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Abstract Context-aware recommender systems are information filtering and deci-

sion support applications that generate recommendations by exploiting context-

dependent user preference data, such as ratings augmented with the description of

the contextual situation detected when the user experienced the item. In fact, many

contextual factors (e.g., weather, season, mood or companion) may potentially

affect the user’s experience of an item, but not all of them are equally important for

the recommender system performance, or easy to be automatically acquired. Hence,

it is important to identify and collect only those factors that truly affect the user

preferences (ratings) and can improve the effectiveness of the recommendations

computed by the recommender system. Extending our previous work, in this paper,

we propose a novel method which adaptively elicits the most useful factors from the

user upon rating an item. The proposed method deems a contextual factor as useful

to be elicited when a user is rating an item, if it has an impact on the user’s predicted

rating for that item. The results of our offline experiments, which we executed on

travel-related rating datasets, show that the proposed method performs better than

other state-of-the-art context selection methods. This paper is an extended and

updated version of a conference paper titled ‘Contextual Information Elicitation in

Travel Recommender Systems’ previously published in the proceedings of Infor-

mation and Communication Technologies in Tourism 2016 Conference (ENTER

2016) held in Bilbao, Spain, February 2–5, 2016.
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1 Introduction

In our everyday lives, we regularly face choices problems, such as what restaurant

to have dinner at, where to spend holidays or which hotel to stay at. Some of these

decisions are relatively straightforward and easy to make. However, sometimes

decision-making is hard because of too many choices in front of us, or because we

do not have sufficient knowledge about the alternative options or simply because of

pressing time constraints. This is also true in the context of web search and Internet

usage where users are faced with a huge amount of information, e.g., millions of hits

for a search, that renders the decision-making slow and complicated.

Recommender systems (RSs) attempt to alleviate this problem. They are

personalized information filtering and decision support tools suggesting interesting

information items to the user and therefore helping the user to avoid irrelevant ones

(Ricci et al. 2015). A wide variety of techniques for generating the recommenda-

tions have been proposed. Depending on the exact type of knowledge and data

needed to compute recommendations, these techniques can be roughly classified

into four major classes (Burke 2007): (1) collaborative filtering, where recommen-

dations are generated by using the preferences (ratings) of other users whose past

preferences are similar to those of the target one; (2) content-based, which uses

descriptions (features) of items to identify items with features similar to those

possessed by the items that the target user has shown a preference for in the past; (3)

knowledge-based, where recommendations are based on specific domain knowledge

about how certain item features match user needs and interests; and finally (4)

hybrid, which are based on the combination of the aforementioned techniques.

A recent trend for RSs is to develop context-aware applications. These systems

make use of context-dependent rating datasets, i.e., containing ratings for items

tagged with the contextual situations of the user while experiencing the rated item

(e.g., weather, temperature, mood or companion). Then, analysing this data,

context-aware recommendation techniques can extract hidden dependencies

between context and user preferences and adapt the recommendations to the

contextual situation of the user when requesting a recommendation (Adomavicius

et al. 2011). For instance, in a tourist attraction RS, it is important to determine the

weather conditions at the recommended places. In fact, on bad weather conditions

the system may have inferred that tourists prefer indoor attractions (e.g., museums,

churches, or castles), while on good weather conditions they prefer outdoor

attractions (e.g., lakes, mountain lodges, or scenic walks). In this case, the reasoning

process is apparently simple, however, in order to be precise and deal with a large

space of contextual situations, users, and items, a recommender requires highly

sophisticated inferences, which are based on the available rating data. Moreover, the

system predictions may depend also on the user’s individual sensibility to specific

contextual conditions, for instance, the current weather conditions, as shown in

Braunhofer et al. (2013).

Travel and tourism is a major application area of Context-Aware Recommender

Systems (CARSs). It is due to the fact that changing contexts can significantly affect

the tourists’ satisfaction and their travel related decisions. Numerous commercial
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and research context-aware travel RSs, such as Foursquare, Yelp, ReRex (Baltrunas

et al. 2012) and South Tyrol Suggests (STS) (Braunhofer et al. 2014), have been

already implemented. They exploit the current user’s and item’s context when

recommending Points Of Interest (POIs). However, developing and designing a

successful system is not an easy task, and the system designer must face many

challenges (Baltrunas et al. 2012). First and foremost, it is required to overcome the

major issue of cold-starting the system. This means to design a solution that can

compute effective recommendations even when the system has not acquired enough

preference data (ratings) (Braunhofer et al. 2014). This issue also involves

identifying the contextual factors that do influence the users’ individual preferences

(ratings) and the decision-making process, and hence are worth to be acquired from

the users along with the ratings, either automatically (e.g., the time, season or

location), or by querying the user (e.g., the mood, budget or companion). The

second challenging task is to develop an effective predictive model that, using

possibly a small number of ratings for items in certain contexts, can predict how the

ratings change as a function of the different contextual situations. Finally, the design

of a proper human-computer interaction layer on top of the predictive model is the

last but not least important challenge that must be faced when building a CARS.

In this paper, we address the issue of identifying the contextual factors that

influence the user’s preferences, and hence should be elicited from the users upon

rating a POI. In order to tackle this task, we apply a novel context relevance

identification method, which is called Largest Deviation. Largest Deviation

estimates the usefulness of a specific contextual factor by measuring the deviation

of the user’s predicted rating for an item if the system considers or not that factor.

