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Abstract Various kinds of new engineering technologies

have been studied to realize the low-carbon and sustainable

power supply systems all over the world. In actual imple-

mentation of these technologies, mostly, there are multiple

objectives with trade off relationships among each other,

and also various constraints in the achievement of these

objectives. Therefore, it should be essential to solve multi-

objective optimization problems effectively in the appli-

cations of these new technologies in power systems. This

paper proposes an improved method to realize multi-

objective optimization for critical challenges in advanced

power systems. To realize that, in an optimal dispersed

generation installation problem, that is, one of effective

measures for low-carbon power systems, various optimi-

zation methods and their combination methods are evalu-

ated and a hybrid method for evolutionary algorithms was

developed. The method can provide improved results

compared with other state-of-the-art multi-objective opti-

mization methods.

Keywords Dispersed generation, Distribution system,

Evolutional strategy, Multi-objective optimization,

Optimal power flow

1 Introduction

As various environmental problems such as climate

change due to global warming and air pollution have been

real problems, the increasing penetration of renewable

energy source (RES) generation which does not produce

CO2 and other substances of concern is common critical

challenge all over the world. Therefore, many RES gen-

eration systems have been installed in various countries

and regions, and various subsidies and preferences also

have been implemented.

Japan also plans a large number of RES generation

system installation and the plan says that more than 20% of

total electric power should be generated from RES and

most of them should be from dispersed generations (DGs)

located in electric power demand areas [1]. Although RES

generation is an effective approach in the aspects of CO2

emission reduction, it should be difficult to achieve the

grid-parity compared with current generation technologies

due to high production cost, low generation efficiency and

unstable power capacity etc., despite of many supports

from above mentioned subsidies and preferences. The

penetration rate of RES is not enough to consider aggres-

sive targets for RES penetration. Therefore, it is important

to maximize RES advantages and minimize its disadvan-

tage for the realization of low- carbon society and opti-

mization of multiple objectives with trade-off relationship

each other, should be a critical challenge.

In this paper, an effective multiple objectives optimi-

zation method is discussed assuming that a distribution

power system where many RES DGs are installed. In this

discussion, power loss minimization and cost minimization

by DG installation are defined as trade-off relation of

multiple-objectives because RES DG can reduce CO2

emission itself and power loss reduction by DG can also

contribute to CO2 reduction, while RES DG generation
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cost is expensive compared with conventional power price

generally. Then, optimal solutions are derived by simula-

tions using various state-of-the-art optimization techniques.

Results are evaluated and discussed and then, a hybrid

multi-objective optimization method combining existing

effective multi-objective algorithms for novel power sys-

tems is proposed.

1.1 Optimization problems in power systems

In order to achieve various purposes and benefits for

power systems, a large number of efforts have been pro-

vided to the area for effective optimization methods. In all

areas of power systems, such as generation, transmission,

distribution, and consumption, it is necessary to have

appropriate plans to operate, thus it requires optimization

tasks under given constraints. In addition, while optimi-

zation researches dealt with effective methods for various

objectives are important, it should be necessary to evaluate

the profitability of new technology implementations con-

sidering the shutdown of existing systems and the re-

installation of new systems. Generally, the installation

benefit and cost have a trade-off relationship and it means

that future power systems should be optimized with multi-

objectives including the profitability. Therefore, this paper

focuses on effective optimization methods not only for the

installation benefit of new technology but also for cost

minimization.

1.2 Single-objective optimization problems

An optimization problem is to minimize or maximize

objective functions under constraints. The problem reso-

lution by optimization methods is one of important mea-

sures in real world. General optimization problem has

constrains of inequality, equality and upper and lower

limit, and it is defined as:

min y ¼ f xð Þ
s.t. gj xð Þ� 0 j ¼ 1; 2; . . .; q

hj xð Þ ¼ 0 j ¼ qþ 1; qþ 2; . . .;m

ki� xi� li i ¼ 1; 2; . . .; n ð1Þ

where x = (x1, x2,…, xn) is an n-dimensional vector; f(x) is

an objective function; gj(x) B 0 are inequality constraints

and hj(x) = 0 are equality constraints; functions f(x),

gj(x) and hj(x) are real-valued functions; li and ki are the

upper and the lower bounds of xi, respectively.

