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Abstract Sightseeing trips are often done in groups, where tourists enjoy their trip

in company with their relatives or friends. Therefore, in this paper, in order to model

the case of trips for tourist groups, we introduce a new problem, as an extension of

the existing problem in the literature that is used for planning the trip of a single

tourist. The new problem extends the existing problem with two additional con-

cepts. The first is the consideration of multiple tourists, where their individual

preferences about points of interests are taken into account, and the second is the

introduction of the concept of mutual social relationship between the different

tourists. For the actual single tourist trip problem, we use an algorithm that obtains

comparable results with the state of the art algorithms, whereas for the group trip

problem, since no solution has been published before, we design a new algorithm

based on tabu search metaheuristic that uses two new unique operators for exploring

the search space. As a result, this paper proposes an anytime algorithm that in

average takes about 20 s to obtain better personalized itineraries for tourist groups

than when scheduling the whole group together.
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1 Introduction

Tourist trip itinerary mainly includes a plan with a sequence of visits scheduled to a

number of points of interest (POI), which must be finished during a limited trip

duration. Additional information might be provided such as the total cost of the trip,

details for each visit (e.g. POI description, start and end time, cost etc.), total unused

time, orientation on the map, etc. For some selected tourism destinations, tourist trip

itinerary planning could be performed automatically by using expert systems such

as those introduced in Tumas and Ricci (2009), Vansteenwegen et al. (2011a),

Schaller (2011), Kurata and Hara (2013), Brilhante et al. (2015), Gavalas et al.

(2015) and Gavalas et al. (2017).

Tourist trip planning systems are expected to react in real time, regardless of their

form of implementation (e.g. app on a hand-held device, online system or desktop

application). Such systems are called by different names such as Personalized

Electronic Tourist Guide (PET), Mobile Tourist Guide (MTG), Personal Navigation

Systems for tourism (PNS) and Electronic Tourist Guides (ETG) (Vansteenwegen

2008). Planning a trip for a single tourist is mostly modeled as a Tourist Trip Design

Problem (TTDP) (Souffriau et al. 2008). An extensive review of the functionalities

of the state of the art systems in tourism is presented in Souffriau and

Vansteenwegen (2010). In addition, an extended review of mobile recommender

systems in tourism is made by Gavalas et al. (2014a). Further, Masthoff (2015)

discusses group recommender system in the context of aggregation of user

information with the aim of finding better recommendation strategies for individual

users.

In general, in terms of dealing with the personal preferences of multiple tourists,

there exist two opposing approaches for planning the trip for tourist groups. The first

approach could be that, during the pre trip phase, all tourists make some kind of

negotiation process to agree in visiting common POIs Delic et al. (2016), and

afterwards they all get set for a joint trip throughout its duration.Whereas, on a second

approach, all tourists stick to their personal preferences, so that during the course of the

trip, they may separate at certain locations to visit the POIs of their specific interest.

The second approach is amore complex optimisation problem, but it satisfiesmore the

personal preferences of the tourists. Therefore, in this paper, we introduce a new

problem that can be used to model the scenario of trip itinerary planning for tourist

groups, which is based on the existing mathematical models from the literature

Souffriau et al. (2013) that are used to model the situation of trip planning for a single

tourist. In addition, we solve the new problem via a tabu search algorithm and present

four different approaches of trip itinerary planning, namely ‘‘Solo’’ (individual tourists

conduct the trip alone), ‘‘Subgroups’’ (tourists with common preferences and mutual

social relations travel together), ‘‘All together’’ (all tourists travel together) and

‘‘Combined’’ (tourists at times are together and at some other times are separated).

Further, we compare different approaches of trip planning on newly created

benchmark instances that model group trip planning problem.
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The remaining part of this paper is structured as in the following. Section 2

presents the literature review of the state of the art algorithms in the envisioned

filed. In Sect. 3, we give a mathematical formulation of the problem, and then, in

Sect. 4, we present a scenario of a tourist group, for which the trip itinerary will be

prepared. In Sect. 5, we describe our solution approach, whereas, in Sect. 6, we

present the experimental results. Our conclusions and ideas for further work are

outlined in Sect. 7.

2 State of the art

The Orienteering Problem (OP) (Tsiligirides 1984) can be used to model the

simplest variant of TTDP, which is made of a single tour that is itself limited to a

specified duration. In OP, a number of locations (i.e. POIs) are specified along with

a starting and an ending point. Each location has a score, which, in TTDP context,

represents the level of tourist interest for visiting it. In order to maximize the total

collected score (i.e. tourist satisfaction), the objective is to visit, in a limited period

of time, a subset of these locations, starting from the start point and ending at the

end point.

The Team Orienteering Problem (TOP) (Chao et al. 1996) enables modeling

TTDP with multiple tours (days), whereas TOP with Time Windows (TOPTW)

(Vansteenwegen et al. 2009) is used to model opening hours of POIs. The Time-

Dependent OP (TDOP) Fomin and Lingas (2002) employs the dependency concept

within the travelling times between POIs, thus being suitable for modelling

situations of multi-modal transportation. In addition, TDOP with Time Windows

(TDOPTW) Zenker and Ludwig (2009) makes it possible to consider operating

hours of POIs. Further, the Multi Constraint TOPTW (MCTOPTW) (Garcia et al.

2009), allows for inclusion of additional knapsack constraints, such as maximum

tour budget or maximum number of POIs of a certain category or type (e.g.

maximum three architectural POIs, maximum four mosques, etc.). In some

occasions a POI is characterized by a number of features (e.g. beauty, cultural

background, historical relevance, etc.) and as a result a range of scores for each of

the features is associated with that POI. This situation can modeled by using

Generalized Orienteering Problem (Ramesh and Brown 1991), which allows

modeling multiple scores for each POI.

In Vansteenwegen et al. (2009) authors tackle TOPTW by developing their

approach based on the Iterated Local Search (ILS) framework. The algorithm

combines an insert step with a shake step to escape from local optima. The insert

step adds new points into the tours in consecutive manner. The insertion feasibility

is evaluated with a quick mechanism that records two values for each already

included point, namely Wait and MaxShift. The Wait value represents the waiting

time at a point, in case the arrival occurs before the opening of time window,

whereas the MaxShift value indicates the maximum possible shift of a visit to a

point without making other visits into the tour infeasible. The shake step removes

one or more visits from each tour. The place of removal and the number of

consecutive visits to be removed are determined by two controlling parameters,
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namely Rd respectively Sd. Due to different tour lengths, the value of Sd is different

for different tours. This makes the shake step more effective in escaping from local

optima. Later, Garcia et al. 2009 extend ILS algorithm of Vansteenwegen et al.

(2009) to solve the MCTOPTW, while Souffriau et al. (2013) hybridize ILS with a

greedy Randomized Adaptive Search Procedure to solve MCTOP with Multiple TW

(MCTOPMTW). A complete survey of most efficient algorithms for OP and its

extensions, is presented in Vansteenwegen et al. (2011b), where various meta-

heuristics are discussed in terms of solution quality and computation time.

In Gavalas et al. (2013) authors tackle TOPTW by using two related approaches

from the group of cluster-based heuristics called Cluster Search Cluster Ratio

(CSCRatio) and Cluster Search Cluster Routes (CSCRoutes). The presented

approaches aim at encouraging visits to topology areas that consist of a high

density of ‘‘good’’ points. Both heuristics employ a clustering procedure to organize

points into clusters based on topological distance. This increases the probability that

more visits would take place inside individual clusters, and as a result, two positive

effects could arise, the decrease of duration of tours and minimization of the number

of transfers between different clusters. Both CSCRatio and CSCRoutes employ the

global k-means algorithm (Likas et al. 2003) to build the clusters of points. In the

initialization phase, in order to start from diverse positions in the search space, the

k tours of the solution are constructed by using points from different clusters.

Further, in the local search phase, both approaches use insert and shake operators

that are originated by Vansteenwegen et al. (2009) for exploring the neighborhood

of current solutions. CSCRatio heuristic is designed to favor tours with more points

inside individual clusters, whereas CSCRoutes heuristic is designed to construct

tours that visit each cluster at most once. This approach improves in terms of quality

in comparison to ILS (Vansteenwegen et al. 2009), while keeping the computation

time in comparable level. An extended review of algorithmic approaches for solving

tourist trip design problems can be found in the paper authored by Gavalas et al.

(2014b).

To the best of the authors knowledge, there is no any publication that describes or

solves trip planning problem for the scenarios of tourist groups. Hence, we extend

the existing MCTOPTW problem to MC Multiple TOPTW (MCMTOPTW)

problem to model the case of multiple trips with multiple tours, so that it emulates

the problem of trip planning for tourist groups. Consequently, the existing test

instances of the MCTOPTW problem are extended with additional attributes to

model the trip planning problem for tourist groups (more details are given in Sect.

6).

