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Abstract Economic and environmental load dispatch aims to

determine the amount of electricity generated from power plants

to meet load demand while minimizing fossil fuel costs and air

pollution emissions subject to operational and licensing

requirements. These two scheduling problems are commonly

formulated with non-smooth cost functions respectively con-

sidering various effects and constraints, such as the valve point

effect, power balance and ramp rate limits. The expected increase

in plug-in electric vehicles is likely to see a significant impact on

the power system due to high charging power consumption and

significant uncertainty in charging times. In this paper, multiple

electric vehicle charging profiles are comparatively integrated

into a 24-hour load demand in an economic and environment

dispatch model. Self-learning teaching-learning based optimi-

zation (TLBO) is employed to solve the non-convex non-linear

dispatch problems. Numerical results on well-known benchmark

functions, as well as test systems with different scales of gener-

ation units show the significance of the new scheduling method.

Keywords Economic dispatch, Environmental dispatch,

Plug-in electric vehicle, Self-learning, Teaching learning

based optimization, Peak charging, Off-peak charging,

Stochastic charging

1 Introduction

One of the key operational activities in the power system

is to schedule power production according to the predicted

load demands. Dynamic economic and environmental dis-

patches (DEED) are both crucial objectives in this schedul-

ing task because a small percentage improvement may

potentially bring significant cost savings and operational

improvements [1, 2]. The goal of economic dispatch is to

minimize the cost by determining the power production of

thermal power plant units, while managing system con-

straints, balancing power production and load demand, and

meeting plant operational requirements, e.g. ramp rates.

Similarly, the objective of environmental dispatch is to

minimize emissions under the same system constraints. Both

dispatch problems are difficult to solve due to the non-

smooth non-convex DEED formulations in cost functions

and constraints, especially for large power systems [3].

Fast development of renewable power sources and chan-

ges in load demand bring more planning and operational

uncertainties to the grid [4]. Plug-in electric vehicles (PEVs)

with high penetrations are potentially important participants

in the power system due to the additional large load

requirements [5, 6]. The stochastic charging of PEVs may

also significantly affect the distribution grid as well as

increase the generation costs and pollutants emissions if not

managed efficiently. It is therefore of importance to measure

the impact of different PEV charging scenarios on the power

system and intelligently schedule and dispatch power gen-

eration using an optimized DEED system approach.
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In this paper, four different PEV charging scenarios are

modeled using charging time probability distribution,

based on PEV charging data from Electric Power Research

Institute (EPRI), a full peak charging scenario and a full

off-peak charging scenario and a stochastic charging sce-

nario. These four charging time probability distributions

are measured with a certain number of charging PEVs and

integrated in the power demand of a 5-unit system and a

15-unit system respectively. Both the economic and envi-

ronmental impacts are evaluated by solving the dynamic

dispatch problems.

The objective functions and constraints of DEED

problems are significantly non-smooth and non-convex due

to factors like the valve point effects and exponential

nature of emission output curve. Meta-heuristic approaches

have consequently been employed to solve these problems.

Numerous meta-heuristic algorithms have been used to

solve the economic dispatch problem such as particle

swarm optimization (PSO) [7], differential evolution (DE)

[8], harmony search (HS) [9], biogeography-based opti-

mization (BBO) [10], and imperialist competitive algo-

rithm (ICA) [11], etc.

Based on our previous work [12], a new variant of

teaching learning based optimization (TLBO), namely self-

learning teaching-learning based optimization (SL-TLBO)

is proposed and adopted to solve DEED problems. Some

state-of-the-art variants of TLBO have been numerically

compared to 10 well-known benchmarks and DEED

problem for 5-unit and 15-unit power systems respectively.

The dispatch results of four charging scenarios are also

comparatively studied. The results show the significance of

the new SL-TLBO scheduling method when applied to

both benchmarks test and two scales of DEED test systems

in terms of both the convergence speed and accuracy. For

the four charging profiles, the comparative studies show

that the off-peak charging scenario is the most economical

and an environmental friendly choice.