Recently, population-based descent method has received

many attentions, and differential evolution (DE) and par-

ticle swarm optimization (PSO) are major representative

examples. In these methods, information of populations

composed of solutions is utilized for the creation of new

candidates to be compared with current solutions [2]. The

outline of these two major algorithms is described.

1) Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is an evolutional

computation technique which is inspired by a bird flocking,

fish schooling and swarming theory, and utilizes particle

swarms flying in problem space, called the hyperspace [3].

In the iteration process, each particle evolves into optimal

or optimal approximation solution adjusting its velocity by

the information of its best location and best neighbor

location on its historical data. Because all particles share

information of optimal solutions, PSO provides well con-

vergence in optimal solutions. Therefore, PSO can be used

also for various optimization problems in power systems.

With respect to PSO, various improved algorithms are

proposed. Constriction factor PSO by Clerc M and Kennedy

J [4] is one of PSO subspecies which utilizes constriction

factor approach (CFA) controlling the convergence prop-

erty, and it was reported that the algorithm provided supe-

rior results compared with the original PSO using inertia

weight (inertia weight approach, IWA) [5, 6].

2) Differential evolution (DE) [7, 8]

DE, proposed by Storn and Price, is one of evolution

strategies (ES) which is a stochastic direct search method

and conducts multi-points search using populations.

Although the control of mutation step size is required in ES

algorithms, DE does not need to control the step size

because it adopts a mathematical operation as its mutation

using the weighted sum of the base vector and the differ-

ence vectors. As same as PSO, various improved algo-

rithms have been proposed in DE. Adaptive DE is the

collective term which shows subspecies of the standard DE

algorithm targeting for convergence improvement, and

various kinds of adaptive DE algorithms have been pro-

posed. JADE is one of these algorithms and implements the

mutation strategy, called the ‘‘DE/current-to-pbest’’ with

optional archive and controls scaling factor and crossover

rate in an adaptive manner [9]. e constrained adaptive DE

[10] was proposed to improve the scheme proposed in

JADE and the e constrained method, which was the,

algorithm to convert unconstrained optimization method

into constrained optimization method one using the e level

comparison, was applied.

1.3 Multi-objective optimization problems

An optimization problem for multiple objectives is

called a multi-objective optimization problem. In the real

world, most optimization problems need to consider mul-

tiple objectives. Generally, multi-objective problems are

formulated as:
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min y1¼ f1ðxÞ; y2¼ f2ðxÞ; . . .; yn¼ fnðxÞ
s:t: x 2 CðxÞ ¼ fx 2 <kj

g1ðxÞ� 0; g2ðxÞ� 0;. . .; gmðxÞ� 0g ð2Þ

where min fi(x) (i = 1,2,…,n) are objective functions and

C(x) is a constraint condition. In a single objective opti-

mization problem, the best value is apparent because it is

possible to be compared between two real numbers in size.

Generally, there are trade-off relations among objectives in

multi-objective optimization problems and thus optimal

solution would not be a unique solution but multiple

solutions or infinite population. Therefore, optimal solu-

tions cannot improve the value of a certain objective

function without degrading some values of the other

objective functions would need to be searched, called the

Pareto optimal solutions. If Pareto optimal solutions could

be searched, the relation of objective functions would be

clarified and better decision making could be made. The

surface formed by Pareto optimal solutions is called the

Pareto front and three aspects are considered to evaluate

Pareto front in [11]: 1) the ‘‘convergence’’, minimizing the

distance from search results to the Pareto front; 2) ‘‘uni-

formity’’, maintaining uniform solution distribution; 3)

‘‘extensity’’, maximizing the extent of solutions following

the Pareto front.

Recently, the multi-objective evolutional algorithm

(MOEA) becomes the active area of research and recent

researches focused on the methodology for fast and

effective Pareto front provision. Major MOEA methods

includes multi-objective particle swarm optimization [12–

15], Pareto Envelope based selection (PESA [16] and

PESA-II [17]) based on Pareto archived evolution strategy

(PAES) [18], and improved PESA-II (IPESA-II [11]).

These methods are briefly described below.

1) PAES [18]

The algorithm of PAES starts from initialization of a

current solution. Firstly, the current solution is copied and

the mutation is executed, and then the generated candidate

solution is compared with the current solution. If neither

solution dominates, the candidate solution is compared with

the population of non-dominant solutions previously

archived. Then, one solution which does not dominate others

in the least crowded area of the archive is disconnected.