Table 1 presents the above described models, along with the newly proposed

model for tourist groups, in a summarized view, where, for each model, the

following details are outlined: time dependency (TD), number of tours (M), number

of time windows (TW), number of knapsack constraints (MC) and number of

tourists. Further, every model, depending on the number of tours and tourists it uses,

is tagged with one of the three tourist trip names, such as tourist trip, tourist trips or

tourist group trips, which are used interchangeably to refer to such models in the

rest of this paper.
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3 Mathematical modeling

The mathematical definition of the new proposed tourist group trips problem

represents an extension to the existing tourist trips problem, which is formulated

in Garcia et al. (2009). The tourist group trips problem is formulated as a mixed-

integer linear problem by using the following decision variables: xijmp ¼ 1 if a

visit to point i is followed with a visit to point j in tour m of person p, 0

otherwise; ypnm ¼ 1 if person p visits point n in tour m, 0 otherwise; zpqnm ¼ 1 if

person p and q visit together point n in tour m, 0 otherwise; snmp = the start time

of the visit to point n in tour m of person p. In tourist group trips problem, a

number of P persons make a multiple day trip to a geographic area. The visited

area has N points, where each of them is characterized with its coordinates xn and

yn, visiting duration Tn, opening On and closing time Cn, entry fee bn and an array

of Z category attributes enz that specify the different categories the point belongs

to. The details known for each person p include: maximum budget Bp, satisfaction

factor with each point Spn, social relationship factor Rpq with each other person q

in the group, and a range Z of Epz values that specify the maximum number of

points of each point category z to be visited. Each person p conducts exactly M

tours that have the same duration Tmax. A person can visit a point at most once.

The starting point 1 and ending point N are fixed for each tour. The traveling

times tij between points i and j are known for all points. The objective is to

prepare a multiple day trip itinerary for all persons so that their overall

satisfaction, both with visited points and with each other’s company, is

maximized. Next, we show the expressions that formulate the objective function

and define specific hard constraints that are associated with tourist group trips

problem.

Max
XP

p¼1

XM

m¼1

XN�1

n¼2

Spnypnm þ
XP

q¼1
q 6¼p

Rpqzpqnm

0
B@

1
CA; ð1Þ

Table 1 Possible theoretical models for tourist trip planning

Model abbreviation TD Number of Trip naming

M TW MC T

OP No 1 0 0 1 Tourist trip

TDOP Yes 1 0 0 1

TDOPTW Yes 1 1 0 1

TOP No [1 0 0 1 Tourist trips

TOPTW No [1 1 0 1

MCTOPTW No [1 1 [1 1

MCTOPMTW No [1 [1 [1 1

MCMTOPTW No [1 1 [1 [1 Tourist group trips
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XN

j¼2

x1jmp ¼
XN�1

i¼1

xiNmp ¼ 1; 8m ¼ 1; . . .;M;

8p ¼ 1; . . .;P;

ð2Þ

XN�1

i¼1

xikmp ¼
XN

j¼2

xkjmp ¼ ypkm; 8k ¼ 2; . . .;N � 1;

8m ¼ 1; . . .;M; 8p ¼ 1; . . .;P;

ð3Þ

simp þ tij � sjmp �Qð1� xijmpÞ; 8i; j ¼ 1; . . .;N;

8m ¼ 1; . . .;M; 8p ¼ 1; . . .;P;
ð4Þ

XM

m¼1

ypnm � 1; 8p ¼ 1; . . .;P; 8n ¼ 2; . . .;N � 1;

8m ¼ 1; . . .;M;

ð5Þ

XN

n¼1

enzypnm �Epz; 8p ¼ 1; . . .;P; 8m ¼ 1; . . .;M;

8z ¼ 1; . . .; Z;

ð6Þ

Oi � snmp �Ci; 8n ¼ 1; . . .;N; 8m ¼ 1; . . .;M;

8p ¼ 1; . . .;P;
ð7Þ

XN�1

i¼1

Tiyimp þ
XN

j¼2

tijxijmp

 !
� Tmax;

8m ¼ 1; . . .;M; 8p ¼ 1; . . .;P:

ð8Þ

Equation (1) expresses the objective function of the problem, which is the maxi-

mization of the overall tourists’ satisfaction, both in terms of satisfaction with

points, by considering each and every tourists’ satisfaction with POIs, and with each

other’s company, by considering tourists’ mutual social relationship factor. Con-

straint (2) enforces the start of each tour at point 1 and the end of it at point N,

whereas, in practice, the starting and the ending point could be the same (e.g. the

hotel). Constraint (3) enforces the continuity of a tour by making sure that any visit

to a point is followed by another visit to some other point, so that no break up occurs

in any of the tours. Constraint (4) makes sure that consecutive visits are aligned in a

timely manner so that no overlapping occurs between consecutive visits and trav-

eling times between them. Coefficient Q in Constraint (4) represents a constant.

Constraint (5) makes sure that any person could visit a particular point at most one

time, whereas Constraint (6) limits the number of points of certain point category

that could be visited by a person to the given maximal value Epz. Constraint (7)
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forces the start of a visit to a point to occur only during its respective time windows.

Constraint (8) limits the duration of any tour to the maximal specified value Tmax.

4 Scenario description

In order to didactically describe the problem at hand, we present a simple scenario of a

tourist group, which we later use to explain the applicability of the proposed approach

in this paper. The scenario consists of a group of three friends, twowomen (T1 and T2)

and oneman (T3), whomake a trip to a given cityX, which has 10 POIs, as described in

Tables 2 and 3). The time is expressed in units of minutes, where the earliest time is

8:00 am, which is equivalent to 0 min. The given POIs might belong to one or more of

the five attraction categories, namely archeology (C1), architecture (C2), religious art

(C3), nature (C4) and shopping center (C5). Table 4 presents the budget tourists are

willing to spend, as well as their mutual social relationship that is expressed in Likert

scale from 0 to 5. They have a close relationship between each other and mostly share

common interests for visiting POIs that belong to the category of architecture (C2) and

nature (C4) (as given in Table 5), while each of them sets a limit about the maximum

number of POIs of certain categories she/he iswilling to visit (as presented in Table 6).

In addition, theman is also interested in visiting POIs of religious art (C3), therefore he

would not like to visit more than one POI of the category of architecture (C2). They

jointly decide to have a trip of two days andmake sightseeing visits that start from9 am

until 11:30 am on each day.

5 Solution approach

In general terms, the overall process for planning the trip for a group of tourists, can

be described by outlining three major algorithms. The first algorithm (denoted as

single trip planner) is about planning the trip by considering only the preferences of

Table 2 POI details

Point Entry fee Open time Close time POI category

C1 C2 C3 C4 C5

P1 5 0 90 1 0 0 0 0

P2 10 0 145 1 0 0 0 0

P3 7 30 120 0 1 0 0 0

P4 9 0 145 0 1 0 0 0

P5 15 0 120 0 0 1 0 0

P6 10 0 145 0 0 1 0 0

P7 12 0 120 0 0 0 1 0

P8 5 0 130 0 0 0 1 0

P9 6 40 200 0 0 0 0 1

P10 8 0 80 0 0 0 0 1
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a single tourist, whereas the second algorithm (denoted as tourist group builder)

clusters the tourists in smaller groups by considering their personal tourism

preferences and their mutual social relationship. The third algorithm (denoted as

group trip planner) uses the single trip planner and the tourist group builder) to

plan the trip for a group of tourists by taking into account preferences of multiple

Table 3 Distances between POIs (in unit of minutes)

Point Start-end point Distance

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 10 – 15 18 25 30 25 42 32 45 35

P2 30 15 – 8 12 20 24 18 30 24 26

P3 18 18 8 – 16 23 10 28 30 18 28

P4 30 25 12 16 – 30 19 15 35 15 44

P5 25 30 20 23 14 – 13 28 19 15 14

P6 12 25 24 10 10 13 – 33 16 26 12

P7 16 42 18 28 27 38 33 – 17 5 45

P8 22 32 30 30 25 19 16 17 – 9 20

P9 10 34 24 18 27 15 13 5 9 – 24

P10 30 18 26 28 22 14 12 45 20 24 –

Table 4 Budget and tourists’

relationship
Tourist Budget Social relation

T1 T2 T3

T1 50 – 4 5

T2 40 5 – 5

T3 45 5 4 –

Table 5 Satisfaction factors

with POIs
Tourist P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

T1 0 0 40 45 0 0 40 40 0 0

T2 0 0 40 45 0 0 40 40 0 0

T3 0 0 50 50 0 0 40 40 20 45

Table 6 Maximal number of

points allowed per POI category
Tourist Categories of POIs

C1 C2 C3 C4 C5

T1 3 2 3 2 1

T2 3 2 3 2 1

T3 3 1 0 3 2

282 K. Sylejmani et al.

123



tourists. In the following subsections, a more detailed description is given for the

individual algorithms.

5.1 Single trip planner

In the tourism domain, the tourist information systems are expected to react to

user requests in real time. Hence, when it comes to planning the itinerary for

tourists, the proposed algorithm should prepare it within a short period of time,

which is usually some tens of seconds. In such circumstances, meta heuristic

approaches are often applied in the literature, while in this paper, the solution

approach is based on Tabu Search (TS) meta-heuristic, which is a local search

technique that is used for solving highly constrained combinatorial problems. TS

was initially proposed by Glover and McMillan in Glover and McMillan (1986)

and then further formalized by Glover in Glover (1989a) and Glover (1989b).

The main idea behind TS stands in storing information about the previous search

experience and then, based on that information, making decisions to either

intensify the search process towards some promising search space areas, or

diversify the process towards less explored regions of the search space. The

search experience is stored in the so called tabu memories, which keep

information about moves that are forbidden or tabu for a certain period of time

(i.e. number of iterations).

We developed the single trip planner Sylejmani et al. (2012) as part of the

solution to a state of the art tourist trips problem, which can be used to model

situations where the trip itinerary is prepared when considering the preferences of a

tourist alone. In the following, we shall give a summarized description of the single

trip planing algorithm.

The solution to this problem is represented as a sequence of numbers, where

individual members represent the indexes of POIs that are scheduled to be part of

the itinerary. The process of initialization is done by randomly inserting POIs into

the sequence, until there is spare time within any of the tours in the trip, and subject

to enforcing the corresponding limitations regarding the individual POIs and the

tourist himself.

The quality of a given solution is measured by summing up the respective

satisfaction factors of the POIs residing within the corresponding itinerary.