2 Problem formulations

The DEED problem is a multi-objective problem com-

bining the economic dispatch objective denoted as F1 and

environmental dispatch objective denoted as F2. This two-

objective problem can also be transformed into a single

objective problem as

min F ¼ xeeF1 þ ð1 � xeeÞF2 ð1Þ

where xee is a weighting factor, being a constant between 0

and 1. The overall cost F denotes the single objective to be

minimized. In terms of the formulations of F1 and F2, both

non-linear models for economic and environmental dis-

patch are considered.

2.1 Dynamic economic load dispatch model

The dynamic economic load dispatch problem is to min-

imize the total economic cost of the fossil fuel in a whole day

time. The decision variable is the dispatched power Pi,t in

each time interval t. The problem is formulated as

F1 ¼
XT

t¼1

XNu

i¼1

FiðPi;tÞ ¼
XT

t¼1

XNu

i¼1

½ðai þ biPi;t þ ciP
2
i;tÞ�

þ ei sinðfiðPimin � Pi;tÞÞ
�� ��

ð2Þ

where ai, bi and ci are the fuel cost coefficients of the ith

generator; ei and fi the fuel cost coefficients for evaluating

ripples in the cost curve caused by the valve-point effect;

and F1 accumulates the cost of Nu generators in totally

T intervals. In addition to the cost functions, there are

several system constraints associating with the objective

functions as follows.

1) Power output limits:

Pimin �Pi;t �Pimaxði ¼ 1; 2; . . .;NuÞ ð3Þ

where the power output should be within the capacity of

each specific power generator Pimax and Pimin.

2) Power balance limits:

XNu

i¼1

Pi;t ¼ PD;t þ PL;tþ þ Lev;t t ¼ 1; 2; . . .; T ð4Þ

The total power generated in each time interval should

meet the power load demand in the corresponding time

period. In this paper, the power demand constraint con-

siders the original load demand PD,t in the time interval t,

associated with the transmission losses PL,t and the PEV

charging load Lev,t. This PEV charging load is a new load

type and will be further addressed in Section 3. The

transmission losses are also considered and approximated

with the widely used B-coefficients method [13] denoted

as

PL;t ¼
XNu

i¼1

XNu

j¼1

Pi;tBi;jPj;t þ
XNu

i¼1

B0;iPi;t þ B00

t ¼ 1; 2; . . .; T

ð5Þ

where Bi,j, B0,i and B00 are loss coefficients. The handling

approach is implemented by the method proposed in [14].

3) Ramp rate limits:

Pi;t � Pi;t�1 �URi

Pi;t�1 � Pi;t �DRi

(
ð6Þ

A self-learning TLBO based DEED 299

123



Thermal generators are subject to the power ramp rate

limitation that the power outputs cannot dramatically

change between two adjacent intervals. The DRi and URi

are the ramp-up and ramp-down rate limits of the ith gen-

erator respectively. The dispatched power of a generator in

the tth time interval Pi,t should be limited by the previously

dispatched power Pi,t-1 at time interval t - 1 within ramp-

up and ramp-down rate limits DRi and URi.

2.2 Dynamic environmental load dispatch model

The environmental load dispatch problem minimizes the

emissions of environment pollutants including sulphur

dioxide (SO2) and nitrogen oxides (NOx) [15]. A quadratic

polynomial formulation is associated with an exponential

term to model the emissions as

F2 ¼
XT

t¼1

XNu

i¼1

FiðPi;tÞ ¼
XT

t¼1

XNu

i¼1

½ðai þ biPi;t þ ciP
2
i;tÞ�

þ gi expðdiPi;tÞ
ð7Þ

where ai, bi, ci, gi, and di are the emission coefficients of

the ith generation unit. The power output limit, balance

limit as well as the ramp rate limit is also taken into con-

sideration in forming the constraints.

3 Plug-in electric vehicle load profiles

Plug-in electric vehicles are an unusual power demands

and unlike traditional household and industry loads, the

simultaneous charging of the 20 kW household chargers

and 120 kW superchargers will possibly form huge ripples

or even spikes on the daily power demand curve. Such

effects could be avoided by the coordination and schedul-

ing of charging. With the development of smart grid

technology the introduction of smart PEV chargers to

coordinate and control PEV charging looks highly alike. In

this section, four different charging scenarios, including an

EPRI predicted profile based on the assuming behaviors of

drivers, an off-peak charging profile and a peak charging

profile and a stochastic charging profile are modeled to

compare and evaluate the impact on both economic and

environmental aspects for the power system operation.