2) Multi-objective PSO

The superior performance of PSO has been utilized not

only for single objective optimization but also for multiple-

objective optimization in various researches. Reference

[12] proposed a multi-objective optimization PSO (MO-

PSO) algorithm which allows the PSO algorithm to deal

with multi-objective optimization problems using an

external memory, called the ‘‘repository’’ and [13] intro-

duced a clustering technique which divides particle swarm

population, and comparison results with other multi-

objective PSO algorithms for some test functions were

reported. Also, as application examples for power systems,

both [14] and [15] proposed improved approaches of the

multi-objective optimization methods for the optimization

in energy management system for factories, and voltage

and reactive power control, respectively.

3) PESA, PESA-II and IPESA-II

PESA [16] is the multi-objective optimization algorithm

integrating the ideas of strength Pareto evolutionary algo-

rithm (SPEA) [19] and PAES [18], which are two major

multi-objective optimization methods. PESA uses a popu-

lation (archive) which stores an approximation to the Pareto

front and an internal population which has candidate solu-

tions same as SPEA, and also maintains hypergrid division

which can trace the crowded factor of different areas in the

archive as same as PAES. PESA-II [17] is the improved

version of PESA and mating-selection processes were

implemented not in individual based but in region based.

Firstly, a hyperbox is selected and then an individual which is

the result of evolutional operations is randomly selected

from the hyperbox. IPESA-II [11], is an improved version of

PESA-II with three improvements: the maintenance method

of the archive, individual maintenance around boundary and

the selection of the hyperbox by the crowded factor.

2 Effective optimization method in power distribution

systems

Some preparation tasks for exploring effective optimi-

zation method in power distribution systems are conducted,

including problem definition, procedure clarification and

data preparation.

2.1 Definition of a problem

Many researches have been conducted to solve optimi-

zation problems in power system area. Major areas include

power system planning and operation, environmentally

constrained economic dispatch, state estimation and opti-

mized power flow [20]. For the versatile and essential point

of view, benefits or effects maximization of approaches for

low-carbon power systems and cost minimization for these

approaches should be fundamental trade-off relation

objectives. In order to enhance existing power systems into

new advanced systems, it must be necessary to achieve

both new additional benefit provision to consumers and

cost recovery of the investment at the same time.
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Therefore, this kind of problems is defined as the multi-

objective problem in this paper.

The Author’s group has conducted some other researches

for optimal DG allocations for low-carbon society and it is

found that inadequate DG installation would cause power

loss increase while effective DG installation would con-

tribute to the realization of very low power loss distribution

systems [21]. Therefore, an optimal DG installation is one

of critical problems for advanced low- carbon power sys-

tems considering most of RES generations, however the

correct evaluation of these DGs installation should be the

balance of various impacts including cost. In the view of

above consideration, this paper deals with optimal DG

installation problem considering power loss and cost min-

imizations. In particular, simulations of power loss and cost

reduction by DG location and capacity for a distribution

system model are executed and then are evaluated to find

the optimal solutions.

2.2 Procedure clarification

Multi-objective optimization would be important in

future power systems, because the enhancement of power

systems would not be realized only by technical advanta-

ges, such as improvement of power supply stability with a

large number of RES installations, but their cost effec-

tiveness considering added-values would be essential. In

most countries and regions, power systems are already one

of social infrastructures and provide values to consumers

with reasonable price. Therefore, consumers would not pay

additional costs without significant additional values and

then multi-objective optimization methods for evaluating

the cost effectiveness of enhanced technologies should be

critical.

The procedure to find effective solution method for

multi-objective optimization problems in power systems is

described below. The bi-objective optimization problem of

DG allocation with optimal power loss and cost mentioned

in above is considered as the base problem in this paper.

1) Distribution model

Considering optimal DG allocation problems, it is neces-

sary to define a target system model firstly. Because many

DGs are planned to install into distribution systems in Japan, a

model distribution system composed of buses and branches

should be defined. In order to calculate power loss in the

distribution system model, power flow calculation is neces-

sary, thus active and reactive loads, complex voltage and

current at each bus, and branch parameters such as reactance

and susceptance are also needed to be prepared. In addition,

preconditions and constraints are also necessary to be defined.

Constraints can influence the results in optimization problems,

thus it is necessary to define specific constraints in power

systems especially. These specific constraints include power

flow laws, voltage upper and lower limits, and apparent cur-

rent upper limit, etc.