Meanwhile, the neighbourhood exploration is done by using three different

operators, as described in the following:

– Insert which inserts a new POI into the itinerary from the group of POIs that are

currently left outside,

– Replace which replaces one POI from the itinerary with a POI off the itinerary

– Swap which swaps two POIs within the itinerary regardless whether they are in

the same tour or in different tours
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The fine tuning of the algorithm is facilitated by means of six parameters, which

are presented in Table 7, where the first column presents the parameter abbrevi-

ation, the second one its whole name, while the third one presents a short description

of the parameter.

At the start, as presented in Algorithm 1, the procedure that creates a random

initial solution is executed and tabu memories are initialized to an empty state. After

the evaluation of initial solution, the algorithm enters the loop that is controlled by

MI parameter. The neighbourhood exploration mechanism alternates between the

above described operators in such way that in every second iteration, the algorithm
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uses the Replace operator, and then in between, in turn, it uses either Insert or Swap

operator. In a single iteration, the best tabu and non-tabu solution is obtained among

all possible combinations that are generated as a result of applying the current

running operator. The best non tabu solution is considered first for adoption as a new

current solution. If the non-tabu solution is not better than the current solution, then

the best tabu solution is tested whether it fulfils the aspiration criteria. In the

implementation at hand, a tabu solution is considered to be fulfilling the aspiration

criteria only if it is better than the best found solution so far. Normally, the adoption

of a better solution is done whenever a new, better one, is found, otherwise the

number of iterations without improvement is recorded. In occasional iterations,

when the number of running iterations is equal to one of the values of control

parameters (DOF, PF, RIF and PEF), the process of search diversification is applied

by using the respective operator (Delete, Perturbate, Restart and Penalise)

accordingly.

The algorithm quits either when it reaches the maximum iterations allowed, or

when the number of iterations without improvement becomes greater than 30% of

the value of MI parameter. For a detailed description of the algorithm and its

associated computational experiments, the reader is referred to the original paper

presenting the approach (Sylejmani et al. 2012).

5.2 Tourist group builder

The k-means algorithm is a rather simple approach for organizing a number of

objects of a dataset into k groups. This algorithm has been introduced into several

disciplines by many authors, most remarkably by Lloyd in Lloyd (1957) and Lloyd

(1982).

The algorithm works on a dataset of d-dimensional vectors, D ¼ fxiji ¼ 1 Ng,
where xi represents the ith data point. It starts by picking k points in the dataset as

initial group representatives also called ‘‘centroids’’, where the methods used to

select them vary from random to more sophisticated ones. Then, the algorithm

Table 7 Single trip planner parameters

Abbreviation Name Description

TLS Tabu list size Specifies the number of iterations a certain move cannot

be used

MI Maximum iterations Defines the number of iterations the algorithm shall run

DOF Delete operator frequency Determines how often the delete operator needs to be

applied

PF Perturbation frequency Sets the frequency of perturbation from actual best found

solution

RIF Random initialization

frequency

Indicates the frequency of re-initialization from random

solution

PEF Penalization frequency Defines the frequency of penalization of frequently used

moves
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alternates between two steps until it converges. The first step includes assignment of

each data point to the closest centroid, which results into portioning of the dataset.

The second step, deals with relocation of the centroids, by calculating a new central

point for the data points assigned to individual groups. The algorithm converges

when no more data points change their subgroups. The calculation of distance

between two different data points is an issue to resolve and subject to different

domains of implementations. The default distance measure is the Euclidean

distance.

In the implementation at hand, the data set consists of tourists’ data, where each

tourist p is represented by four types of attributes:

– Maximum budget (Bp),

– Satisfaction factor about points (Spn; n ¼ 1; . . .;N),
– Social relationship factor with other tourists (Rpq; q ¼ 1; . . .;P; p 6¼ q),

– Maximum number of points for each point category z (Epz; z ¼ 1; . . .; Z)

For the given four types of tourist data, the total number of attributes is

nv ¼ 1þ N þ P� 1þ Z ¼ N þ Pþ Z. These attributes are used to represent the

individual tourists into a nv dimensional coordinate system (see Fig. 1). The

measurement of the degree of closeness between any two tourist i and j is calculated

by using Eq. 9 that is based on the Euclidean distance.

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ sþ r þ e

p
; ð9Þ

where:

b ¼ ðBi � BjÞ2

s ¼
XN

n¼1

ðSin � SjnÞ2

r ¼
XP

p¼1

ðRip � RjpÞ2

e ¼
XZ

z¼1

ðEiz � EjzÞ2

In the initiation phase, the k-means algorithm (see Algorithm 2) randomly selects k

centroids from the represented tourists in the nv dimensional coordinate system.

Then, the grouping is done by assigning the remaining tourists to their closest

centroid. Afterwards, the algorithm iteratively alternates between adoption of new

centroids for individual groups by choosing the most central point inside the group,

and then formation of new groups based on the distance from newly adapted cen-

troids. The algorithm terminates and returns the result when no more tourists change

their groups.
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The k-means algorithm alone is associated with the disadvantage of keeping the

number of k groups fixed. In order to overcome this disadvantage, we implemented

an iterative approach (see Algorithm 3) that uses the k-means algorithm to create

the groups, whilst it employs an evaluation framework to evaluate the quality of

grouping for groups with different number of tourists.

The cluster analysis method of Caliński and Harabasz (1974) is used to evaluate

which is the best possible grouping configuration (i.e How many tourists should each

group have?). Thismethod is denoted as pseudo F-static Fch function and it is based on

statistical analysis of groups. In the following, we give details about the evaluation

function and its comprising components, along with their corresponding variables.

Fch ¼
SST

SSE
� 1

� �
P� nc

nc � 1

� �
; ð10Þ

SST ¼
Xnc

i¼1

Xni

j¼1

Xnv

k¼1

Vk
ij � Vk

� �2
; ð11Þ

SSE ¼
Xnc

i¼1

Xni

j¼1

Xnv

k¼1

Vk
ij � Vk

l

� �2
; ð12Þ

where: SST is the total sum of squared distance to the overall mean, SSE is the sum

of squared distance of the tourists to their own group means, P is the number of

tourists, nc is the number of groups, ni is the number of members in group i, nv is the
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Fig. 1 Representation of
tourists in a nv dimensional
coordinate system
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number of attributes used for representing tourists, Vk
ij is the value of the kth variable

of the jth tourist, Vk is the mean of the kth variable, Vk
l is the mean over all

observations of the kth variable in group i

In order to increase the probability of obtaining the best possible number of

subgroups, the algorithm executes for a number of iterations, as specified by

Maximum Iterations (MI) parameter. In the course of a single iteration, the k-means

algorithm is executed for each possible number of groups, starting from 2 up to the

maximum possible number of groups, and the best evaluating configuration, based

on pseudo F-static Fch function, is recorded. After a series of executions, the

algorithm returns the solution with the best evaluating configuration. Based on the

empirical experiments, for test instances with a maximum of 10 tourists, it is

sufficient to run the algorithm for 20 iterations to obtain the best evaluating

configuration that has an optimal number of groups.
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As indicated in Eq. 9, all the tourist attributes are considered as equally

important. This will allow to consider the differences of tourists in all aspects, and

not only their mutual social relationship. This is important because some tourists

might be related in terms of their social mutual relationship, but might differ in

other aspects (i.e. budget, satisfaction with POIs, relation with other tourists and

maximum number of POIs of certain categories) and, since the maximum

constraints of each and every tourist must me enforced, this might be restricting

to the overall group satisfaction, which is not in line with the objective function (see

Eq. 1), which aims maximizing the overall tourists’ satisfaction. A negative aspect

of this approach, though, could be in cases where some tourists are very much

related, but due to their differences in other aspects do no get placed in the same

cluster. Nevertheless, a solution to such situations could be done in the

preprocessing phase, where such tourists could be merged into a single virtual

tourist by using the merging procedure (see Eqs. 13, 14 and 15) explained in the

next section.

5.3 Group trip planner

The trip itinerary for tourist groups should be planned by considering the

preferences of individual tourists and the social relationship factors between them.

Nevertheless, in order to start the search process with a rather good initial solution,

we initially use the single trip planner algorithm to create a joint trip for all tourists.

However, since the single trip planner algorithm can consider only one pair of

preferences, the tourist group data is merged into a single virtual tourist, where the

corresponding virtual tourist’s attributes for budget limitation (Bv) and maximum

number of points for different point categories (Evz), are set to the minimal values of

the respective attributes by using Eqs. 13 and 14, respectively. On the other hand,

the satisfaction factor of the virtual tourist with points (Spn) is calculated by using

Eq. 15, which represents the average value of satisfaction factors of all tourists in

the group, respectively. Note that the single trip planner algorithm is not designed to

work with the attribute of social relationship between tourists, therefore such

attributes are not considered when merging the tourist’s data in to a single virtual

tourist.

Bv ¼ MinfB1;B2; . . .;BXg; ð13Þ

Evz ¼ MinfE1z;E2z; . . .;EXzg; 8z ¼ 1; . . .; Z; ð14Þ

Svn ¼ AveragefS1n; S2n; . . .; SXng; 8n ¼ 1; . . .;N; ð15Þ

The main part of itinerary optimization starts when the algorithm enters its iterative

phase, where it applies a novel neighbourhood mechanism for exploring the search

space, with the aim of optimizing the itinerary by personalizing it based on specific

preferences of tourists and their mutual social relationship. In the following sub-

sections, we initially show the solution representation, then discuss the operators we
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use as part of the neighbourhood exploration mechanism, and at the end we describe

the general structure of the proposed nested tabu search algorithm.