The system then dynamically and adaptively selects the contextual factors to be

elicited from a specific user when she enters a rating for a particular item as those

that produce the largest deviation of the predicted rating for that user-item

combination. This approach is very different from current state-of-the-art context

selection strategies, which measure the usefulness of a contextual factor: on a global

basis, i.e., without considering specific relations between a particular user, item, and

context combination; and a posteriori, which means, selecting contextual informa-

tion after all the information is acquired (Odić et al. 2013; Vargas-Govea et al.

2011). More specifically, current state-of-the-art context selection strategies detect

the relevant contextual factors for the entire population of users and items, while

Largest Deviation detects the relevant context at the user-item level, i.e., for each

user-item pair separately. Furthermore, while current state-of-the-art context

selection strategies request all available contextual factors from the users upon

rating items and then post-process the obtained rating and context data by filtering

out irrelevant contextual information, Largest Deviation a priori identifies the

irrelevant contextual information and then only acquires the relevant one from the

users upon rating items. We believe that our method suits very well tourism

applications since they are characterized by a large number of potentially relevant

contextual factors and by very sparse ratings datasets.

The proposed solution relies on an extended matrix factorization-based

prediction model to generate rating predictions for users and items under various

contextual conditions. Then, it uses the generated predictions rather than the sparse
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observed ratings to derive the influence of a contextual factor on a particular user-

item pair. We have compared the proposed method with several state-of-the-art

context selection strategies in a series of offline experiments on three context-

dependent leisure and tourism rating datasets. The results show that the proposed

parsimonious and personalized acquisition of relevant contextual factors is efficient,

effective, and allows to elicit information that best improve the recommendation

performance in terms of accuracy and precision.

The proposed context selection technique was first introduced in two previous

papers (Braunhofer et al. 2015; Braunhofer and Ricci 2016). In this paper we:

provide a more detailed discussion of related work; describe in more detail our main

application scenario, i.e., our developed South Tyrol Suggests (STS) app

(Braunhofer et al. 2014); present a new and more realistic evaluation procedure

that better simulates the influence of the proposed context acquisition method on the

evolution of a recommender’s performance; and finally we illustrate the results

obtained from this new evaluation setting.

The rest of the paper is structured as follows. In Sect. 2, we review the related

work. Section 3 introduces our main application scenario. Section 4 presents in

detail the proposed context acquisition method. Then, we describe the experimental

evaluation in Sect. 5, and detail the obtained results in Sect. 6. Finally, conclusions

are drawn and future work directions are described in Sect. 7.

2 Related work

CARSs have been a topic of growing research interest in the recent years. In a

CARS the system adapts the recommendations to the specific contextual situations

of the user (e.g., her mood or location) and the recommended items (e.g., the

weather at the recommended POI) (Adomavicius et al. 2011). To adapt the

recommendations to a contextual situation, it is necessary to understand the

relationship between user preferences (ratings) and contextual situations. This is

operationally implemented by capturing user ratings for items that are augmented

with a description of the contextual situation observed when the user experienced

the item. For instance, when a user rates a POI, such as a museum, she must also

specify the weather, the season, and her mood, when the visit to that museum

occurred. Acquiring such data is expensive (in terms of user effort), hence it is

important for CARSs to ignore irrelevant and unuseful contextual factors.

Finding the most useful information for building a prediction model has been

extensively studied in machine learning and is known as feature selection. Feature

selection is aimed at improving the performance of learning algorithms and gaining

insight into the unknown generative process of the data (Guyon and Elisseeff 2003).

There are three main approaches to feature selection: wrappers, filters and

embedded methods. While wrapper methods optimize the selection within the

prediction model, filter methods employ statistical characteristics of the training

data to select features independently of any prediction model, and thus are

substantially faster to compute. Popular examples of filter methods used in machine
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learning include mutual information, t statistic in Student test, v2 test for

independence, F statistic in ANOVA and minimum Redundancy Maximum

Relevance (mRMR) (Peng et al. 2005), which uses the mutual information of a

feature and a class as well as the mutual information of features to infer features’

relevance and redundancy, respectively. Differently from the two previously

mentioned methods, embedded methods use internal parameters of the prediction

model to perform feature selection (e.g., the weight vector in support vector

machines), hence feature selection is an integral component of the model itself.

Focusing on CARSs, previous research has explored two types of methods: (1)

for identifying a priori the factors that should be modelled by the system, and (2) for

selecting a posteriori, after the ratings and context data was acquired, those factors

that are most useful for correctly computing rating predictions.

The first method is exemplified in Baltrunas et al. (2012), where the authors

present a survey-based approach to identify the contextual information that is

relevant for a mobile tourism RS. They first estimated the dependency of the user

preferences from an initial candidate set of contextual factors. This was achieved

through a web tool, in which users were requested to evaluate if a particular

contextual condition (e.g., ‘‘you are on a wellness trip’’, ‘‘it is a cold day’’, ‘‘it is

raining’’) has a positive, negative or no influence on the user’s rating of a particular

type of POI (e.g., spa, cycling, museum). Using the obtained data, they were able to

select the most important contextual factors for different types of POIs. Then,

ratings and contextual information for the selected factors that were obtained in the

second step were used to train a context-aware matrix factorization model and to

provide users with context-dependent recommendations in a mobile application for

iPhone.