3.1 EPRI profile

The Electric Power Research Institute (EPRI) is a US

funded non-profit organization founded in 1973. It is one of

the leading organisations in the world, which produces

publications and reports on the electric power industry. In

an environmental assessment of PEVs [16], EPRI proposes

an aggregate distribution of charging profiles to assess

GHG emissions, where a probability distribution of

charging profile is proposed as shown in Table 1.

In this charging scenario, over 60% power is delivered

in 7 hours in the evening during 22:00 to 4:00. The other

time slots see low charging rates and cover the rest of

energy delivery.

3.2 Off-peak profile

In [17], two charging scenarios, peak and off-peak

charging by assuming flat load demand for PEV charging

during peak and off-peak time in the whole Ireland are

proposed as a case study. The probability distribution in

each hour for the off-peak case is illustrated in Table 2.

This profile assumes three charging levels with 18.5% of

power is delivered every hour during 23:00 to 02:00, 9% of

power is delivered in each time interval from 02:00 to

04:00 and the rest of charging is completed in 06:00. It is

apparently an ideal case that besides the 8 hours charging,

other time slots are forbidden for PEVs to get charged.

3.3 Peak profile

Similar to off-peak charging, peak charging assumes a

flat load curve with three levels of charging power to

describe a certain number of EVs getting charged during

the peak load time on the wholesale electricity market. The

probability distribution of each hour for the peak case is

listed in Table 3.

This is another extreme case where all the PEV charging

power requests are provided during peak time of electricity

consumption during daytime from 13:00 to 20:00. The

charging period and power in this paper are based on [16],

where the peak time for charging is slightly shifted due to

the profile of the load fleet.

Table 1 EPRI charging probability distribution

Time Probability/%

01:00–06:00 10 10 9.5 7 5 3

07:00–12:00 1 0.3 0.3 1.3 2.1 2.1

13:00–18:00 2.1 2.1 2.1 1 0.5 0.5

19:00–24:00 1.6 3.6 5.4 9.5 10 10

Table 2 Off-peak charging probability distribution

Time Probability/%

01:00–06:00 18.5 18.5 9 9 4 4

07:00–12:00 0 0 0 0 0 0

13:00–18:00 0 0 0 0 0 0

19:00–24:00 0 0 0 0 18.5 18.5
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3.4 Stochastic profile

Considering the uncertainties of drivers’ charging

behavior, a stochastic charging profile is proposed in this

paper. The stochastic load profile simulates some urgent

group charging or distributed fast charging at random time

throughout the whole day. The random probability follows

the normal distribution with the mean value as 5%. The

probability distribution of each hour for the stochastic case

is presented in Table 4.

The probability of stochastic charging profile in each

hour ranges from 1.1% to 9.7%. It changes randomly

regardless of the peak or off-peak load time.

The four different PEV load charging distributions are

illustrated in Fig. 1 respectively. These four profiles will

impose extra load Lev,t in the power demand constraints (3).

The new dispatch problems are tightly constrained and

show strong non-convex, calling for more powerful com-

putational tools to solve.

4 Self-learning teaching-learning based optimization

Teaching-learning based optimization (TLBO) is a new

meta-heuristic algorithm proposed in 2011 and has been

utilized in solving some engineering problems [18], [19],

[20], [21]. Two phases are designed for each evolution

iteration in the original TLBO, named teaching phase and

learning phase respectively. Both the convergence speed

and exploitation ability of TLBO have been tested on well-

known benchmarks and its effectiveness have been con-

firmed [18, 19]. Though TLBO is powerful in solving many

optimization problems, it can be further improved for

specific problems. In this paper, a new self-learning phase

is incorporated into original TLBO, aiming to continuously

improve the exploitation ability.