5.3.1 Solution representation

The representation of a candidate solution is done by using an array of P

members, where each member represents the itinerary for a particular tourist p

and it consists of M þ 1 lists. The first M lists contain the points that are

scheduled to be visited on the respective M tours, whereas the last list keeps a

record of points that are not part of the itinerary for the corresponding tourist

(denoted as TourOff). Considering the example from scenario in Sect. 4, which is

a problem consisting of P ¼ 3 tourists, N ¼ 10 points and M ¼ 2 tours, a

candidate solution might be represented as shown in Fig. 2). In general, the score

of a point is illustrated with the size of the corresponding circle, hence the larger

the circle the higher the score. Particularly, the score of a particular POI for

Tourist 1 is illustrated with a solid line circle, whereas for Tourist 2 the

illustration is done with a dashed line circle, and lastly the score for Tourist 3 is

illustrated with a dotted line circle.

5.3.2 Neighbourhood exploration mechanism

The exploration of the neighbourhood of a given current solution Sc is done by using

three different operators, namely Separate, Join and Insert. The first two operators

are used as part of the neighborhood generation procedure in the framework of the
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Fig. 2 A sample representation of a candidate solution with three tourists and two tours
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tabu search meta-heuristic, whereas the last one serves as an operator for the

greediness part of the proposed approach.

Separate operator tries to divide a tourist p from his current group that is at

present planned to visit a given point i in tour m (see Fig. 3a). The set of all possible

neighbours of the current solution (i.e. number of combinations to try out) is

computed by considering every tourist p (belonging to a group with at least two

members) for separation from his current own group at every point i of every tour

m of the itinerary.

Join operator considers joining any two tourists p and q at present belonging to

groups that visit different points on the same tour (see Fig. 3b). The joining point

can be either a new point or one of the points currently scheduled to be visited by

any of the two tourist. The neighbourhood exploration size (i.e. set of all possible

neighbours) of the join operator is determined by the product of the triplet made by

number of tourists, number of tours and number of points in each tour.

Insert operator examines the spare time of individual tourists, which might be

available at some point in the middle or at the end of a particular tour that is part of

the itinerary (see Fig. 3c). Depending on the amount of the spare time, the resulting

tours are expanded with one or more new points. At this stage, the operator takes a

greedy approach by trying to insert first new non included points that have the

highest satisfaction factor for the respective tourists.

5.3.3 Tabu memories

For experimentation purposes, three different tabu memories are designed, which

differ in the level of restrictiveness they pose to the search process. The first two

memories are two-dimensional, namely the tourist based memory that is used to

record information about two different tourists participating in an operation (i.e.

separation or join) and the point based memory that keeps record of information

whenever an operation (i.e. separation or join) between two particular points occurs.

Meanwhile, the third memory, denoted as tourist and point based memory, has

three-dimensions and it is used to save information about two particular tourists

being involved in an operation at a certain point.

In situations from the practice, the number of tourists is usually much less

than the number of available points in a tourism destination, therefore the tourist

based memory is more restrictive than the point based memory, since there is a

higher probability that more information about tourists than about points would

be included into respective memories. On the other hand, the tourist and point

based memory can be classified as the least restrictive one, since there is a lower

probability that two particular tourists would be often subject of an operation at

the same point.

These tabu memories are updated whenever either the Separate or Join

operator is applied. In the case of Separate operator, all the cells that match the

separated tourist with her/his current group members from whom she/he has
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been separated, are updated. Whereas, in the case of Join operator, only the cell,

which matches the two particular tourists being joined, is updated. Further, if the

tourist and point based memory are utilized, then the cells/cell of respective

matrix that represents the point where the separation or joining of tourists

occurs, are/is updated.

5.3.4 Tabu search implementation

The group trip planner nests the single trip planner inside its framework. The

nesting occurs either when the initial solution is generated, or when the

algorithm needs to restart its search process from a new random solution in the

search space.

Besides the tuning parameter of the single trip planner, the group trip planner

has its own fine tuning parameters as described in Table 8, where the first column

shows the abbreviation, the second column represents the full name, whereas the

third column describes the purpose of using a particular parameter.

The procedure of the algorithm (see Algorithm 4) starts by setting the

respective tabu memory to an empty state and defining a list of possible

operators (i.e. Separate and Join). The preferences of all group members are

aggregated to create a single virtual tourist by utilizing the respective formulas

described above (see Eqs. 13, 14 and 15). Then, the single trip planner is used

to create an initial solution (denoted as Sc), which represents a joint trip for all

tourists, where the aggregated preferences, represented by a virtual tourist, are

taken into account. In this case, the evaluation of the solution quality is done by

using the objective function expressed by Eq. 1, where, in distinction to the single

trip planner, the algorithm at hand takes into account also the mutual social

relationship between individual tourists.

Table 8 Group trip planner parameters

Abbreviation Name Description

TLS Tabu list size Specifies the number of iterations a certain move cannot be

used

MI Maximum iterations Defines the number of iterations the algorithm shall run

RIF Re-initialization

frequency

Indicates the frequency of re-initialization from a new

random solution

OSF Operator switching

frequency

Sets the frequency of switching between Separate and Join

operators
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The iterative phase duration is specified by MI parameter, where, in the course of

a single iteration, the neighbours could be generated either by applying the Separate

or Join operator. Since, the initial solution (itinerary) is the same for all tourists, it

becomes obvious that in order to start separating tourists, with the aim of

personalizing individual itineraries based on specific preferences, the Separate

operator should be applied in the first couple of iterations (as specified by the

dedicated OSF parameter). In general, for every OSF iterations the neighbourhood

generation mechanism alternates between applying Separate or Join operator. In

each iteration, a best tabu and non-tabu solution is returned by the respective

operator, where the best non tabu solution is considered first for adoption as a new

current solution. In case the non-tabu solution is not better than the current solution,
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the best tabu solution is checked whether it fulfils the aspiration criteria, which, in

this implementation, is fulfilled only if the new current solution is better than the

best found solution so far.

Whenever Separate or Join operator is applied, it might happen that some tourists

at certain points get scheduled to wait for some time for the other tourists (in their

groups) so they can start the next visit together. In order to try to reduce or eliminate

this waiting time, we apply the Insert operator with the aim of inserting new points

in the itinerary instead of waiting.

Further, in order increase the probability of not getting caught in local optima of

any area in the search space, a random re-initiation procedure foresees restarting the

search process from a new initial solution by re-using the single trip planner

algorithm. This procedure is repeated every RIF iterations. As discussed earlier, the

solution that is returned by the single trip planner algorithm is a joint itinerary that

is optimized based on the aggregated preferences and constraints of all tourists.

Based on the experimental results of single trip planner given in Sylejmani et al.

(2012), the fined tuned value of the corresponding MI parameter is 46,000.

Nevertheless, since the returned solution represents only a starting point in the

optimisation process, the single trip planner algorithm is employed with its reduced

value ofMI parameter, which, in this implementation, is adapted to be 10,000 that is

approximately one forth of the respective fined tuned value. This is reasoned based

on two different aspects. The first, it shortens the overall computation time, and the

second, since the returned solution is used as a starting solution, it does not fully

optimize the starting solution based on the objective function of single trip planner,

thus retaining a degree of diversity in the initial solution for different algorithm

callings.

The algorithm quits either if it reaches 30% of iterations without any

improvement or if it makes the foreseen maximum number of iterations, as

specified by MI parameter.

For a more detailed description of the specific components of the algorithm and

the pseudo-code itself, the reader is refereed to the Ph.D. thesis of Sylejmani (2013).

5.4 Types of approaches for itinerary planning

By combining the existing algorithm from the literature for planning the trip

itinerary for a single tourist (denoted as single trip planner) and the two new

algorithms presented in this paper, namely tourist group builder and group trip

planner, it is possible to lay out four different approaches of itinerary planning (see

Fig. 4).

Individual unique itineraries (denoted as ‘‘solo’’ mode) can be prepared by

executing only the single trip planner once for each tourist. Meanwhile, the tourists

can be clustered into smaller groups by using the tourist group builder algorithm,

and then, joint itineraries (denoted as ‘‘subgroups’’) can be prepared for each

individual group by executing the single trip planner once for each of them. The

single trip planner alone can also be used to plan the trip itinerary for the complete

tourist group (denoted as ‘‘all together’’ mode), where after the process of the

aggregation of tourist data, the algorithm can produce a joint itinerary for all
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tourists. Finally, the group trip planner, through the utilization of the single trip

planner, can generate personalized trip itineraries (denoted as ‘‘combined’’ mode)

for individual tourists.

Nonetheless, each approach is associated with its pros and cons, as explained in

the following:

– The solo mode itinerary is where the tourists are separated throughout the trip

and have their unique trip plan. In this case, the tourists will be able to visit POIs

of their personal interests, but their mutual social relations will not be taken into

account.

– The subgroups mode itinerary, being the only approach utilizing the tourist

group builder algorithm, places tourists with common preferences in the same

subgroup and then prepares a separate itinerary for each subgroup. This method

will allow for consideration of social relations between the tourists in the same

subgroups, but would make the planning process more constrained as individual

constraints of tourists must be enforced.

– The all together mode itinerary represents a joint trip plan for all tourists, hence

considering the social relations of each pair of tourists. Nevertheless, the

preferences of the complete group are aggregated, and this makes it unable to

consider the personal preferences of individual tourists, and, in comparison to

subgroups mode, the planning process becomes even more constrained.