2) Effective single-objective optimization method in

power systems

For the target distribution system with allocated DGs,

major single objective optimization algorithms should be

used to understand their effectiveness for optimization

problems in power systems. As mentioned in above,

recently, the population-based descent method has received

many attention, thus DE and PSO are selected as base

single optimization algorithms in this paper.

In order to evaluate the effectiveness, the number of

iterations required for the convergence to the optimal value

in an OPF problem can be utilized. With respect to the

optimal value compared by some candidate algorithms, the

pre-calculated exact solution is used. As candidate algo-

rithms, not only original DE and PSO algorithms, but also

subspecies of these algorithms are considered. Then, the

best algorithm in these simulations will be selected as the

best single objective optimization algorithms for optimi-

zation problems in power systems.

3) Enhancement of the effective single-objective optimi-

zation method for multi-objective optimization prob-

lems in power systems

Multi-objective optimization algorithm is considered on

the enhancement of the effective single -objective optimi-

zation algorithm selected in the previous step. Considering

the enhancement of the effective single objective optimi-

zation method, various hybrid approaches using proven

major multi-objective algorithms should be discussed. In

case that Pareto front would be evaluated on the three

aspects: ‘‘convergence’’, ‘‘uniformity’’ and ‘‘extensity’’, it

was assumed that each multi-objective optimization

method had specific ranges in which high quality Pareto

front was provided by pre-conducted basic researches and

simulations. Therefore, it is expected that the hybrid

approach of proven multi-objective algorithms can provide

an effective Pareto front for the multi-objective optimiza-

tion problems in future power systems. Then, the algorithm

which finds the best Pareto front in the aspects of ‘‘con-

vergence’’, ‘‘uniformity’’ and ‘‘extensity’’ will be selected

as the best multi-objective optimization algorithm.

2.3 Data preparation

Some predefined data for simulations are provided. The

data include target distribution system model and defined

data, constraints, and cost related data.
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1) Distribution system model

As a distribution system model for simulations, the

wiring diagram of grid in [22], which is the radial distri-

bution system model and has 126 buses is selected, as

shown in Fig. 1.

The bus number 126 is the slack bus and it is found that

the slack bus provides active power of P = 4.4239(p.u.)

and reactive power Q = 3.1053(p.u.) for the total load of

P = 4.2300(p.u.) and Q = 2.8870(p.u.). Therefore, total

power loss is calculated as Ploss = 0.1939(p.u.) and Qloss =

0.2183(p.u.) and power loss rate for injected power at slack

bus are P: 4.383%, Q: 7.030%, respectively. Parameters for

the system model such as branch attributes, load at bases

were also referred to [22].

2) Constraint definition for optimization problem

With respect to the installation of DGs, the following

constraints are defined.

a. The number of installation DGs is 2, 3 and 4.

b. DG would be installed at one of the buses.

c. One DG would be installed per one part where the load

would be installed in the same range.

Capacity constraints for each DG and slack bus are

shown in Table 1.

3) Cost related data

As an additional objective, ‘‘cost minimization’’ is

required for the consideration of multi-objective optimiza-

tion. Table 2 shows installed DGs and cost parameters used

in the simulation. In the table, ‘‘variable cost: 0.5 per p.u.’’

means that required cost per DG capacity 1 p.u. is 0.5 p.u.

4) Calculation result of power flow by interior point

method

Before the discussion using simulations, OPF calcula-

tion for the defined problem is executed using an interior

point method to know exact optimal solutions. Table 3

shows calculation results of the OPF. The leftmost column

shows the name of installed DG and DG location, active

and reactive power capacities are provided by the number

of total DG in the distribution model. For example, when

the number of installed DGs is 2, the location of the DG-1

is Bus7 and active and reactive powers are 1.983168 (p.u.)

and 1.022116 (p.u.), respectively.

3 Simulation of single-objective optimization

For the exploring effective methods for optimization

problems in power systems, the effective single-objective

optimization problem is considered.

3.1 Application of proven optimization algorithms

The following major algorithms are prepared to conduct

simulations and each algorithm is named after considering

its characteristics, base algorithms and objective function

for clear identification.

1) Original PSO [4] (‘‘IWA-PSO-OPF’’);

2) Constriction factor PSO [6] (‘‘CFA-PSO-OPF’’);

3) Original DE [7] (‘‘ODE-OPF’’);

4) Adaptive DE [10] (‘‘ADE-OPF’’).