Odić et al. (2012) identify two approaches to deal with both of these tasks: the

first one is defined as ‘‘assessment’’ and it is based on surveying the users, while the

second is denoted as ‘‘detection’’ of the context relevance and is performed by

mining the rating data. In order to determine which of these two approaches is

better, they used real movie rating data, and survey data in which users were asked

to rate the influence of each contextual condition on their rating behaviour. Based on

the obtained results, they concluded that the detection method performs better than

the assessment one for identifying the contextual factors to be exploited in the rating

prediction model.

In a related paper (Odić et al. 2013) the same authors investigated in more detail

the ‘‘detection’’ approach and provided several statistical measures for relevant-

context detection, i.e., unalikeability, entropy, variance, v2 test and Freeman–Halton

test. Among these measures, they found the Freeman–Halton test as the most useful

and flexible measure to identify the relevant and irrelevant contextual factors in the

LDOS-CoMoDa rating database. Moreover, the authors showed that the ratings

could be predicted more accurately when the system was only using the relevant

contextual factors.

Another example of a posteriori selection of the most relevant contextual factors

can be found in Vargas-Govea et al. (2011). In this paper, the authors focus on a

CARS for restaurants, and show that its efficiency and predictive accuracy can be
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improved by using a reduced subset of contextual factors. To select contextual

factors, the Las Vegas Filter (LVF) algorithm was chosen. LVF repeatedly

generates random subsets of factors, computes their evaluation measure based on an

inconsistency criterion, which tests the extent to which a reduced subset can still

predict the rating values, and finally returns the subset yielding the best result.

Instead of selecting the most relevant contextual factors before or after acquiring

ratings from the users, here we focus on parsimoniously and adaptively selecting the

most useful contextual factors from the users at the time when they enter a rating for

an item. Here, ‘‘useful’’ means that the prediction model is improved by the

knowledge of this information. This paper extends our earlier contributions

(Braunhofer et al. 2015; Braunhofer and Ricci 2016) through a more realistic

evaluation procedure that better simulates the influence of the proposed context

acquisition method (Largest Deviation), as well as other baseline methods, on the

evolution of the recommender’s performance.

3 Application scenario

The target application for the proposed context selection techniques is South Tyrol

Suggests (STS) (Braunhofer et al. 2014). STS is an Android-based CARS that

provides users with context-aware recommendations from a repository of approx-

imately 27,000 POIs, including accommodations, restaurants, attractions, events,

public services and parking stations, that are located in the South Tyrol province of

Italy. It is available on Google Play Store1 and as of October 15, 2016, it was

downloaded and installed by 997 users. In this section, we describe a typical system-

user interaction and show some of the system functions.

3.1 Bootstrapping a user profile

After the user has registered to STS by entering her username, password, birthdate

and gender, she is asked to complete the Five-Item Personality Inventory (FIPI)

(Gosling et al. 2003), so that the system can measure her Big Five personality traits.

These are: openness to experience, conscientiousness, agreeableness, extraversion

and neuroticism. The Big Five personality traits are important user’s features since

previous research has shown that personality influences human behaviours and that

there exist direct relations between personality and tastes and interests (Rentfrow

and Gosling 2003). Consequently, the incorporation of human personality allows us

to build a better model of user ratings, even when no ratings for the target user are

available (see Sect. 3.2). Personality information is also used in STS for more

accurately identifying the items that may be known to the user and can be asked to

rate (see Sect. 3.3).

Figure 1 (left) shows a screenshot of our application where one of the

questionnaire statements is illustrated. The full FIPI consists of the following five

1 https://play.google.com/store/apps/details?id=it.unibz.sts.android.
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questions which require a 7-point Likert response ranging from ‘‘strongly disagree’’

to ‘‘strongly agree’’:

1. I see myself as open to experience, imaginative;

2. I see myself as dependable, organized;

3. I see myself as extraverted, enthusiastic;

4. I see myself as agreeable, kind;

5. I see myself as emotionally stable, calm.

Since these questions may be difficult to understand, the application provides

users with on-screen help including term definitions that can be accessed by clicking

the question mark symbol next to each question, as can be seen in Fig. 1 (left).

3.2 Recommendations

Using the assessed personality (as illustrated in Fig. 1, right), the user’s age and

gender (if available), and the current values of 14 contextual factors, which are

described in Sect. 3.4, the system identifies and shows a list of 20 highly relevant

POIs (see Fig. 2, left). As already noted above, this allows the system to generate

personalized recommendations even though at this stage of the interaction no ratings

of the user are known by the system. In fact, the system overcomes the new user

Fig. 1 Personality questionnaire
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problem by learning a rating prediction model that determines how the user

preferences depend on her personality.

In the event the user is interested in one of the recommended POIs, she can click

on it and access the POI details window, as illustrated in Fig. 2 (right). This window

shows various information about the selected POI, such as a photo, its name, a

description, user reviews, its category as well as an explanation of the recommen-

dation based on the system estimated most influential contextual condition. These

are the contextual conditions that according to the rating prediction model have the

effect to largely increase the predicted rating for the POI, hence the system argues

that because of these conditions the item is particularly suited to be visited.

The system implements other support functions, such as the offered possibility to

write a review for the POI, to request a route suggestion for reaching the POI from

the current location, to tag the POI and to bookmark the POI, which makes it easy to

get back to it later.