– The combined mode itinerary allows tourists to get separated during the course

of the trip, so that they are able to visits POIs of their specific interest, and thus

the itineraries get personalized based on individual preferences of tourists. In

this way, tourists would at times be all together and at other times alone or in

subgroups. This trip mode tries to ‘‘soften’’ the disadvantages of the three other

modes, which are imposed either by not considering mutual social relationships
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Fig. 4 Possible approaches of itinerary planning
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(solo mode) or by the process of aggregation of tourist’ preferences (subgroups

and all together modes).

5.5 Preparing the itinerary for a scenario of three tourists

In order to clarify the process of itinerary planning for all four approaches presented

above, in this section, we present the results of the execution of the algorithms

against the scenario described in Sect. 4, whereas a systematic experimental study is

presented in the next section. Further, with the aim of clarifying the process of

solution evaluation, we give details about the individual components that take part

in the evaluation function. Although the algorithms are run ten times for each mode,

since the envisioned scenario represents a very basic example, all the presented

algorithms manage to solve it easily by returning always the same results for

different executions.

For the running scenario, the algorithm returns the same itinerary for both solo

and subgroups modes. Table 9 shows the corresponding itinerary for these two

modes, where it can be seen that the women are scheduled to visit POI 3 and POI 7

in the first tour and POI 4 and POI 8 in the second tour, while the man is also

scheduled to visit POI 3 and POI 7 in the first tour, but, in the second tour, he is

initially scheduled to visit POI 10 and then POI 8.

Even though the solo mode plans the trip itinerary separately for each tourist, still

the resulting itineraries are completely the same for both women, whereas the man’s

itinerary differs in the second tour. On the other hand, the subgroups mode puts the

two women in the same subgroup, while keeping the man separately. Despite this,

the subgroups mode, likewise the solo mode, produces an identical itinerary.

The similarity in the itineraries of three tourists (especially in the case of the

women) can be explained due to their similar preferences about POIs of category of

Table 9 Itinerary of the three tourists in solo and subgroups mode

Tourist Tour/POI Wait time Start time End time Left time Budget cost

Woman 1

Woman 2

Tour 1 9:00 11:30 0 33

POI 3 0 9:18 9:43

POI 7 0 9:58 10:47

Tour 2 9:00 10:55 35

POI 4 0 9:25 9:45

POI 8 0 10:04 10:23

Man Tour 1 9:00 11:30 0 32

POI 3 0 9:18 9:43

POI 7 0 9:58 10:47

Tour 2 9:00 11:11 19

POI 10 0 9:35 9:55

POI 8 0 10:19 10:39
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nature and architecture. In spite of that, the man, as opposed to the women, is

scheduled to visit POI 10 in the second tour, since he is also interested in visiting

POIs that belong to category of religious art and due to his constraint that he does

not want to visit more than one POI that belongs to category of architecture (see

Table 6). Further, it can be noticed that in the first tour, no-one of the tourists has

any left (unused) time at the end of the tour, while in the second tour the women

have 35 min left, whereas the man has only 19 min left.

The calculation of the overall tourists’ satisfaction (evaluation of the solution)

with a proposed itinerary is done by using the objective function (Eq. 1 that is

defined in Sect. 3). The satisfaction of a single tourist consists of two parts, which is

the satisfaction for visiting POIs and the satisfaction for being accompanied by the

other tourists when visiting POIs. Each time a tourist visits a certain POI with a

group of other tourists, the score of that POI for that tourist and the sum of her/his

social relationship values with the other group members are added into her/his

overall satisfaction. Similarly, this process is repeated for all tourists, where the sum

of their satisfaction constitutes the overall group satisfaction with the trip itinerary.

The details for calculation of the overall satisfaction of the tourists with the

resulting itineraries from the solo and subgroups mode are given in Table 10. The

first column shows all POIs that are in the itinerary, whereas the next four columns

present the social relationship values, as presented in Table 4, between the tourists

that visit a certain POI together. Whilst, the last two columns depict the satisfaction

of tourists for visiting the individual POIs, as well as the satisfaction with

accompaniment between tourists visiting the individual POIs together.

In the following, the details of the calculation of the satisfaction of the individual

tourists (denoted as Sw1, Sw2 and Sm), as well as of the overall satisfaction of the

group (denoted as St) in the scenario, are given.

Table 10 Description of the

process of solution evaluation

for the solo and subgroups

modes

Social relationship Satisfaction

POI Tourist Wo. 1 Wo. 2 Man POIs Accomp.

POI 3 Woman 1 4 5 40 9

Woman 2 5 5 40 10

Man 5 4 50 9

POI 4 Woman 1 4 45 4

Woman 2 5 45 5

POI 7 Woman 1 4 5 40 9

Woman 2 5 5 40 10

Man 5 4 40 9

POI 8 Woman 1 4 40 4

Woman 2 5 40 5

Man 40 0

POI 10 Man 45 0

Subtotal 191 195 193 505 74

Total 579
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Sw1 ¼ ½40þ ð4þ 5Þ� þ ½45þ ð4Þ� þ ½40þ ð4þ 5Þ� þ ½40þ ð4Þ� ¼ 191;

Sw2 ¼ ½40þ ð5þ 5Þ� þ ½45þ ð5Þ� þ ½40þ ð5þ 5Þ� þ ½40þ ð5Þ� ¼ 195;

Sm ¼ ½50þ ð5þ 4Þ� þ ½40þ ð5þ 4Þ� þ ½40þ ð0Þ� þ ½45þ ð0Þ� ¼ 193;

St ¼ 191þ 195þ 193 ¼ 579

Note that the procedure for evaluation of the itinerary is the same also in the cases of

the all together and the combined mode of trip planning, therefore, we do not

present it in such details in the remaining part of this section.

In regard to all together mode, the algorithm makes a joint itinerary for all

tourists (see Table 11). In this case, based on the procedure for merging tourists’

data, by using Eq. 15), the score of a given POI is calculated as the average value of

the satisfaction of all tourists with that POI. Moreover, in order to meet the

constraints set by each tourist regarding the budget limit and the maximum number

of POIs of a certain category, the minimal values of the data of the respective

tourists are calculated by using Eqs. (13) and (14). Considering such constraints, the

all together mode of trip planning prepares the itinerary that contains POI 3 and

POI 7 in the first tour and POI 10 and POI 8 in the second tour. The negative side of

the itinerary returned by all together mode is evident in the case of women, who,

although they are not interested in visiting POIs of category of religious art, they are

still scheduled to visit POI 10, due to the presence of man in the group, who has

expressed interest in visiting POIs of such category. The overall satisfaction of all

tourists for the all together mode is 527, while the left time for the first tour is zero

and for the second tour it is 19 min.

Finally, Table 12 presents the itinerary that is returned by the combined mode of

algorithm execution. It can be noticed that the returned itinerary is a combination of

the previous itineraries returned by solo and subgroups mode on one side, and the

itinerary returned by group mode on the other side. The women visit their most

preferred POIs (3, 7, 4 and 8), whereas also the man visits his most preferred POIs

(3, 7, 10 and 8). In this way, the women are not scheduled to visit POI 10 (which is

out of their interest) as in the case of all together mode, whereas the man is not

Table 11 Itinerary of the three tourists in all together mode

Tourist Tour/POI Wait time Start time End time Left time Budget cost

Woman 1

Woman 2

Man

Tour 1 9:00 11:30 0 32

POI 3 0 9:18 9:43

POI 7 0 9:58 10:47

Tour 2 9:00 11:11 19

POI 10 0 9:35 9:55

POI 8 0 10:19 10:39
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scheduled to travel alone in the second tour as in the cases of solo and subgroups

mode. The combined approach takes advantage of the left time at the end of the

second tour, by scheduling the women to wait (15 min) for the man when they

arrive at POI 8, so that they can make the visit together, hence their overall

satisfaction will be increased. In this way, the combined mode of itinerary planning

increases the overall satisfaction of the three tourists by assuming that none of them

finds it inconvenient to wait for the other group members in order to make a joint

visit. In the combined mode, the overall satisfaction of all tourists with the generated

itinerary is 598, which is greater than in any other mode, while the left time for both

tours is 19 min.

6 Computational experiments

In this section, in order to systematically compare the solutions obtained by

different modes of itinerary planning, a new test set is introduced. Next, the results

of the single trip planner are compared against the results of the state of the art

approaches. Afterwards, the details for fine tuning the parameter values of the

algorithm precede the computation results comparing the different variants of

itinerary planning. The algorithm is coded by using Java 1.7. All experiments are

done by using an Intel i3 2.2 GHz processor with 2 GB of RAM memory. A single

experiment is conducted by making 10 runs for each instance in the test set.

6.1 Test bed instances

The existing test set of 148 test instances for tourist trips problem, created by

Souffriau et al. (2013), is used to model the problem of the single tourist trip

Table 12 Itinerary of the three tourists in combined mode

Tourist Tour/POI Wait time Start time End time Left time Budget cost

Woman 1

Woman 2

Tour 1 9:00 11:30 0 33

POI 3 0 9:18 9:43

POI 7 0 9:58 10:47

Tour 2 9:00 11:11 19

POI 4 0 9:25 9:45

POI 8 15 10:19 10:39

Man Tour 1 9:00 11:30 0 32

POI 3 0 9:18 9:43

POI 7 0 9:58 10:47

Tour 2 9:00 11:11 19

POI 10 0 9:35 9:55

POI 8 0 10:19 10:39
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itinerary. We further extend this data set to enable modelling the case of trip

planning for tourist groups. In accordance to the test set origin, the instances are

divided into two subsets, namely Solomon (1987) and Cordeau et al. (1997) based.

The Solomon-based subset consists of 116 instances, while the Cordeau-based one

consist of 32 instances.