3.2 Simulation results of single-objective algorithms

Simulation results of the convergence status for single -

objective optimization algorithms are provided. Utilized

algorithms are assumed to be effective for the power sys-

tem problems. In each simulation process, if the new

solution would be predominant compared with the current

solution, the optimal solution is replaced and the non-

dominant process is discarded. The number of iterations is

100 and the number of populations (swarms or archives) is

20 in each simulation result.

1) PSO

Firstly, the simulation using ‘‘IWA-PSO-OPF’’ was exe-

cuted. Figure 2 shows simulation results for the convergence

status of optimal value by ‘‘IWA-PSO-OPF’’. Predominant

values are converged with around 60 iterations for 2 and 3

DGs and around 90 iterations for 4 DGs.

Fig. 1 Wiring diagram of grid

Table 1 Capacity constraint for each DG and slack bus

Element max P (p.u.) min P (p.u.) max Q (p.u.) min Q (p.u.)

DG 4.0 0.0 2.0 0.0

Slack bus 6.0 1.0 6.0 1.0
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Then, the simulation using ‘‘CFA-PSO-OPF’’ was exe-

cuted. Figure 3 shows the simulation result for the con-

vergence status of optimal value by ‘‘CFA-PSO-OPF’’.

Predominant values are converged with around 20 iter-

ations for 2 DGs and around 80 iterations for 3 and 4 DGs.

However, convergence rates to optimal values for all 3

patterns are fast compared with ‘‘IWA-PSO-OPF’’, and it is

found that better approximation optimal could be retrieved

with small number of iterations.

2) DE

Next, the simulation using ‘‘ODE-OPF’’ was executed.

Figure 4 shows simulation results for the convergence

status of optimal value by ‘‘ODE-OPF’’. Predominant

values are converged with around 30 iterations for 2 DGs,

around 60 iterations for 3 DGs and around 90 iterations for

4 DGs. The performance of ‘‘ODE-OPF’’ is in the same

range as ‘‘IWA-PSO-OPF’’ but inferior to ‘‘CFA-PSO-

OPF’’.

Finally, the simulation using ‘‘ADE-OPF’’ was exe-

cuted. Figure 5 shows simulation results for the conver-

gence status of optimal value by ‘‘ADE-OPF’’.

Predominant values are converged with around 20 iter-

ations for 2 DGs, around 40 iterations for 3 DGs and

around 50 iterations for 4 DGs. In addition, convergence

rates to optimal values for all 3 patterns are fast compared

with other three algorithms, and ‘‘ADE-OPF’’ provides the

best performance among 4 algorithms in our simulation

results.

Table 2 Installed DGs and cost parameters

Number of DGs 2 3 4

DG-1 DG location 7 5 5

Fixed/Variable cost for P per p.u. 0.0/0.5 0.0/0.5 0.0/0.5

Fixed/Variable cost for Q per p.u. 0.0/0.4 0.0/0.4 0.0/0.4

DG-2 DG location 16 13 13

Fixed/Variable cost for P per p.u. 0.0/0.5 0.0/0.5 0.0/0.5

Fixed/Variable cost for Q per p.u. 0.0/0.4 0.0/0.4 0.0/0.4

DG-3 DG location – 18 18

Fixed/Variable cost for P per p.u. – 0.0/0.5 0.0/0.5

Fixed/Variable cost for Q per p.u. – 0.0/0.4 0.0/0.4

DG-4 DG location – – 55

Fixed/Variable cost for P per p.u. – – 0.0/0.5

Fixed/Variable cost for Q per p.u. – – 0.0/0.4

Slack power Fixed/Variable cost for P per p.u. 0.0/0.3 0.0/0.3 0.0/0.3

Fixed/Variable cost for Q per p.u. 0.0/0.0 0.0/0.0 0.0/0.0

Table 3 Results of OPF by interior point method

No. of DGs 2 3 4

DG-1 Location 7 5 5

Capacity (P) 1.983168 1.157973 0.854512

Capacity (Q) 1.022116 0.447595 0.244404

DG-2 Location 16 13 13

Capacity (P) 1.261669 1.393307 1.295070

Capacity (Q) 0.882551 0.976911 0.910799

DG-3 Location – 18 18

Capacity (P) – 0.688242 0.688242

Capacity (Q) – 0.473893 0.473893

DG-4 Location – – 55

Capacity (P) – – 0.400341

Capacity (Q) – – 0.267712

Slack power Capacity (P) 1.000000 1.000000 1.000000

Capacity (Q) 1.000000 1.000000 1.000000

Minimum power

loss (P)

0.01484 0.00952 0.00817
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Fig. 2 Simulation results for the convergence status of optimal value

by ‘‘IWA-PSO-OPF’’
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3.3 Discussion of simulation results

Single-objective optimization simulations were executed

with PSO and DE algorithms which were assumed to be

effective for power system related problems and the ade-

quacy of these algorithms were discussed for power systems.