4.1 Teaching phase

The teaching phase mimics a class teaching process that

a teacher shares his/her knowledge to the students. A tea-

cher will be first selected from the whole population by

sorting the fitness function value. The deviation between

the teacher and the mean of students will be calculated as:

DMi ¼ rand1ðTi � TFMeaniÞ ð8Þ

where DMi is the value difference in the ith iteration; Meani

the mean value; Ti the selected teacher; and TF a teaching

factor. According to the original paper of TLBO, the TF can

either be 1 or 2 denoted as

TF ¼ roundð1 þ rand2ð0; 1ÞÞ ð9Þ

Each learner in the class will gain knowledge from the

value difference and update themselves as

Xnew
ij ¼ Xold

ij þ DMi ð10Þ

where Xij
new and Xij

old are the jth old and new learners of ith

iteration. The new learners will compete with his/her prede-

cessor and replace them if a better fitness value is achieved.

4.2 Learning phase

Followed the teaching phase, a learning phase provides a

chance for each student to learn from a classmate. In this

phase, each solution would randomly select another solution

to compare the fitness, and update the knowledge storage

according to the interaction. The phase is denoted as

Xnew
ij ¼

Xold
ij þ rand3ðXik � XijÞ

Xold
ij þ rand3ðXij � XikÞ

(
f ðXikÞ\f ðXijÞ
f ðXijÞ\f ðXikÞ

ð11Þ

where the jth learner Xij and kth learner Xik are randomly

selected from the population in the ith iteration. Through a

competition, the initial learner Xij will refresh his/her

knowledge based on the deviation of the two learners.Fig. 1 Four different PEV load distributions

Table 4 Stochastic charging probability distribution

Time Probability/%

01:00–06:00 5.7 4.9 4.8 2.4 2.6 9.7

07:00–12:00 8.7 4.8 1.1 3.2 2.1 5.7

13:00–18:00 3.8 2.2 2.1 6.1 3.2 2.2

19:00–24:00 2.8 2.2 5.5 2.5 3.5 8.2

Table 3 Peak charging probability distribution

Time Probability/%

01:00–06:00 0 0 0 0 0 0

07:00–12:00 0 0 0 0 0 0

13:00–18:00 18.5 18.5 18.5 18.5 9 9

19:00–24:00 4 4 0 0 0 0
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Similar with teaching phase, the refreshed student will have

to compete with his/her predecessor and the better one will

remain in the class.

4.3 Self-learning phase

The original TLBO performs well on weakly con-

strained or completely unconstrained problems. For strong

constrained ill-conditioned optimization problems, the

global optimal solutions are sensitive to slight changes. It is

likely that the global optimum would be missed out due to

the low exploitation ability. A self-learning phase is

designed to further exploit the space near the particle

position for the promising global optimum. Each student

will get a chance to learn from his/her self-surrounding

spaces. The self-learning phase is illustrated as

Xnew
ij ¼ Xold

ij ð1 þ ðrand4 � 0:5ÞxÞ ð12Þ

where a self-learning weight x is designed to determine the

self-learning range of each particle. The parameter tuning

of this factor will be discuss in Section 5.

5 Numerical experiments

In order to evaluate the performance of the new SL-

TLBO algorithm, 10 well-known benchmark functions

with 30 dimensions from [22] were tested. The SL-TLBO

was compared with some TLBO variants including original

TLBO, elite TLBO [23], and a modified TLBO [24]. In

addition, some other commonly used algorithms which

include weighted PSO [25], PSO-CF [26] and classical DE/

rand/1/bin [27] are selected for the comparative study.

5.1 Benchmark functions

The 10 benchmark functions are defined in [22] and

listed with the dimensions and boundaries respectively as

follows.

Sphere function (f1): dimension = 30, [-100, 100];

Schwefel’s problem 1.2 (f2): dimension = 30, [-100,

100];

Rosenbrock function (f3): dimension = 30, [-30, 30];

Ackley’s function (f4): dimension = 30, [-32, 32];

Griewank function (f5): dimension = 30, [-600, 600];

Rastrigin function (f6): dimension = 30, [-5.12, 5.12];

Step function (f7): dimension = 30, [-100, 100];

Schwefel’s problem 2.21 (f8): dimension = 30, [-100, 100];

Schwefel’s problem 2.26 (f9): dimension = 30, [-500,

500];

Quartic function (f10): dimension = 30, [-1.28, 1.28].