Since, we deal with multiple tourists, we add an additional attribute P that

specifies the number of tourists that are present on the trip. The value of attribute P

varies from 2 to 10 in various instances. Further, the preferences of extra tourists for

particular POIs are modelled by adding additional satisfaction factors (Spn,

p ¼ f2; . . .;Pg; n ¼ f1; . . .;Ng). The newly added satisfaction factor values get a

random value in the range of 0–50 as in the original test instances.

Moreover, the budget limit (Bp; p ¼ f2; . . .;Pg) and the maximum number of

points of certain categories (Epz, p ¼ f2; . . .;Pg; p ¼ f1; . . .; Zg) for the additional

tourists, are modelled. The budget for the newly added tourists is set as a random

value in the range of the budget of the existing tourist in the instance, with a

possible deviation of up to plus-minus 100. In addition, the values of the new

tourists for the maximum number of points of certain categories, are also random

values in the range of the values for the existing tourist, with a possible deviation of

plus-minus 3.

In order to model the relatedness between the tourists, we added a matrix of

asymmetric social relationship values (Rpq; p ¼ f1; . . .;Pg; q ¼ f1; . . .;Pg; p 6¼ q)

that determines how much individual tourist are related/friends to each other. We

model this relationship values as asymmetric, as in general, it is considered that two

persons might not have the same relationship/friendship level toward each other.

As in the original test set, for different instances, the number of tours in the

itinerary ranges from 1 to 4, whereas the number of POIs differs from 50 until 220.

Note that even though the test instances allow modelling of multiple time

windows, in our implementation we only utilize single time windows by considering

the opening time of the first time window and closing time of the last time window.

The newly generate data set and the corresponding experimental results can ba

accessed via the following link: https://sites.google.com/site/ushtrimet/tourist-trip-

planning.

6.2 Comparing the single trip planner against state of the art approaches

The comparison of the single trip planner performance with the state of the art

results and with the approach from Souffriau et al. (2013) has been presented in

Sylejmani et al. (2012). However, we the aim of having a recapitulated view of the

performance of the single trip planner, in Tables 13 and 14, we give a summarized

presentation of the experimental results. The results are compared against the best

known results in the literature for tourist trips that are less constrained problems

such as OP, TOP and TOPTW Souffriau and Vansteenwegen (2010), as well as

against the approach of Souffriau et al. (2013) for the tourist trips (i.e. MCTOPTW)

problem. The comparison is done by using the existing test set for tourist trips (a.k.a.

Solomon-based or Cordeau-based instances), which were also used by Souffriau
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et al. (2013). The results are averaged over the instances having the same number of

tours and over a given instance type (i.e. Solomon or Cordeau based test set).

Souffriau et al. (2013) compare their approach with the best state of the art

results that were obtained by various algorithms in the literature for the less

constrained tourist trip (i.e. OP, TOP and TOPTW) Souffriau and Vansteenwegen

(2010). Although the best existing results could not be reached by Souffriau et al.

(2013), according to the authors their results are quite good because the problem at

hand is more constrained as it extends the original tourist trips (i.e. TOPTW)

problem with three additional constraints, which include: allowing multiple time

windows, enforcing an extra budget constraint, and utilizing ten type constraints to

model the different categories of POIs (e.g. castle, park, mosque, etc.). Comparing

the results of the single trip planner with those in Souffriau et al. (2013), one can

Table 13 Performance results of the single trip planner (STP)

M Test set Gap from best (%) Gap from ILS-GRASP (%)

Best Avg. Worst Best Avg. Worst

1 Solomon 4.07 6.57 13.82 3.82 6.04 12.98

1 Cordeau 6.42 14.97 25.84 2.89 9.06 18.04

2 Solomon 2.59 6.35 11.8 0.69 2.14 5.82

2 Cordeau 5.41 14.5 23.51 -0.8 5.74 12.83

3 Solomon 3.3 7.85 13.09 -0.66 1.96 5.53

3 Cordeau 6.84 14.18 23.67 0.77 5.35 13.19

4 Solomon 3.06 7.85 12.56 -2.2 0.79 4

4 Cordeau 6.28 13.88 20.59 -0.62 5.51 10.86

1–4 Solomon 3.15 7.38 12.71 0.31 2.96 6.97

1–4 Cordeau 6.27 14.25 22.82 0.59 6.28 13.15

All 3.97 9.19 15.38 0.51 4.0 8.79

Table 14 Computation time of

the single trip planner (STP)
M Test set Time (s)

ILS-GRASP STP

1 Solomon 2.68 1.74

1 Cordeau 6.83 5.49

2 Solomon 7.69 3.34

2 Cordeau 17.85 10.18

3 Solomon 14.3 5.03

3 Cordeau 32.32 15.28

4 Solomon 22.99 6.71

4 Cordeau 52.13 18.32

1–4 Solomon 11.91 4.2

1–4 Cordeau 27.28 12.32

All 15.24 5.96
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conclude that the single trip planner is still outperformed by Souffriau et al. (2013)

regarding the average performance in the given set of instances. Nevertheless, the

single trip planner finds better solutions than Souffriau et al. (2013) in 70 (out of

149) instances. Since we use different machines (the approach in Souffriau et al.

2013 uses an Intel Xeon 2.5 GHz with 4 GB of RAM memory), we cannot give an

accurate comparison regarding the computation time. However, also the single trip

planner gives good solutions within few seconds (see Table 14). The results show

that the single trip planner performs well, especially with the Solomon-based

instances. The average score gap from the best known solutions is 9.19% and it is

only 4.00% from the results obtained by Souffriau et al. (2013). Whereas, in the best

case scenario, the average gap of solo trip planner from the approach of Souffriau

et al. (2013) is only 0.51%. In addition, for 7% the test instances the single trip

planner did find new best solutions, whereas 18% of the best known solutions were

also found.

6.3 Parameter tuning

Based on the preliminary experiments that include a subset of test instances, we

select a range of values for tuning the values of the basic parameters of the

algorithm. The value of MI parameter is fixed to 10,000 iterations. Further

increasing the number of iterations only leads to longer execution time.

The RIF parameter determines the frequency of re-initialization of the search

process from a new starting solution that is generated by using the single trip

planner. Therefore, the RIF parameter will determine how often the single trip

planner will be called into action. Even though, the single trip planner is called with

a reduced value of its own MI parameter, which equals to 10,000, it still requires an

average time of execution of about 1.2 s. Thus, calling the single trip planner very

frequently causes the group trip planner execute more slowly. As result, based on

the experiments with the complete data set and in accordance to the selected value

for the RIF parameter, we identify two different modes of group trip planner

execution, namely slow and fast mode. The algorithm operates in the slow mode

when the value of RIF parameter equals 5, whereas if the value of RIF parameter

equals 40 the algorithm executes in the fast mode. In the next subsection, we give a

detailed comparison of the complete data set for the two selected values of RIF

parameter.

In the following, we present the experimental results about different types of tabu

memories used and about the optimal value of the OSF parameter, where the results

are averaged over 10 executions for each of the instances in the data set. Note that

unless stated otherwise, the group trip planner is executed in the fast mode by

setting RIF parameter value to 40.

In Table 15, we present the experimental results that are done by using the three

different types of tabu memories, where five different tabu list sizes are considered.

The first column shows the type of tabu memory used, whereas the second column

displays the size of tabu list. In the next three columns, we present the gap of the

Combined approach from the three other approaches for the preparation of the

itinerary, namely Solo, Subgroups and Group. A positive value of the gap means
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that the Combined approach has the advantage in comparison to the other compared

approach. In the last column, we represent the average execution time of the

Combined approach.

The results in Table 15 indicate that TLS ¼ 5 on point based memory and TLS ¼
20 on tourist and point based memory produce the best results in comparison to the

other considered values. In those two cases, the gap of combined approach from

approaches such as solo, subgroups and all together is 18.58, 14.87 and 2.96%,

respectively, except for TLS ¼ 20 on tourist and point based memory, which is

slightly better (14.88%) when combined and subgroups approaches are compared.

Further, since for TLS=20 of tourist and point based memory, the average execution

time of the algorithm is 9.03 s, which is for 0.53 s faster than in the case of TLS ¼ 5

of point based memory, we conclude that utilizing a tourist and point based memory

with a TLS value of 20 is the most favorable combination out of all other considered

combinations of tabu memories and tabu list sizes. In addition, the results show that

a tourist based memory, besides producing worse solutions than the other two

memories, it also causes the algorithm to execute a little slower, especially when the

size of tabu list is short (TLS ¼ 5 and TLS ¼ 10).

Further, Table 16 shows the comparison of combined mode versus the three other

modes, when different values of OSF parameter are considered.

The experimental results in Table 16 lay out that, in terms of quality of solutions,

the higher range of values (from 50 to 110) for OSF parameter yields considerably

better results than the lower range of values (from 3 to 40). Nonetheless, the

execution time in those cases is much slower, which, at times, it is more than three

times slower than on the lower range of values. Such results might also be correlated

Table 15 Type and size of taby memory

Type of tabu memory TLS Combined vs. (%) Average time (s)

Solo Subgroups All together

Tourist based 5 18.36 14.65 2.70 10.59

10 18.37 14.66 2.71 10.28

15 18.29 14.58 2.62 9.48

20 18.39 14.68 2.73 9.00

25 18.50 14.80 2.87 9.50

Point based 5 18.58 14.87 2.96 9.56

10 18.56 14.86 2.94 9.27

15 18.55 14.85 2.93 9.10

20 18.45 14.74 2.81 8.76

25 18.47 14.76 2.83 8.83

Tourist and point based 5 18.26 14.54 2.58 9.43

10 18.46 14.75 2.81 9.39

15 18.56 14.86 2.94 9.23

20 18.58 14.88 2.96 9.03

25 18.52 14.81 2.88 8.94
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to the actual value used for RIF parameter, which, for this experiment, is set to 40.