Summaries of these simulations are presented as follows.

1) All 4 utilized algorithms can provide good perfor-

mance for the convergence of predominant solutions

and it is confirmed that ‘‘CFA-PSO-OPF’’ and ‘‘ADE-

OPF’’, which are subspecies of original OPF and DE

algorithms, respectively, provide better performance

compared with original algorithms.

2) ‘‘ADE-OPF’’ is one of adaptive DE algorithms with

adequately the highest performance.

3) Because the objective function ‘‘Power loss minimi-

zation by DGs’’ is a constrained optimization problem,

it is confirmed that these four algorithms can be used

for constrained optimization problems.

4 Multi-objective optimization problems in power

systems

By the enhancement of the effective single objective

optimization method, an effective multi-objective optimi-

zation method is considered for the evaluation of future

advanced power system.

4.1 Enhancement for the application of single objective

optimization problem

The enhancement of ‘‘ADE-OPF’’ which has confirmed

its effectiveness for single-objective optimization problem

in power systems was considered to be applied for multi-

objective problems.

In the consideration, a methodology which manages

multi-objective space efficiently and finds a good approx-

imation set of the Pareto front should be required. There-

fore, the utilization of the archive method in the PAES

[18], which is called the ‘‘PAES-Archive method’’ in this

paper, was used for the effective management of solutions

generated in multi-objective space by ‘‘ADE-OPF’’.

In order to confirm the applicability of ‘‘ADE-OPF’’ to

multi-objective optimization problems, some simulations

of hybrid approach of ‘‘ADE-OPF’’ and ‘‘PAES-Archive

method’’ were conducted by changing parameters, such as

the number of generations and individuals. Figure 6 shows

a reference example which is one of the simulation results

of this approach, with the number of DGs: 3, generations:

40 and individuals: 80. In this chart, no solution exists in

some ranges and solutions are not provided uniformly. Like

this chart, it is difficult to obtain a better Pareto front which

has enough quality in aspects of ‘‘convergence’’, ‘‘unifor-

mity’’ and ‘‘extensity’’ in our numeral simulations with

these simulations. Although a brief trend of the Pareto front
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Fig. 3 Simulation results for the convergence status of optimal value

by ‘‘CFA-PSO-OPF’’
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in the optimization problem can be found from this sample

chart, in some simulation results, only a few solutions were

able to be selected thus Pareto front was not able to be

drawn.

4.2 Challenges in hybrid approach of optimization

methods

In order to solve the challenge in the hybrid approach of

‘‘ADE-OPF’’ and ‘‘PAES-Archive method’’, another

hybrid approach with other multi-objective optimization

methods was considered.

1) Utilization of the adaptive grid in IPESA-II

Grid division of an objective space was proposed in PESA-

II [18] to maintain diversity of solutions, and this method has

changed the existing individual-based selection process to the

area-based selection process. IPESA-II [11], which is the

enhanced version of PESA-II improved results by changing

the adjusting method in the grid environment. Therefore,

utilization of the adaptive grid method in the IPESA-II, which

is called the ‘‘Adaptive-Grid method’’ in this paper, was

considered for the effective management of solutions gen-

erated in multi-objective space by ‘‘ADE-OPF’’.

2) Pareto front creation with the hybrid approach of

‘‘ADE-OPF’’ and ‘‘Adaptive-Grid method’’

In order to consider the hybrid approach of ‘‘ADE-OPF’’

and ‘‘Adaptive Grid method’’, some basic simulations were

executed by changing some parameters. As the result, the

following issue was clarified in our numeral simulations.

a. The mating-selecting method utilized in IPESA-II to

create solutions in multi-objective space could not find

Pareto front solutions effectively if enough solutions

would not exist in the space.

Therefore, the following conditions were added to the

hybrid approach.

b. If solutions in adaptive grid in the multi-objective

space would be smaller than 2, ‘‘ADE-OPF’’ would be

utilized to create solutions in the space, otherwise

mating-selection would be utilized.