Another particularly interesting feature of the POI suggestions screen is that it

provides users with two types of pop-up windows with information about how to

obtain better recommendations. The first one, as can be seen in Fig. 2 (bottom part

of the left screen), requests the user to provide (more) ratings; clicking OK,

forwards the user to a screen where she is requested to rate some specific items that

are identified automatically by the system (see Sect. 3.3). The second type of pop-

up window requests the user to specify contextual factors, such as budget,

companion and transport, that the system is not able to acquire without explicitly

Fig. 2 Recommendations
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querying the user. This is managed by an appropriate interface, as illustrated in

more detail in Sect. 3.4.

3.3 Items rating

In order to adapt the recommendations to the current contextual situation, it is

necessary to understand the relationship between user preferences (ratings) and

contextual situations. This requires acquiring user ratings for items together with

descriptions of the contextual situations while experiencing the items. In STS, the

rating acquisition interaction is started by presenting to the user a semi-transparent

screen with a short explanatory text (see Fig. 3, left). After dismissing this screen,

the implemented personality-based preference elicitation module identifies five

POIs that the system expects the user knows and can rate, and also whose ratings are

useful for improving the quality of the subsequent recommendations (see

Braunhofer et al. 2014 for the details on the active learning preference elicitation

module). Figure 3 (right) shows a screenshot where the user is asked to rate a POI

that she has possibly experienced, and to specify the contextual situation of that

experience, if she remembers and is eager to provide it. For instance, here, the user

is asked to specify the time of the day of her visit, the temperature as well as her

knowledge of the travel area. For each of the displayed POIs, the user can specify

the value of up to three contextual factors, describing the contextual situation of the

user when she experienced the POI. The three displayed factors are the most

Fig. 3 Active learning
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important contextual factors for this particular user-item pair, and are selected from

the full set of 14 factors (see next section) according to our proposed parsimonious

and adaptive context acquisition strategy as described in Sect. 4. In such a way, the

system can minimize the amount of information that the end user has to input

manually, while at the same time the system still obtains information useful to

maintain a high level of rating prediction performance. Without selective context

acquisition, in principle, the user would be required to navigate through 14 drop-

down boxes, that is, one for each available contextual factor.

3.4 Context settings

The context settings are used by the system when it generates its recommendations

and must be able to adequately describe the current situation of the user. They are

accessible from the user profile page, as illustrated in Fig. 4 (left), and allow the

user to fine-tune the system’s knowledge of the current contextual situation by

setting the values of those factors that can not be automatically acquired, such as the

duration of the current stay, the user knowledge of the travel area, the current

budget, the actual companion and feelings. An overview of the contextual factors

and contextual conditions used in the system can be found in Table 1. The

contextual factors daytime, weekday, distance (to POI), weather, season, temper-

ature and crowdedness are not entered by the user, but are automatically obtained by

the system through GPS/cellular network/WiFi, the internal clock as well as weather

Fig. 4 User profile
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and traffic web services. The remaining contextual factors, if the user has enabled

them, must be entered manually by the user, as displayed in Fig. 4 (right). We note

that the full set of contextual factors and their conditions has been derived from

Baltrunas et al. (2012) and were selected as found in the literature on consumer

behaviour in tourism (Swarbrooke and Horner 2007). That set is sufficiently large to

adequately represent the target user context when generating recommendations,

however, it is way too large to be specified by the user for each rated item. Thus, it

is an ideal set of contextual factors for testing our research hypotheses.

4 Parsimonious and adaptive context acquisition

In a RS, the problem of context acquisition comes in conjunction with the problem

of rating acquisition. This is due to the fact that the system can generate

recommendations only after having gathered ratings from the users that are

augmented with information about the contextual conditions (values of the

contextual factors) observed at the time the item was experienced and rated. For

instance, the system must have collected a sufficient number of POI ratings tagged

with sunny weather conditions before it can provide good POI recommendations

under sunny weather conditions.

Identifying which items should be asked the users to rate is already a non-trivial

task. In fact, is common for a user to have experienced, or to have knowledge about,

only a small fraction of the items in the catalogue (e.g., POIs). These are the

Table 1 Contextual factors used in STS

Contextual factors Associated contextual conditions

Weather Clear sky, sunny, cloudy, rainy, thunderstorm, snowing

Season Spring, summer, autumn, winter

Budget Budget traveler, high spender, none of them

Daytime Morning, noon, afternoon, evening, night

Companion Alone, with friends/colleagues, with family, with girlfriend/boyfriend, with

children

Feeling Happy, sad, excited, bored, relaxed, tired, hungry, in love, loved, free

Weekday Working day, weekend

Travel goal Visiting friends, business, religion, health care, social event, education,

scenic/landscape, hedonistic/fun, activity/sport

Transport No transportation means, a bicycle, a motorcycle, a car, public transport

Knowledge of the

travel area

New to area, returning visitor, citizen of the area

Crowdedness Crowded, some people, almost empty

Duration of stay Some hours, one day, more than one day

Temperature Burning, hot, warm, cool, cold, freezing

Distance Far away (over 3 km), nearby (within 3 km)
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‘‘ratable’’ items and guessing what they are is the task of a system implemented

preference acquisition (active learning) strategy. In our system, we use a

personality-based active learning strategy as described in Braunhofer et al. (2014).

Once these items have been selected, the next difficult question that arises is

which contextual information should be requested and acquired from the users upon

rating an item, given the numerous situation parameters that might or might not be

important to know in order to predict new ratings (in various contextual situations).