There is an indication that as soon the OSF parameter value surpasses the value of

RIF parameter, the quality of results increases in the expense of a noticeable

increase in terms of computation time. This result suggests that in order to get

solutions that are better in terms of quality, the value of OSF parameter should be

higher than value of RIF parameter, although, in that case the computation time

increases too. Based on the obtained results, the most favorable value of OSF

parameter is 90, which is a little more than twice the value of RIF parameter.

On the other hand, in case of the lower range of values for OSF parameter, the

algorithm has the advantage in the aspect of computation time, which is 2.85 times

faster than in the case of the higher range of values. Hence, in order to make a trade-

off between the high quality of solutions and short computation time, we select two

best values for the OSF operator, one being the best value on the lower range

(OSF ¼ 5) and the other one being the best value on the higher range (OSF ¼ 90).

The two selected OSF values are used alternatively every F iterations, where F is set

5% of the overall number of iterations of the algorithm (i.e. F ¼ ð5=100Þ �MI).

6.4 Comparison between different types of approaches for itinerary
planning

In the following, we present the results that are obtained when preparing the trip

itinerary by using different approaches described above. The results are presented in

the percentage gap that show the advantage of combined approach over the three

other approaches. Further, we also present a comparison between the slow and fast

mode of the execution of the combined approach, where the respective pros and

cons are outlined in terms of computation time and quality of solution.

Table 16 Operator switching

frequency

The bold values emphasise the

two best values of the operator

switching frequency (OSF)

parameter, where value 5

produces good results in a short

period of time (fast mode),

whereas value 90 yields to even

better results but for a longer

time (slow mode)

OSF Combined vs.(%) Average time (s)

Solo Subgroups All together

3 18.50 14.80 2.87 9.35

5 18.59 14.89 2.97 9.26

10 18.53 14.82 2.89 9.07

20 18.53 14.82 2.90 8.94

30 18.37 14.66 2.71 8.79

40 18.26 14.55 2.58 8.65

50 19.12 15.44 3.61 19.84

60 19.18 15.50 3.67 22.86

70 19.32 15.65 3.84 24.95

80 19.45 15.79 3.99 23.68

90 19.49 15.83 4.04 27.60

100 19.22 15.54 3.72 28.94

110 19.34 15.68 3.87 31.64
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Tables 17 and 18 present the comparison results of the combined approach with

the three other approaches, in terms of quality of solutions and time of execution,

respectively. The results are aggregated based on the instance types (originated from

Solomon or Cordeau) and on the number of tours in the instances. The test

instances, which belong to a certain type and have a certain number of tours, are

aggregated into a single resulting value, by calculating the average value over ten

executions for each instance in the subset.

Table 17 Quality of solutions

for different modes of algorithm

execution

Compared approaches M Test set Gap (%)

RIF ¼ 5 RIF ¼ 40

Combined vs. solo 1 Solomon 5.30 4.28

1 Cordeau 21.14 19.81

2 Solomon 13.36 12.29

2 Cordeau 25.86 23.40

3 Solomon 18.73 17.64

3 Cordeau 25.58 24.20

4 Solomon 23.49 22.28

4 Cordeau 28.10 27.40

1–4 Solomon 18.38 17.24

1–4 Cordeau 26.09 24.75

All 20.68 19.48

Combined vs. subgroups 1 Solomon 14.05 13.13

1 Cordeau 18.28 16.90

2 Solomon 13.97 12.90

2 Cordeau 20.65 18.02

3 Solomon 15.87 14.75

3 Cordeau 20.18 18.70

4 Solomon 17.32 16.01

4 Cordeau 19.44 18.66

1–4 Solomon 15.92 14.75

1–4 Cordeau 19.79 18.34

All 17.08 15.82

Combined vs. all together 1 Solomon 9.15 8.17

1 Cordeau 11.78 10.29

2 Solomon 5.05 3.87

2 Cordeau 9.24 6.23

3 Solomon 4.04 2.75

3 Cordeau 7.81 6.11

4 Solomon 3.34 1.82

4 Cordeau 6.08 5.17

1–4 Solomon 4.42 3.09

1–4 Cordeau 7.91 6.24

All 5.47 4.03
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In Table 17, the first column depicts the names of the methods being compared,

whereas the second and third column show the number of tours and the type of the

aggregated test instances, respectively. The last two columns show the average

advantage of slow (RIF ¼ 5) and fast (RIF ¼ 40) mode from the respective

approach, over the instances in a particular subset.

In terms of quality of solutions, the obtained results indicate that both modes

(slow and fast) of combined approach yield to better results than any of the three

other approaches. The comparative results of combined approach with the solo

approach show that the difference is quite large (20.68% for slow mode and 19.48%

for the fast mode). This can be explained by the fact that solo approach does not

consider social relationship between tourists in the group, and, as a result, the

overall satisfaction of tourists is calculated only based on the satisfaction of tourists

with POIs.

The marginal difference between the combined approach and the subgroups

approach is narrower, where the gap is 17.08% in the slow mode and 15.82% in the

fast mode. The results are slightly better than in the solo case, since the subgroups

approach takes into account the social relationship between the tourists into the

same subgroups. Nevertheless, still the social relationship between tourists in

different subgroups is not taken into account, and further the tourists in the same

subgroup constrain each other in terms of budget they are willing spend and number

POIs of certain category they want to visit.

Lastly, the combined approach shows that it can also obtain better results (5.47%

for slow mode and 4.03% for the fast mode) than the all together approach, which,

in the overall, proved to be better than the solo and subgroups approaches. In the

case of the all together approach, all tourists go together, hence their social

relationship is fully considered, but still, as in the case of subgroups approach, the

tourist bind each other with their specific constraints.

Table 18 Computation time for

different approaches
M Test set Time (s)

Solo Subgr. All tog. Combined

Slow Fast

1 Solomon 11.08 3.58 1.35 37.27 8.48

1 Cordeau 35.22 11.45 4.59 119.84 18.61

2 Solomon 20.53 7.07 2.53 67.25 12.54

2 Cordeau 68.19 24.04 8.45 230.22 31.85

3 Solomon 31.28 10.78 4.27 101.46 18.17

3 Cordeau 103.82 32.14 13.36 264.17 42.53

4 Solomon 42.57 14.75 5.79 127.51 23.86

4 Cordeau 129.60 42.30 18.36 1028.61 59.50

1-4 Solomon 21.09 9.05 3.49 83.37 15.76

1-4 Cordeau 84.21 27.48 11.19 410.71 38.12

All 38.87 13.03 5.15 154.15 20.60

Planning the trip itinerary for tourist groups 307

123



Further, it is obvious that in comparison to the three other approaches, the

combined approach (in both modes) makes more improvement in the Cordeau based

instances than on the Solomon based instances. Such results, highlight the strength

of the combined approach in solving difficult instances, such as Cordeau based

instances.

In reference to the time of execution, Table 18 shows the comparative results of

all four approaches. First and second column of Table 18 present the number of

tours and instance type of the test subset, respectively. The next three columns show

the average execution time of the approaches that do not utilize the group trip

planner (i.e. solo, subgroups and all together), whereas the last two columns present

the execution time of combined approach in its both modes (Slow and Fast).

The experimental data in Table 18 show that the slow mode of combined

approach is the most intensive in terms of computation time by requiring on average

a little more than 150 s per execution, which is several times higher than the time

taken by any of the other presented approaches. On the other hand, in average, the

fast mode of the combined approach is eight times faster than the slow mode and it

is also two times faster than the solo approach, while being slower than the

subgroups approach (less than two times) and the all together approach (around four

times). In addition, for both modes of the combined approach, the computation time

for the subset of Cordeau based instances is much higher than for the subset of

Solomon based instances. The ratio of computation time between Cordeau and

Solomon based instances is around 5 for the slow mode and around 2 the for the fast

mode.

In terms of quality of solutions, in Table 19, we give a more detailed description

between the two modes of the combined approach. While the first two columns

present the number of tours and instance type, respectively, the last three columns

represent the advantage gap of the slow mode against the fast mode.

On average, the slow mode obtains better results than the fast mode with a gap of

1.49%. An other advantage of the slow mode is that it improves the worst case

Table 19 Comparison results

between slow and fast mode

The bold value is set to

emphasise the only scenario

where the fast mode produces

better results than the slow mode

of the algorithm execution

M Test set Slow vs. fast (%)

Best Average Worst

1 Solomon 0.86 1.07 1.02

1 Cordeau 1.13 1.66 3.63

2 Solomon 0.65 1.22 2.71

2 Cordeau 2.64 3.22 6.02

3 Solomon 0.87 1.32 2.18

3 Cordeau 0.91 1.82 4.39

4 Solomon 0.41 1.55 2.83

4 Cordeau 20.09 0.96 1.91

1–4 Solomon 0.64 1.37 2.45

1–4 Cordeau 0.94 1.78 3.73

All 0.73 1.49 2.83
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solutions by 2.83% on average, whereas the best case solutions are improved as

well, but with a gap of only 0.73%. This is expected, because in the worst case

executions, the solutions returned by the fast mode are not matured as the solutions

returned by the slow mode, due to the shorter time of algorithm execution. In

addition, the slow mode is better than the fast mode with a higher margin for

Cordeau based instances (average gap is 1.78%) than for Solomon based instances

(average gap is 1.37%). The fast mode is slightly better, for 0.09%, only in the case

of Cordeau subset of instances where number of tours are four. In overall, the slow

mode has the advantage of obtaining solutions with a higher quality than the fast

mode, but it requires much more computation effort.