Since the method was a hybrid approach of ‘‘ADE-

OPF’’ and IPESA-II [11], the method is called the hybrid

ADE-IPESA-II (H-ADE-IPESA-II) in this paper.

3) Optimization testing using H-ADE-IPESA-II method

Using H-ADE-IPESA-II, Pareto front for the multi-objec-

tive optimization problem was able to be found effectively.

Figure 7 shows the Pareto front of the multi-objective

optimization problem which has two objectives of loss

minimization and cost minimization with effective DG

installation (3 DGs) using H-ADE-IPESA-II. A good set of

the Pareto front was provided with respect to ‘‘conver-

gence’’, ‘‘uniformity’’ and ‘‘extensity’’. Although the

number of DGs in Fig. 8 is 3, other cases (DGs = 2, 4)

also provided similar good results.

From the result, H-ADE-IPESA-II which is hybrid

approach of Adaptive DE and IPESA-II is one of effective

methods for constrained multi-objective optimization

problems in power systems.

4.3 Discussion of multi-objective optimization results

Using H-ADE-IPESA-II, various simulation scenarios

for the multi-objective optimization problem were exe-

cuted. Three simulation parameters for the minimization of

power loss were considered by the installation of DGs: a.

Variable cost; b. Fixed and variable cost; c. Discrete DG

capacity.

1) Optimization of power loss and cost by the installation

of 3 DGs considering variable cost

Figure 7 shows the Pareto front of both loss and cost

optimization problem and only variable cost is considered

using the proposed H-ADE-IPESA-II.

2) Optimization of power loss and cost by the installation

of 3 DGs considering both fixed and variable cost

With respect to objective function for cost, both fixed

and variable costs are considered and the Pareto front is

created.

Figure 8 shows the Pareto front of the multi-objective

optimization problem considering both fixed and variable

costs. Under the influence of the fixed cost, the set of Pa-

reto front does not converge to a single curve, but shows

divided lines.

3) Optimization of power loss and cost by the installation

of 3 DGs considering discrete DG capacity

With respect to objective function for loss minimization,

discrete DG capacity settings are considerable. Therefore,
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Fig. 6 Sample Pareto front by hybrid approach of ‘‘ADE-OPF’’ and

‘‘PAES-Archive method’’
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the Pareto front using discrete DG capacity settings are also

considered.

Figure 9 shows the Pareto front of the multi-objective

optimization problem for discrete DG capacity settings

with variable cost only. Figure 10 shows the Pareto front of

the multi-objective optimization problem for discrete DG

capacity settings over non-discrete DG capacity setting

with both fixed and variable cost. Basically, the Pareto

front for the problem with discrete DG capacity settings

does not show a clear difference from that with non-dis-

crete DG capacity setting.

5 Conclusions

In many regions and countries, huge investment has

been made for electric power, and power systems are one

of important social infrastructures. Because most people in

the regions and countries can adequately use electricity, the

cost reduction is one of major requirements recently. It is

necessary to enhance current power systems into advance

clean and sustainable systems considering current some

environmental issues. Therefore, utility companies are

required to deal with such benefit and cost optimization

problems with trade-off relationships in their objectives.

This paper provides effective tools for multi-objective

optimization problems which are essential conditions for

problems in power systems, and thus many researches

considering new tool development have been conducted.

Because most of multi-objective optimization tools are

prepared for non-constrained problems, it is difficult to

have adequate results for constrained problems using most

of these methods in convergence, uniformity and extensity.

In order to solve that, adequate results can be provided by

the hybrid approach between adaptive DE method and

IPESA-II. Although this paper dealt with only two objec-

tive optimization problems, it is assumed that the approach

can be applied to more than 3 objectives optimization

problems and these problems are conducted in future work.

In addition, test data are used in all simulations in this

paper, but real multi-objective optimization problems

should have additional constraints related to electrical and

economical aspects. Therefore, results of the Pareto front
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Fig. 10 Pareto front of the multi-objective optimization problem

considering both fixed and variable cost
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Fig. 7 Pareto front of the multi-objective optimization problem

considering variable cost only
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Fig. 8 Pareto front of the multi-objective optimization problem

considering both fixed and variable cost
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provided by the proposed approach and actual decisions

made in some actual projects are also needed to be com-

pared in the future.

Open Access This article is distributed under the terms of the
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