored.

Considering the characteristics of battery, the SOC is set

to range between [0.2–0.9] [22]. Setting k = 5 and the

differences between the expectation and variance of the

PrEV cluster’s daily SOC distribution less than 5 % as the

simulation termination criterion. The other relevant pa-

rameters are the same to those used in Sect. 4. For sim-

plicity, PrEVs with random behavior are assumed evenly

distributed and randomly selected every day. Besides, li,j is

set to be di,j?1/4, and ranges between 10 to 20 km.

Figure 7 shows the density distribution of the PrEV

proportion about SOC. It can be seen that the results of

Nissan Leaf in the 15th and 24th weeks are basically

consistent, which verifies the existence of the steady dis-

tribution of the PrEV cluster’s SOC and the validity of the

method. In addition, the daily distribution differences of

Monday to Sunday are significant, which directly impacts

on the modeling of the charging load. However, it is rarely

involved in current researches.

Furthermore, there are obvious differences between EVs

with different parameters, such as Nissan Leaf and BYD

E6. And if the energy efficiency of BYD E6 is improved,

for example from 4.5 to 6.8 km/(kWh), or just assuming

that its energy consumption increases by an average of

20 % in winter due to traffic complicacy and heating, its

SOC distribution significantly varies. Therefore, the effects

of energy conversion efficiency and non-driving energy

consumption are revealed, showing that the proposed

method can address various factors and has better

applicability.

6 Aggregated model and cases study

6.1 Aggregated model

As shown in Fig. 3, the modeling of the aggregated

charging load is implemented as follows.

Setting simulation starting on Monday and taking the

SOC data obtained from Sect. 5 as initial, the procedural

simulation starts with the basic behavior regularity of each

PrEV obtained in Sect. 4.

Table 1 Parameters of typical EVs

EV type Capacity (kWh) Mileage (km)

BYD E6 64 290

Nissan leaf 24 160
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PEVs arrive home
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Fig. 6 Flow chart of modeling the SOC distribution
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The driving and charging processes of each PrEV are

continuously simulated. And in all stages of the simulation,

various related influencing factors can be added to a par-

ticular PrEV or a sub-cluster according to their specific

behavior characteristics.

Then the daily SOC and arriving moment information of

each PrEV can be obtained. Centralizing the information,

and taking 5 min as step, statistical computations of the

PrEVs plug-in and plug-off are dynamically performed.

Finally, combined with corresponding charging power and

scenarios, the total charging load of the PrEV cluster is

obtained.

6.2 Simulating scenarios

Referring to existing standards in China, the average

charging power of community charging posts, normal

charging and quick charging in charging station are set as

7.04, 12.16 and 23.94 kW respectively. Meanwhile, the

time-of-using (TOU) price is set as below, peak time:

10:00–15:00 and 18:00–21:00; shoulder time: 7:00–10:00,

15:00–18:00 and 21:00–23:00; valley time:

23:00–7:00(next day). Then the simulating scenarios are

set as follows.

1) Scenario A: Assuming that all PrEVs in target area are

equipped with charging posts and they charge once

they drive back from daily trips. Besides, the charging

process will not stop till they are fully charged.

2) Scenario B: In practice, not all of the PrEVs need

charging once they drive back home, and there are a

considerable proportion of PrEVs have no charging

posts. Furthermore, if V2G [17] and V2B [18] are not

considered, to reduce the charging frequency, owners

tend to charge their PrEV till they have to.

In scenario B, the charging control methods are grouped

into the following three categories: � Dumb charging,

PrEVs plug in immediately when they need charging; `

Smart charging considering the TOU price; ´ Smart

charging considering both of the TOU price and workers’

habit (WH).

Moreover, according to whether they have a fixed

parking position, the PrEVs can be divided into three

groups: � Group A, the PrEVs with fixed parking position

and self-charging posts. ` Group B, the PrEVs without

fixed parking position but equipped with battery swapping

system. ´ Group C, for which centralized charging in

charging station is the only choice. Assuming a PrEV in

Group C can finish its charging before 22:00, it charges and

leaves, otherwise the charging station will take charge of it

for both charging and parking till its owner come to pick it

up on the next day. According to [19], the proportions of

Group A, B and C are set as 0.55, 0.33 and 0.12

respectively.

6.3 Simulation results and discussion

6.3.1 Scenario A

When taking the BYD E6 as example, the charging load

curves in scenario A are shown in Fig. 8.

Without considering the TOU price, the simulation re-

sults are similar to that in [3–5]: charging load curves on

weekdays and weekends are almost identical, which will

increase the burden of distribution network, because the

charging peak load of the PrEV cluster overlaps with the

original one of the distribution network.

When the TOU price is introduced, the charging load

peak moves to the starting point of valley price. Even

though assuming that all the PrEVs start charging uni-

formly within half an hour, there is still a sharp load spurt.

If all the charging starting points are set just at the same

moment when the valley price begins, the load spurt be-

comes more severe, as shown in the shaded part in Fig. 8.

Consequently, it will seriously affect the operation of dis-

tribution network.

6.3.2 Scenario B

The simulation results are shown in Fig. 9. When taking

the BYD E6 as an example, the simulation results are

shown in Fig. 9a–d is the simulation result for Nissan

Leaf.

In Fig. 9a, charging load curves differ from each other,

which indicates the necessity to implement a long-term

procedural simulation for the PrEV cluster and study its

continuous charging load.

In Fig. 9b and c, compared with the dumb charging, the

smart charging can not only realize a shift of the charging

load from the system peak demand time to the valley hours,

but also reduce the charging cost. However, the load spurt

cannot be ignored. Moreover, the total charging load
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Fig. 8 Simulation results of scenario A
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curves in Fig. 9c are smoother than those in Fig. 9b. It

follows that the control of the charging load behavior plays

a decisive role. With the increasing penetration of PrEVs, it

is imperative to research more flexible and feasible

charging controlling methods.

Though the charging load curves of the post in Fig. 9b

and c are not exactly the same, both of their shapes and

trends are broadly consistent. Thus from the perspective of

the PrEV cluster, the proposed method can reduce the in-

fluence of random factors and increase the reliability of

modeling.

Furthermore, for different types of EVs, such as BYD

E6 and Nissan Leaf, the simulation results in Fig. 9c and d

are distinct. In Fig. 9d, although the differences between

loads in a week exist, they are not as significant as that in

Fig. 9c. Meanwhile, the total charging demand of Nissan

Leaf is obviously less than that of BYD E6. These are

consistent with the expectations, as Nissan Leaf has smaller

battery capacity but higher energy conversion rate.

7 Conclusions

In this paper, the procedural characteristics of PrEV are

analyzed and used to aggregate the data about the behavior

process regularity and SOC distribution. Then the data are

applied in modeling the continuous charging load of the

PrEV cluster. The proposed procedural simulation method

is simulated in several scenarios, and the results demon-

strate its validity.

As each PrEV is independent, the proposed method

makes it possible to grasp the behavior process regularity

of the PrEV cluster from individual level. And the cumu-

lative effect of the random influencing factors is fully

considered in different components of the simulation.

Meanwhile, due to its flexibility, it may serve as an analysis

tool for the intelligent charging control researches.

The proposed method can effectively track the devel-

opment of EVs by adjusting the procedural simulation. And

it can not only be used in the planning and optimal
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operation for a certain charging station, but also provide

reliable reference for prediction and analysis of a specific

distribution network.

Future work forecasting.
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