6.5 Analysis of algorithms for various problem sizes

In the previous section, we showed the computation results averaged over different

numbers of tours and instance types, whereas in this subsection (see Tables 20, 21),

we present the evaluation and computation time of the four trip planning modes

averaged over two additional instance particularities, namely the number of tourists

and the number of POIs.

In Table 20, we compare the results obtained by the combined mode (in both

variants) versus the results of three other modes, namely solo, subgroups and all

together. As in previous experiments, also here, it is shown that the combined mode

Table 20 Algorithms evaluation for different number of tourists and POIs

Inst. type No. of

touris.

No. of

POIs

Combined (fast) vs. (%) Combined (slow) vs. (%)

Solo Subgr. All

tog.

Solo Subgr. All

tog.

Comb.

(fast)

Solomon 2 100 10.99 9.96 12.38 13.06 12.02 14.48 1.87

3 100 4.72 4.54 6.33 5.56 5.38 7.19 0.81

4 100 6.24 7.56 4.75 7.14 8.48 5.64 0.85

5 100 6.67 8.09 3.88 8.54 9.99 5.70 1.76

6 100 12.12 10.79 5.73 13.95 12.61 7.46 1.64

7 100 17.67 16.64 4.71 19.55 18.50 6.38 1.60

8 100 21.53 18.42 2.74 23.34 20.18 4.26 1.49

9 100 25.38 21.46 2.17 26.65 22.69 3.20 1.01

10 100 32.29 23.38 1.57 34.23 25.20 3.06 1.47

Cordeau 2 48 14.60 14.93 2.92 15.34 15.67 3.58 0.64

3 96 11.61 7.54 4.44 13.22 9.10 5.95 1.45

4 144 12.56 8.36 7.67 14.52 10.26 9.55 1.75

5 192 16.22 14.89 9.05 18.97 17.61 11.63 2.37

6 240 28.30 23.23 7.89 29.97 24.83 9.29 1.30

8 72 41.23 20.19 2.16 45.69 23.99 5.39 3.16

9 144 41.55 25.68 5.77 43.14 27.09 6.96 1.12

10 216 44.90 31.43 8.51 47.66 33.94 10.58 1.91
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is superior in comparison to the other approaches to any instance type, number of

tourists or number of PIOs. A specific behaviours of the combined mode against the

all together mode can be noticed in the Solomon set of test instances, whereas the

number of tourists increases, the gap between them starts to narrow down, and this

is especially the case with the instances having 8, 9 or 10 tourists. Nevertheless,

such a behaviour is not present in the set of Cordeau based instances, where the gap

between combined and all together modes increases with the increase of the number

of tourists. Further, the average gap between the slow and the fast versions of the

combined mode is 1.39 and 1.71% for Solomon and Cordeau based instances,

respectively.

As it can be seen in Table 21, since in the solo mode the solo trip planner is

executed once for each tourist, the computation time increases with the increase of

the number of tourists, ranging from about 7 to 43 s for the Solomon based instances

and from 4 to 217 s for the Cordeau based instances, where it is also clear that the

increase in the number of POIs influences the duration of computation time.

Whereas, for the subgroups mode the computation time scales between 7 to 12 s for

the Solomon based instances and between 4 to 45 s for the Cordeau based instances,

showing no signs of any correlation between the size of tourist group and duration

of computation time. Also, in the all together mode, which the fastest among all

other modes, the increase in the number of tourists does not produce any noticeable

effect in the aspect of computation time, which remains in the scope of at most 4

and 25 s for the Solomon and Cordeau based instances, respectively.

Table 21 Algorithms computation time for different number of tourists and POIs

Inst. type No. of touris. No. of POIs Time (s)

Solo Subgr. All tog. Comb. (fast) Comb. (slow)

Solomon 2 100 6.82 7.05 2.97 29.16 206.03

3 100 12.72 8.27 3.90 30.42 198.02

4 100 17.78 8.02 3.71 18.62 129.03

5 100 22.20 11.26 4.00 12.90 77.36

6 100 22.35 6.54 2.97 9.79 56.49

7 100 29.27 10.67 3.61 10.67 39.67

8 100 34.60 8.73 3.53 9.70 35.42

9 100 37.34 11.57 3.25 11.33 21.39

10 100 43.06 9.20 3.45 11.86 25.52

Cordeau 2 48 3.82 4.10 1.70 25.47 308.80

3 96 20.05 13.02 6.60 37.75 675.32

4 144 45.17 21.07 9.68 38.85 831.67

5 192 88.45 40.45 15.80 45.77 585.78

6 240 162.08 54.70 24.63 69.10 530.35

8 72 31.73 7.88 3.40 10.68 111.53

9 144 105.17 27.72 10.35 25.42 97.48

10 216 217.20 50.90 17.37 51.93 144.78
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In reference to the results of the combined mode, for both its variants and both

instance types, a trend of the decrease in the aspect of computation time with the

rise of the number of tourists can be noticed. Although, as stated in Sect. 6.3, all the

experiments are done by using the same number of maximum iterations (i.e.

10,000), the combined approach, for bigger number of tourists, does not need to run

that much of iterations. This is because it does not find any better solution after a

certain amount of time, which in average for the fast mode, for instances with 5–10

tourists, is around 11 and 40 s for Solomon and Cordeau based instances,

respectively. This can be reasoned due to the nature of the join operator, which tries

out a less number of combinations with the increase of the trip constraints, which

arise due to the inclusion of individual tourist constraints into the joint trip (as

discussed in Sect. 5.4).

On average, for the faster variant, in the case of the instances with 100 POIs that

are Solomon based, the computation time is around 16 s, whereas for instances with

the number of PIOs ranging from 48 to 240 that are Cordeau based, the computation

time is in average 38 s. Whereas, for the slow mode, the computation time goes to

approximately 87 s for Solomon based set, and 410 s for the Cordeau based set.

7 Conclusions

In this paper, we presented an algorithm for planning the trip itinerary for tourist

groups, where the construction of the starting solution is done by using the existing

algorithm for planning the trip for a single tourist. The proposed algorithm is based

on the framework of a nested tabu search meta heuristic with a neighborhood

structure that relies on three unique operators, namely Separate, Join and Insert.

The solution that is returned by the algorithm creates personalized itineraries for

individual tourists in the group, by allowing them to change the companionship with

different tourists while on the trip according to their preferences.

Based on the computational experiments that were conducted in a newly

generated test set, we outlined two different modes of algorithm execution, which

were tagged as slow and fast mode. On average, the slow mode of algorithm

execution proved to obtain better results for 1.49% than the fast mode, while being

around eight times slower than fast mode. In addition, both modes of algorithm

execution outperform the approaches, namely solo, subgroups and all together, that

can be generated by using the existing algorithms from the literature, designated for

planning the trip itinerary for a single tourist preference list. Nevertheless, the

computation time of the combined approach is in overall higher, which, for the fast

mode of its execution, requires around 20 s that is four times more than the time

needed by the all together approach.

When comparing the combined approach to the all together approach, as the two

most closest approaches in terms of quality of the solutions they provide, we can

conclude that although the all together approach is executed faster than the

combined approach, it cannot obtain better results than combined approach, because

the itinerary of all together mode is calculated by applying the single trip planner,
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which is not intended primarily to plan the trip for tourist groups. The disadvantages

in applying the single trip planner for a tourist group are as follows:

The satisfaction factors of all tourists are averaged for each individual point (as

explained in Sect. 5.3). This makes the single trip planner approach unable to

consider the personal preferences of individual tourists.

When tourists are kept in a single group, the personal constraints of individual

tourist must be enforced. Therefore, the process of planing becomes more

conditional, and along with that the number of possible candidate solutions is

decreased.

The single trip planner, when applied in the context of tourist groups, from the

start of the trip until the end, keeps the group members together, since it has no

operators for joining or separating tourists. Hence, the single trip planner can not

consider the personal preferences of individual tourists.

In general, the newly proposed algorithm, denoted as group trip planner, can help

obtain better itineraries for tourist groups than the existing algorithms in the

literature. This way, the tourists can get divided during the course of the trip, so that

sometimes they travel together (or in subgroups) and visit POIs of their common

interest, and at other times they travel alone, so that they can visit POIs of their own

specific interest.

We conclude that the slow mode of algorithm execution could be applied in

planning a combined trip itinerary during the pre-trip phase, where tourists could

afford to wait a few minutes in order to get an itinerary with a higher quality,

whereas the fast mode could be applicable in the on-trip phase, where tourists might

select the option of planning a trip itinerary in a shorter time (in a few seconds),

although with a slight decrease in quality.

The all together approach aggregates tourist satisfaction toward POIs by finding

the average value. It would be interesting to investigate whether other forms of

aggregation, such as taking the sum or median (or any other form) of the satisfaction

of all POIs, would produce better results for this approach.

Also, as part of a future work, it would be worth analysing neighbourhood

mechanisms that apply new operators for solving the problem at hand that might

lead to improvements in efficiency or/and effectiveness of exploration of the search

space, given that the problem is also highly constrained. For instance, a new

possible operator for investigation in future could be swapping one or more tourists

between two subgroups that visit two different closely located POIs. Another more

general operator could rotate three or more tourists between their own subgroups so

that each tourist goes in the subgroup of another tourist based on some order that

might be generated randomly or by using a specific heuristic function.

Besides trying out new operators, it would also be interesting to apply other meta

heuristic techniques such as for instance memetic algorithms, or hybridization of

meta heuristic techniques with other techniques from constraint programming and

operations research.
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