5.2 Determination of control parameters in SL-TLBO

Though there are no algorithm specific parameters to be

tuned in original TLBO, the new SL-TLBO method has

introduced a self-learning weighting factor x to adjust the

learning range. It is therefore important to find proper

settings of x. Three benchmarks have been tested with the

x ranging from 0.1 to 10. The maximum generation is set

as 100 and the particle number is 30. To eliminate the

experimental incidents, 30 different run were employed.

The initialization values were randomly generated within

the boundary and were taken as the same input for all the

algorithms. The searching results are showed in Table 5

with mean values and standard deviations for each

parameter setting respectively.

Table 5 Benchmark tests result with different weighting factor

f1 f4 f9

x = 0.1 8.4878e-27 ± 7.9217e-26 2.3488e-11 ± 3.7617e-12 -5.0731e03 ± 2.6459e03

x = 0.3 2.5354e-29 ± 3.0583e-28 6.5648e-13 ± 2.7191e-12 -5.0010e03 ± 2.7628e03

x = 0.2 1.1154e-27 ± 1.0138e-26 1.9191e-13 ± 6.9575e-13 -4.9442e03 ± 2.5526e03

x = 0.4 2.2029e-30 ± 4.5483e-29 3.5113e-14 ± 1.5700e-13 -5.0013e03 ± 2.2619e03

x = 0.5 5.0894e-32 ± 6.1376e-31 9.6515e-15 ± 3.3226e-14 -4.9387e03 ± 2.3824e03

x = 0.6 1.1328e-33 ± 8.3986e-33 4.6777e-15 ± 4.8539e-15 -5.1075e03 ± 2.6581e03

x = 0.7 9.4206e-35 ± 1.5798e-33 4.4409e-15 ± 0.0000 -5.3365e03 ± 2.4129e03

x = 0.8 4.3055e-37 ± 3.3442e-36 4.3225e-15 ± 3.4930e-15 -5.0814e03 ± 2.7728e03

x = 0.9 1.6973e-38 ± 1.7813e-37 4.4409e-15 ± 0.0000 -5.0571e03 ± 2.7343e03

x = 1 1.8046e-40 ± 3.4272e-39 4.4409e-15 ± 0.0000 -5.3451e03 ± 3.8784e03

x = 2 4.5126e-78 ± 3.4475e-79 8.8816e-16 ± 0.0000 -5.4113e03 ± 2.3002e03

x = 3 8.2091e-89 ± 1.6473e-87 8.8816e-16 ± 0.0000 -5.0689e03 ± 3.1955e03

x = 5 1.0296e-68 ± 2.9208e-67 8.8816e-16 ± 0.0000 -4.9982e03 ± 2.5672e03

x = 10 2.1032e-48 ± 6.0272e-47 8.8816e-16 ± 0.0000 -5.2526e03 ± 2.5658e03
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It could be observed that the results get better with the

increase of x in both on f1 and f4. The best results are

achieved when x is 3 in the f1 test and from 1 to 10 in the f4
test. On the other hand, the final results change stochasti-

cally with the increase of x in the f9 test where the best

result was achieved when x is 2. These results show that

the performance of the parameter settings for the new SL-

TLBO algorithm is problem specific. We choose x = 3 for

the further comparative study on algorithms performance

in sub-section 5.3.

5.3 Simulation results and discussions

In this sub-section, the new SL-TLBO algorithm were

tested and comparatively studied with some counterparts

on the ten benchmark functions tests mentioned in 5.1. To

fairly compare the algorithm performance, the number of

the function evaluation (FES) is introduced as the iteration

criteria. Each generation of PSO and DE method accounts

for one FES. The original TLBO has two phases and

accounts for double times of function evaluation, whereas

the SL-TLBO has one more self-learning phase in each

generation and triple times are used to calculate the FES.