This is where parsimonious and adaptive context acquisition comes in. Parsimo-

nious and adaptive context acquisition aims at predicting, for a given user-item pair,

the most useful contextual factors, i.e., those that when fed together with the rating

into the predictive model improve more the quality of future recommendations, both

for that user and for other users of the system. ‘‘Parsimonious’’ means that the

system selectively requests and possibly elicits only the most relevant contextual

factors, whereas ‘‘adaptive’’ means that it personalizes the selection of the most

relevant contextual factors to each individual user and item. For instance, referring

to our STS app, by means of parsimonious and adaptive context acquisition, we can

narrow down the set of all possible contextual factors to a small subset of the most

useful contextual factors and then present the user with an appropriate GUI that

elicits these contextual factors. Otherwise, the user would be required to interact

with an inefficient and annoying user interface, and to navigate to and specify the

values of the factors, among the full set of 14 contextual factors, that she is able and

willing to provide.

Before presenting the proposed selective context acquisition method we

introduce the CARS predictive model it relies on. It is a variant of Context-Aware

Matrix Factorization (CAMF) (Baltrunas et al. 2012). It treats contextual conditions

similarly to either item or user attributes and uses a distinct latent factor vector

corresponding to each user- and item-associated attribute. More specifically, a

contextual condition is treated as a user attribute if it corresponds to a dynamic

characteristic of a user, e.g., the mood, the budget or the companion of the user,

whereas it is considered as an item attribute if it describes a dynamic characteristic

of an item, e.g., the weather or the temperature at a POI. The model is scalable and

flexible, and is able to capture latent correlations and patterns between a potentially

wide range of knowledge sources (e.g., users, items, contextual conditions,

demographics, item categories).

Given a user u with user attributes A(u), an item i with item attributes A(i) and a

contextual situation consisting of the conjunction of individual contextual condi-

tions c1; . . .; ck that can be decomposed into the subset of user-related contextual

conditions C(u) and the subset of item-related contextual conditions C(i), the CARS

model predicts ratings using the following rule:

r̂uic1...ck ¼ qi þ
X

a2AðiÞ[CðiÞ
xa

0

@

1

A
>

pu þ
X

b2AðuÞ[CðuÞ
yb

0

@

1

Aþ �ri þ bu; ð1Þ

where qi is the latent vector associated to item i, pu is the latent vector associated to

user u, xa is the latent factor vector associated to an attribute of item i, that may
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either describe a conventional attribute (e.g., genre, item category) or a contextual

attribute (e.g., weather, temperature), yb is the latent factor vector associated to an

attribute of user u. Finally, �ri is the average rating for item i, and bu is the bias

associated to user u, which indicates the observed deviation of user u’s ratings from

the global average.

We recall—from Sect. 2—that generally, there exist many algorithms that even

though principally designed for context and feature selection (i.e., the selection of

the most useful contextual factors or features to be used for rating prediction) can

also be used for selective context acquisition (i.e., the selection of the contextual

factors to be elicited from the user upon rating an item). For instance, one could

employ: mutual information, t statistics in Student test, v2 test for independence, F
statistics in ANOVA and minimum Redundancy Maximum Relevance (mRMR)

(Peng et al. 2005).

Here, we propose a new strategy, which we call Largest Deviation. Differently

from state-of-the-art context selection strategies, it personalizes the selection of the

contextual factors to ask to the user when rating an item by computing a

personalized relevance score for a contextual factor Cj and user-item pair (u, i). To

achieve this, for each user u and item i pair (whose rating is acquired), we first

measure the ‘‘impact’’ of each contextual condition cj 2 Cj, denoted as ŵuicj , by

calculating the absolute deviation between the rating prediction when the condition

holds (i.e., r̂uicj) and the predicted context-free rating (i.e., r̂ui):

ŵuicj ¼ fcj jr̂uicj � r̂uij; ð2Þ

where fcj denotes the frequency of the contextual condition cj, i.e., the number of

ratings in the entire dataset that are tagged with contextual condition cj. The fre-

quency adjusts the raw absolute deviation by taking into account that the contextual

conditions with largest frequency are more reliable. For example, suppose that you

want to estimate the impact of Sunny weather on the user-item pair (Alice, Skiing).

Now, say that system predicts that Alice will rate Skiing as 5 under Sunny weather

(i.e., r̂AliceSkiingSunny ¼ 5), and that the corresponding context-free rating prediction is

3.5 (i.e., r̂AliceSkiing ¼ 3:5). Furthermore, assume that 100 ratings in the rating dataset

are tagged with Sunny weather. Then, the impact of Sunny weather on the user-item

pair (Alice, Skiing) is 150 (100 � j5� 3:5j). We note that, to adjust the absolute

deviations of contextual conditions, we also tried other weighting schemes (e.g., log

normalization), but we found that the raw frequency gives the best results.

Finally, these individual scores for the contextual conditions are then aggregated

into a single relevance score for the contextual factor Cj by simply computing the

arithmetic mean of the scores of the various conditions (values) for that contextual

factor. We conjectured that the contextual factors with largest estimated deviation

are more useful to optimize the system performance. Note that this is quite similar to

the influence-based active learning strategy proposed in Rubens and Sugiyama

(2007), which estimates the influence of an item’s rating on the rating predictions of

other items, and selects the items with the largest influence for rating acquisition.

Selective contextual information acquisition... 17
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5 Experimental evaluation

5.1 Datasets

In order to evaluate the proposed selective context acquisition method, we have

considered three context-dependent rating datasets with different characteristics (see

Table 2).