In terms of the parameters settings for the algorithms, the

population number is 30 while the FES is set as 12,000. The

weighted PSO uses c1 = 1, c2 = 3, wmax = 0.9, wmin = 0.4;

for PSO-CF, c1 = c2 = 2.05, K = 0.729; for classical DE,

F = 0.7, CR = 0.5; for elite TLBO, the elite number is set as

5; the self-learning weighting factor x is 3; no specific

parameters are required to be set for original TLBO and

mTLBO. Similarly, 30 different runs were carried out for each

benchmark function by each algorithm. The mean values and

standard deviations for each test are illustrated in Table 6.

From the results, it is shown that the new SL-TLBO

performs best in the limited FES among 7 of totally 10

tests. In the tests on f1, f4, f7, and f8, the SL-TLBO sig-

nificantly outperforms other counterparts. Comparable

performance for the new algorithm is displayed on f2, f5, f6.

In the cases of f3, f9, and f10, SL-TLBO is outperformed by

the original TLBO, mTLBO, and eTLBO, respectively.

However, in these three cases, the performances of the four

TLBO variants are relatively the same, which indicates that

the general problem solving capability of SL-TLBO

appears to be satisfactory. Therefore, this new method is

utilized in solving the DEED problem with PEV loads.

6 Simulation results on DEED problem and discussions

6.1 Case 1: 5-unit economic dispatch without PEV

In order to show the significance of the new SL-TLBO

algorithm, the original 5-unit considering valve-point effect

and transmission loss is tested. The FES is set as 60000,

and the population number for the SL-TLBO method is 50.

The 5-unit economic dispatch benchmark data is taken

from [28]. According to the experimental tests, x is set as

0.05, which is much smaller than the previous setting in

benchmark functions tests. This is because the DEED

problem is highly constrained due to which a big learning

rate will easily cause the violation of constraints. On the

other hand, a small learning factor would increase the

searching ability in nearby solution space, which is more

adaptable for DEED problem to search better solutions in a

limited available space.

It can be seen from the Table 7 that the new SL-TLBO

can obtain the best results comparing with some previous

methods. This method is then utilized in PEV integration

analysis.

6.2 Case 2: 5-unit economic dispatch with PEV

In this case, a 5-unit system combined with the four PEV

load profiles considering valve-point effect and transmission

losses is investigated to dynamically dispatch the generation

production from the economic perspective.

Considering the local population and load situation of

the benchmark system, an extra load of 30000 different

types of PEVs is integrated, where 45% of these PEVs are

low hybrid vehicles equipped with 15 kWh batteries.

Table 6 Benchmark tests results for different algorithms
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Besides, 25% of PEVs are medium hybrid vehicles using

25 kWh batteries, and 30% PEVs are pure battery vehicles

of which the total power are provided by 40 kWh batteries

as in Table 8. It is also assumed that 50% SOC are the

energy necessity for PEVs in a 24-hour period [32]. The

total PEV load for one day is calculated as Lev =

30000 9 (15 9 45 % ? 25 9 25% ? 40 9 30 %) 9 0.5 =

375 MW.

Fig. 2 illustrates the four different load demand profiles

with corresponding situations of PEV charging probability

in a 24-hour time period. Differences lie on the noon time

between 12:00-17:00 and midnight between 22:00-06:00.

The peak load has increased significantly in the peak

charging situation shown as the purple line in Fig. 2 lasts

till the next load valley. On the contrary, the valley load is

increased by both off-peak charging and EPRI charging

(see green and red line in Fig. 2). The stochastic charging

profile generates a small new sub-peak during 6:00 to 9:00

in the morning showed in the blue line again in Fig. 2.

The four circumstances are tested by seven algorithms

respectively. The particle number is set as 50 and the FES

is 20000. The algorithms parameter settings are almost the

same with the tests in 5.3, while the only difference lies on

the setting of the self-learning weighting factor x in SL-

TLBO as mentioned in case 1.