• The STS dataset2 contains the ratings entered by the users of the STS app that

we mentioned in Sect. 3. The ratings are for a subset of the items managed by

the system and were acquired in contextual situations described by the

conjunction of up to 14 different factors. In addition to the ratings data, this

dataset includes general user information (i.e., age, gender and the Big-5

personality trait scores) as well as content (POI) metadata in the form of

category information.

• The TripAdvisor dataset3 was crawled from the TripAdvisor website. It contains

ratings for POIs in the South Tyrol region of Italy and are tagged with three

contextual factors, namely, type (e.g., couple, family or business trip), month

(e.g., January, February) and year (e.g., 2015, 2014) of the trip. Additionally, the

TripAdvisor dataset has well-defined user (e.g., user location, member type) and

POI attributes (e.g., item type, amenities, item locality). We stress that due to the

small number of available contextual factors the TripAdvisor dataset provides

only little potential for personalization of the contextual factors selection, and

thus is far from being the ideal dataset for the purpose of this paper. However,

since publicly-available context-dependent rating datasets are scarce, we

nevertheless decided to use it for our evaluation. Moreover, the usage of this

dataset can help to understand the impact of the proposed technique even in

those cases where only few contextual factors are available.

• The CoMoDa dataset is a movie-rating dataset that was collected by Odić et al.

(2013). It contains ratings acquired in contextual situations that are described by

the conjunction of multiple conditions coming from 12 different factors, for

instance, time, daytype, season and mood. Also the CoMoDa dataset has well-

defined user attributes (i.e., age, gender, city, country) and movie attributes (i.e.,

director, country, language, year, budget, genres, actors).

It is important to note that in the STS dataset, differently from the TripAdvisor and

CoMoDa datasets, ratings are augmented with the knowledge of a subset of all the

potentially available contextual factors. Indeed, the STS rating dataset originates

from the first version of the STS Android app, where users when rating a POI

specified the values of, at most, four randomly selected contextual factors (out of a

total of fourteen contextual factors). As already mentioned in Sect. 3.3, the current

version of STS selects the contextual factors using the proposed Largest Deviation

algorithm.

2 https://www.researchgate.net/publication/305682479_Context-Aware_Dataset_STS_-_South_Tyrol_

Suggests_Mobile_App_Data.
3 https://www.researchgate.net/publication/308968574_TripAdvisor_Dataset.
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As we will describe in Sect. 5.2, the lack of knowledge of all the contextual

factors for each rating implied that during the simulated interactions the value of a

contextual factor identified by the proposed method could not be always acquired.

5.2 Evaluation procedure

Before conducting an expensive user study—which is left for future work—we have

performed offline experiments aimed at simulating as closely as possible the user

interaction with a context selection strategy deployed in our STS system. In these

offline experiments we have simulated system/user interactions where the users rate

items specifying only the values (conditions) of the contextual factors that have

been assessed as relevant by one of the compared context acquisition strategies. To

achieve this, we adapted an evaluation procedure that was employed to evaluate

active learning strategies for RSs (Elahi et al. 2013).

First, all the available ratings are randomly partitioned into three subsets, in the

ratio 25% : 50% : 25%: (1) training set, containing the ratings used to initially train

the context acquisition strategies; (2) candidate set, containing the ratings that could

be potentially transferred into the training set with the contextual conditions

matched by the context acquisition strategies; and (3) testing set, containing the

share of the ratings (not considered in system training) that was used for calculating

various performance metrics, i.e., user-averaged MAE (U-MAE), which measures

the capability of the system to accurately estimate the ratings users would give to

items, and Precision@10, which measures the capability of the system to accurately

select ten items that the user will like (Herlocker et al. 2004). In particular, given

the set of test users U, the set of user u’s test ratings R(u), the known rating for the

user-item-context tuple (u, i, c), ruic, the predicted rating for the user-item-context

tuple (u, i, c), r̂uic, the set of test items that u rated positively T(u) (i.e., having

ruic � 4), and the top-10 recommendation list for u as L(u), U-MAE and

Precision@10 are defined as follows:

Table 2 Datasets’

characteristics
Dataset STS TripAdvisor CoMoDa

Domain POIs POIs Movies

Rating scale 1–5 1–5 1–5

Ratings 2534 4147 2098

Users 325 3916 112

Items 249 569 1189

Contextual factors 14 3 12

Contextual conditions 57 31 49

Avg. no. of conditions/rating 1.49 3 12

User attributes 7 2 4

Item features 1 12 7
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U�MAE ¼ 1

jUj
X

u2U

1

jRðuÞj
X

ruic2RðuÞ
jr̂uic � ruicj

0
@

1
A ð3Þ

Precision@10 ¼ 1

jUj
X

u2U

jTðuÞ \ LðuÞj
jLðuÞj ð4Þ

In a first experiment, for each user-item pair (u, i) in the candidate set, the N most

useful contextual factors according to a context acquisition strategy are computed,

with N varying from 1 to the total number of contextual factors in the rating dataset.

Then, the corresponding rating ruic in the candidate set was transferred to the

training set as ruic0 with c0 � c containing the associated contextual conditions for

these selected contextual factors, only if these conditions are known for that specific

rating. For instance, consider the case that the 2 most useful contextual factors for

the user-item pair (Alice, Skiing) are Season and Weather, and Alice’s rating was

rAlice SkiingWinter SunnyWarmMorning ¼ 5, then rAlice Skiing Winter Sunny ¼ 5 are added to the

training set. In other words, we ignore some available contextual information (i.e.,

Warm and Morning) associated to the rating, and we train the predictive model by

adding the rating without this information. Finally, the evaluation metrics are

measured on the test set, after training the rating prediction model on the new

extended training set.

In a second experiment, to better simulate the influence of a context acquisition

strategy on the evolution of the RS’s performance, we divide the ratings in the

candidate set into ten (roughly) equally sized subsets, and we repeatedly apply the

procedure used in the first experiment for each of these subsets. In other words, we

first transfer back into the training set the ratings in the first subset of the candidate

set, and then we train and test the prediction model using the new extended training

set. Afterwards, we transfer back into the training set also the ratings contained in

the second subset of the candidate set, etc. This is done until the full set of ratings in

the candidate set is transferred back into the training set.

Both experiments were repeated 20 times with different random seeds and the

results were averaged over the splits to yield more robust estimates (i.e., repeated

random sub-sampling validation Kohavi 1995).

We note that in the TripAdvisor and CoMoDa datasets we could always acquire

the contextual conditions for the top contextual factors since in these datasets all the

considered contextual factors are specified for each rating. Conversely, in the STS

dataset each rating is augmented with the knowledge of only a (rating dependent)

subset of the contextual factors that the system manages. Hence, in the experiments

it often occurred that only a subset of the top contextual factors identified by the

method could be really acquired and transferred to the training set along with the

rating. This is, however, a more realistic scenario since in actual system/user

interactions one cannot assume that the user will always enter all the requested

contextual factors.
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5.3 Baseline methods for evaluation

We have compared the performance of our proposed Largest Deviation method with

the following three state-of-the-art context/feature selection strategies (see Table 3

for a summary of all the tested methods):

• Mutual Information: given a user-item pair (u, i), it computes the relevance

score for the contextual factor Cj as the normalized mutual information between

the ratings for items belonging to i’s category and Cj; the higher the mutual

information, the better the contextual factor can explain the user ratings for

items of a particular category. We note that this strategy depends on the item

category but is not personalized to the user, i.e., the same contextual factors are

asked to be specified by any user upon rating an item belonging to a particular

category. We have chosen this strategy since it was reported to be well-suited for

context relevance assessment by Baltrunas et al. (2012).

• Freeman–Halton Test: it calculates the relevance of a contextual factor Cj using

the Freeman–Halton test. The Freeman–Halton test is the Fisher’s exact test

extended to contingency tables larger than 2� 2, which is a common alternative

to the v2 test in case the Cochran’s rule about small expected frequencies is not

satisfied. The null hypothesis states that the contextual factor Cj and the ratings

are independent, whereas the alternative hypothesis states that they are

dependent. If the null hypothesis can successfully be rejected, it can be

concluded that the contextual factor Cj and the ratings are dependent and the

contextual factor Cj is relevant. This strategy is calculated on the whole

population, i.e., it does not depend on the user or item. According to Odić et al.

(2013) the Freeman–Halton Test can find the relevant contextual factors to

improve the prediction performance of context-aware recommenders.

• Minimum Redundancy Maximum Relevance (mRMR): mRMR (Peng et al. 2005)

ranks each contextual factor Cj according to its relevance to the rating variable

and redundancy to other contextual factors, where both relevance and

redundancy are measured based on mutual information. Similarly to the

Freeman–Halton test, it is calculated on a global basis without considering rating

differences between users and items. In other words, context selection is not

personalized to the user and the item. We have tested our proposed Largest

Deviation strategy against mRMR, since it is one of the most frequently used

feature selection algorithms, which, however, to the best of our knowledge, has

not yet been used for the specific purpose of context selection.

Table 3 Overview of tested

strategies for selective context

acquisition

Strategy User personalization Item dependence

Largest deviation U U

Mutual information � U

Freeman–Halton test � �
mRMR � �
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6 Evaluation results

6.1 System performance with context selection

Figures 5, 6 and 7 show the U-MAE and Precision@10 results of the CARS

algorithm obtained by applying the various context acquisition strategies on the

STS, TripAdvisor and CoMoDa dataset, respectively. As already explained in Sect.

5.2, U-MAE and Precision@10 are two evaluation metrics for RSs that measure

important properties affecting the user experience, i.e., accuracy of rating

predictions and recommendation precision, respectively. In the figures, the x-axis

represents the number of acquired contextual factors, and statistically significant

improvements (paired t-test, p\0:05) of the proposed Largest Deviation strategy

over the other considered strategies are indicated by asterisks on top of the bars. We

note that the number of selected contextual factors goes only up to a maximum of 3

for TripAdvisor (out of 3), and 4 for STS (out of 14) as well as CoMoDa (out of 12)

in order to focus the analysis on a small number of factors. The performance

differences between the strategies, in fact, vanish when more than 3/4 contextual

factors are acquired.
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Fig. 5 Experiment 1: accuracy and precision results for the STS dataset
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In the STS dataset, the best U-MAE (lower is better) and Precision@10 (higher is

better) results are achieved by Largest Deviation.