Table 9 shows the dispatched results of four PEV

charging profiles solved by seven algorithms. The SL-

TLBO outperforms all its counterparts and achieves the

best results on all the four charging profiles. Moreover,

comparing the four charging patterns, the off-peak charg-

ing costs 46508.86 $/day which is the lowest among all the

situations. In contrast, the peak charging costs reach to

47367.17 $/day and becomes the highest cost. The EPRI

charging profile ranks the second lowest in terms of the

cost and outperforms the stochastic charging behavior

which ranks the third place with the costs of 46770.71 $/

day and 47158.86 $/day respectively. The off-peak charg-

ing profile costs 858.31 $/day lower than the peak charging

profile, which implies that under the same charging

Table 7 Comparison of total fuel cost over 30 runs (Case 1: 5-unit

without PEV)

Method Fuel cost ($/day)

Min Ave Max

SA [28] 47356.00 NA NA

PS [29] 46530.00 NA NA

EP [30] 46777.00 NA NA

PSO [31] 44253.24 45657.06 46402.52

SL-TLBO 44199.98 45655.74 46113.64

Table 8 Multiple types of PEV

EV type Battery capacity/kWh Proportion/%

Low hybrid 15 45

High hybrid 25 25

Pure battery 40 30

Table 9 Economic dispatching result for case 1 ($/day)

LEPRI LOffp LPeak LSto

wPSO 49004.13 48587.97 50875.78 49333.11

PSO-CF 51482.18 51231.77 51682.02 51292.57

DE 51457.32 51238.97 51310.22 51283.18

TLBO 49649.47 48884.45 48775.31 49292.38

eTLBO 49049.49 49306.12 49270.68 49549.59

mTLBO 48974.99 47656.89 48459.7 48970.59

SL-TLBO 46770.71 46508.86 47367.17 47158.86

Fig. 2 Power load demands with four PEV profiles
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demand, charging preferentially at off-peak time could

save 1.85% in terms of the economic cost.

6.3 Case 3: 5-unit environmental dispatch with PEV

In this case, the environmental emission is considered

rather than the economic cost. Similarly, the 5-unit system

is employed and the data is taken from [33]. The objective

function is presented as (7) and the constraints are the same

with economic dispatch in the previous subsection. The

PEV number and the power necessity are the same with the

aforementioned economic case. All the four charging

profiles are also comparatively tested by seven algorithms

including wPSO, PSO-CF, classical DE, original TLBO,

elite TLBO, modified TLBO, and SL-TLBO. The param-

eter initializations for these algorithms are the same with

case 2.

Table 10 shows the environmental dispatch results for

the four different charging profiles solved by seven algo-

rithms. The lowest environmental emission results are still

produced by the proposed SL-TLBO method on all the four

PEV charging scenarios. Among these charging profiles,

the off-peak charging profile again emits the least air pol-

lutants with the amount of 18659.24 lb/day achieved by

SL-TLBO, while the peak charging profile produces most

emissions with 19227.18 lb/day. Therefore, a reduction of

3.0% emission production with 567.94 lb/day from the

generation side would be achieved by shifting the PEV

charging time. It is the same situation as in case 2, the

EPRI charging profile and the stochastic charging profile

rank the 2nd and the 3rd with the emissions of 18820.78 lb/

day and 18963.69 lb/day respectively.

6.4 Case 4: 5-unit economic and environmental

dispatch with PEV

Since the economic aspect and the environmental aspect

are both vital for power system dispatch, a combination of

these two objectives is also investigated. The xee in the

objective function (1) is defined as 0.5 in this case to

comprehensively consider the economic and environmental

profit and trade-off the both situations. The 5-unit test

system is again utilized of which the load demand and four

PEV charging situations remain the same with previous

cases. Dealing with the objective function with significant

high non-linear characteristics with both sinusoidal and

exponential terms, the case would be more complex for

algorithms to solve. In order to evaluate the algorithms

performances and compare the four charging situations, the

seven algorithms with same parameter initializations are

again implemented.

Table 11 shows all the dispatching results considering

both economic and environmental aspects. Not

incidentally, SL-TLBO again achieved the best fitness

values. The fitness value of off-peak charging profile is

33924.62 while it is 34731.92 for the peak charging sce-

nario. There is a 2.4% deviation between these two values.

If the performances of all the algorithms are compared in

all the cases, SL-TLBO always gives the best performance.