An interesting observation in the STS dataset can be made by looking at the

average number of contextual conditions acquired by the considered context

acquisition strategies. This is shown in Fig. 8. We can observe that the best context

acquisition strategy is Largest Deviation, which is able to acquire 0.16, 0.30, 0.42

and 0.54 contextual conditions, on average for each rating, when the top 1, 2, 3 and

4 contextual factors are asked from the user to specify, respectively. Hence, it

clearly outperforms all the other state-of-the-art context selection strategies, which

acquire significantly less contextual conditions. Thus, there is some evidence that

our proposed Largest Deviation strategy can also better estimate which contextual

factors are perceived by the users as relevant since more often it requests to the

users contextual information that they have actually entered when rating items.

Looking at the results for the TripAdvisor dataset, one can find that here only

minor differences (especially in Precision@10) between the considered context

acquisition strategies are present, and especially when only one contextual factor is

acquired. This is due to the fact that in this dataset only three contextual factors are

available, thus providing only little potential for personalization in contextual factor
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Fig. 6 Experiment 1: accuracy and precision results for the TripAdvisor dataset
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Fig. 7 Experiment 1: accuracy and precision results for the CoMoDa dataset
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Fig. 8 Experiment 1: no. of acquired contextual conditions for the STS dataset
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selection. Nevertheless, it can be seen that Largest Deviation achieves a very good

accuracy for the tested number of selected contextual factors (1–3). This proves the

efficiency and effectiveness of adapting the selection of the relevant contextual

factors to the target user-item pair. Similarly, good accuracy results can also be

observed for the Freeman–Halton Test when two factors are selected.

Finally, on the CoMoDa dataset, we observe that Largest Deviation can achieve a

significantly better performance in terms of U-MAE and Precision@10 when

compared with the other strategies, i.e., Mutual Information, Freeman–Halton Test

and mRMR. When four contextual factors selected, then there is a notable increase

in U-MAE of Largest Deviation, which also causes Precision@10 to drop. We note,

however, that these performance differences are neither large nor statistically

significant.

6.2 System performance with increasing number of ratings

Figures 9, 10 and 11 show the results of the second experiment that we performed.

In this case we studied the system performance with an increasing proportion of

ratings collected from the simulated users. We show here U-MAE and Precision@l0

of the CARS algorithm obtained by repeatedly selecting—in 10% steps—the top-N

contextual factors according to the various context acquisition strategies, with N ¼
3 (for STS), N ¼ 1 (for TripAdvisor) and N ¼ 3 (for CoMoDa), which corresponds

approximately to 25% of the contextual factors available for each dataset.
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Fig. 9 Experiment 2: accuracy and precision results for the STS dataset
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Largest Deviation achieves a better performance in terms of MAE when

compared with the other strategies, i.e., Mutual Information, Freeman–Halton Test

and mRMR. Precision@10 results are quite similar, even though the differences

between the different considered strategies are smaller. It is also noteworthy that

while in the STS and CoMoDa datasets precision of Largest Deviation is always the

largest, this does not occur in the TripAdvisor dataset.

However, overall, from these graphs one can clearly see that the benefit of using

the proposed parsimonious and adaptive context acquisition strategy is effective in

all the states of the preference acquisition procedure; both at the beginning, when

few ratings are known and successively, when more preference data are known to

the system.

It is again interesting to look at the average number of contextual conditions truly

acquired by the considered context acquisition strategies in the STS dataset. This is

shown in Fig. 12. We can observe that, at every stage of the preference elicitation

procedure, the best context acquisition strategy is Largest Deviation, which is able

to acquire significantly more contextual conditions, when the top-3 contextual

factors are asked from the user to specify. Hence, this further indicates that the

proposed Largest Deviation strategy can better estimate which contextual factors

are truly relevant and should be acquired from the user upon rating an item.
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Fig. 10 Experiment 2: accuracy and precision results for the TripAdvisor dataset
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7 Conclusions and future work

In this paper we have proposed a new method for parsimonious and personalised

context acquisition, i.e., a viable technique for identifying the contextual factors that

are more useful to request and acquire from users. This contextual information can

increase the system rating prediction accuracy and recommendation precision.
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Fig. 11 Experiment 2: accuracy and precision results for the CoMoDa dataset
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Fig. 12 Experiment 2: no. of acquired contextual conditions for the STS dataset (when 3 are asked)
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This is an important and challenging problem for CARSs, since usually many

contextual factors may be requested, but only a small subset is useful and should be

asked to the user. The system, in fact, must avoid an unnecessary waste of time and

effort which is produced if irrelevant contextual information are requested.

Moreover, irrelevant information tends to degrade the recommendation model

performance.

We have formulated the experimental hypothesis that the proposed parsimonious

and personalized selective context acquisition strategy is able to elicit ratings with

contextual information that improve more the recommendation performance than

state-of-the-art alternatives, in terms of accuracy and precision. The results obtained

from offline experiments on three rating datasets confirm these hypotheses.

Parsimonious context acquisition is still a new topic, and there are some research

questions that deserve future work. Firstly, one could analyze the effect on system

performance of combining the proposed context acquisition technique with an

active learning method used for adaptively selecting the items to rate. In other

words, the system will intelligently identify on which item the user should reveal

her preference and which additional description of the contextual conditions that

characterized the item experience should also be given.

Another interesting problem to address in future research is understanding how

the proposed method can be improved by considering the correlations between

contextual factors. For instance, one may discover that the season of the visit may

be largely irrelevant if the system knows the purpose of the visit. Finally, we plan to

perform a live user study via our STS app to confirm the results obtained here in the

off-line simulations of users’ rating behavior.
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