6.5 Case 5: 15-unit economic dispatch with PEV

The 5-unit system is only a small scale system with 120

variables for a dynamic dispatch in 24-hour period of time.

However, dispatching tasks for larger system widely exist.

In this case, a 15-unit system is implemented of which the

total load demand is 60981 MW [34]. The number of

variables is tripled and reaches to 360 in one-day time. To

simplify the situation, the valve point-effect is neglected in

the objective function as

F ¼
XT

t¼1

XNu

i¼1

FiðPi;tÞ ¼
XT

t¼1

XNu

i¼1

½ðai þ biPi;t þ ciP
2
i;tÞ� ð13Þ

where the transmission loss and ramp rate constraints are

also considered. The system data is taken from [31]. To

evaluate the economic impact of the four PEV charging

profiles in this test system, the total PEV number is pro-

portionally increased to 90000. While the PEV types

remain the same as in Table 8, resulting in that the total

PEV charging power necessity is tripled to 1,125 MW in a

single day. This extra PEV charging load is distributed

Table 10 Environmental dispatching result for case 2 (lb/day)

LEPRI LOffp LPeak LSto

wPSO 19189.83 18998.30 19443.99 19112.25

PSO-CF 20232.49 19794.18 20440.12 20183.56

DE 20030.88 19658.45 20493.63 20109.08

TLBO 19002.82 18887.37 19483.80 19195.84

eTLBO 19170.59 18930.36 19390.75 19154.89

mTLBO 19112.78 18879.95 19379.09 19369.38

SL-TLBO 18820.78 18659.24 19227.18 18963.69

Table 11 Economic/environmental dispatching result for case 3

(0.5 � $/day ? 0.5 � lb/day)

LEPRI LOffp LPeak LSto

wPSO 35785.15 34705.22 35514.07 36022.33

PSO-CF 36611.46 36601.88 36814.66 36632.76

DE 36534.69 36421.38 36657.76 36581.62

TLBO 35037.04 34959.16 35112.58 35269.76

eTLBO 35064.55 35167.21 35048.14 35654.87

mTLBO 35300.92 35355.49 35162.68 34857.65

SL-TLBO 33998.31 33924.62 34731.92 34245.83
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within the four charging scenarios and integrated with the

original load demand. The seven algorithms are again

employed to solve the large scale problem for comparative

study where the specific parameter settings for these

algorithms are the same with those in case 2.

The results provided in Table 12 illustrate that the SL-

TLBO method again achieved the optimal solutions, out-

performing with all the other six algorithms in all the four

load scenarios. The lowest cost appears in the off-peak

charging scenario with the cost of 780862.82 $/day, while

the peak charging scenario costs 1099.09 $/day more than

the off-peak one, reaching to 781961.91 $/day.

7 Conclusion

Dynamic economic dispatch has long been an intractable

problem for power system operators and the complexity is

ever increasing with new participants such as PEV entering in

the equation. In this paper, the non-convex dynamic eco-

nomic and environmental dispatch has been comparatively

investigated with the integrations of various PEV charging

scenarios. A new self-learning teaching learning based opti-

mization method is proposed to solve the economic and

environmental dispatch problems. A small scale 5-unit sys-

tem and a large scale 15-unit system are tested in 24-hour time

period. Four different PEV charging scenarios including

EPRI predicted charging, off-peak charging, peak charging

and stochastic charging profiles with different number of PEV

have been integrated in the load demands of both systems.

The numerical results show that the new SL-TLBO algorithm

is a viable alternative approach for solving both small and

large scale dynamic dispatch problems and outperforms other

popular heuristic methods and state-of-the-art TLBO variants

in the tests on well-known benchmarks and DEED problem

with proper parameter tuning. In terms of the four PEV

charging scenarios, the off-peak charging scenario, as

expected, has the advantage in reducing the economic cost

and environmental pollutant emissions.

In future studies, renewable energy sources such as

photovoltaic panels and wind power as well as the vehicle

to grid (V2G) will be introduced in the system dispatch to

comprehensively analyze the interaction between the PEV

and power systems.
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