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Abstract
In the rapidly advancing age of Generative AI, Large Language Models (LLMs) such as ChatGPT stand at the forefront 
of disrupting marketing practice and research. This paper presents a comprehensive exploration of LLMs’ proficiency in 
sentiment analysis, a core task in marketing research for understanding consumer emotions, opinions, and perceptions. We 
benchmark the performance of three state-of-the-art LLMs, i.e., GPT-3.5, GPT-4, and Llama 2, against established, high-
performing transfer learning models. Despite their zero-shot nature, our research reveals that LLMs can not only compete 
with but in some cases also surpass traditional transfer learning methods in terms of sentiment classification accuracy. We 
investigate the influence of textual data characteristics and analytical procedures on classification accuracy, shedding light 
on how data origin, text complexity, and prompting techniques impact LLM performance. We find that linguistic features 
such as the presence of lengthy, content-laden words improve classification performance, while other features such as single-
sentence reviews and less structured social media text documents reduce performance. Further, we explore the explainability 
of sentiment classifications generated by LLMs. The findings indicate that LLMs, especially Llama 2, offer remarkable clas-
sification explanations, highlighting their advanced human-like reasoning capabilities. Collectively, this paper enriches the 
current understanding of sentiment analysis, providing valuable insights and guidance for the selection of suitable methods 
by marketing researchers and practitioners in the age of Generative AI.
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1  Introduction

The recent emergence and rapid adoption of Large Language 
Models (LLMs) are disrupting the marketing landscape. 
McKinsey & Company’s survey on the state of Generative 
AI indicates that the marketing and sales functions are the 
primary adopters of Generative AI tools [14]. Pioneering 
academic papers underscore the dual role of Generative AI 
in marketing. First, Generative AI is used in content crea-
tion, including creative writing tasks [47, 55], conversational 
customer support [9], or market research based on emulated 
consumers [7, 40]. For instance, Reisenbichler et al. (2022) 
demonstrate that natural language generation for search 
engine optimization (SEO) outperforms content created by 

human writers in search engine rankings, increasing over-
all campaign performance while reducing production costs 
[55]. Noy and Zhang (2023) report productivity and quality 
increases through the use of Generative AI tools for profes-
sional writing tasks [47]. Brynjolfsson et al. (2023) report 
a 14% productivity increase using Generative AI-based 
conversational assistants for customer service representa-
tives [9]. Second, Generative AI is pioneered in zero-shot 
content analysis, which includes areas like visual analysis 
[38] and automated textual analysis [36, 41, 54, 66]. For 
instance, Konrad and Hartmann (2023) explore the versatil-
ity of multi-modal LLMs for visual content analysis [38]. 
Relatedly, Rathje et al. (2023) explore GPT’s capabilities for 
multilingual psychological text analysis [54].

The role of automated text analysis in marketing, under-
scored by Berger et al.(2020) [2], is set to further expand 
with the adoption of Generative AI, as it is expected to 
boost not only the accuracy but also the accessibility of 
text mining methods. Sentiment analysis represents one of 
the most prevalent use cases of automated text analysis in 
marketing, offering deep insights into consumer emotions, 
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opinions, and perceptions [26, 30]. Applications of senti-
ment analysis include generating market insights from 
user-generated online content [45], predicting virality from 
linguistic features of newspaper articles [3], or identifying 
top performing individuals by analyzing the language style 
used in emails [67]. The field of sentiment analysis employs 
diverse methods, ranging from lexicon-based approaches to 
traditional machine learning models, and extending to the 
more advanced transfer learning techniques, as detailed by 
Hartmann et al. (2019 & 2023) [24, 25]. Demonstrating 
a significant advancement, Hartmann et al. (2023) find a 
superior performance of transfer learning models in senti-
ment analysis tasks compared to lexicon-based and tradi-
tional machine learning approaches, by 20 and 10 percentage 
points in accuracy, respectively [24].

Generative AI, especially LLMs, which are an advanced 
form of transfer learning models, show promise in further 
transforming sentiment analysis. The considerable scale of 
data used for LLM training could significantly increase the 
performance across sentiment analysis tasks and thus influ-
ence the choice of methods in this domain. Unlike the task-
specific fine-tuning required for supervised problems with 
transfer learning, LLMs operate through natural language 
prompts, offering increased versatility across a broader 
range of applications. Instead of collecting labelled training 
data and fine-tuning a supervised machine learning model, 
users simply need to instruct the model what features they 
want to extract from a text, e.g., “Classify the sentiment in 
these reviews. Only use positive or negative as sentiment 
scale”. This adaptability not only enhances the accessibility 
of LLMs but also makes them suitable for various sentiment 
classification tasks, from binary to multi-class [36, 66], and 
enables their application in zero-shot or few-shot scenarios 
[61].

Despite these advancements, there is a notable gap in 
comprehensive benchmarking of LLMs against established 
transfer learning models, particularly in the investigation 
of factors influencing classification accuracy such as data 
origin and textual data characteristics. Our paper addresses 
this research gap, extending the empirical framework of 
Hartmann et al. (2023) by incorporating recent general-
purpose LLMs, thereby offering a refined guide for method 
selection in sentiment analysis in the age of Generative AI. 
Specifically, we conduct three experiments to benchmark the 
capabilities of three state-of-the-art LLMs, namely GPT-3.5, 
GPT-4 and Llama 2, in different sentiment analysis tasks 
against best-in-class transfer learning models.

First, we conduct a comparative study of LLMs in binary 
and three-class sentiment classification on over 3,900 unique 
text documents from 20 different datasets in a zero-shot 
setting. Zero-shot inference refers to a model’s ability to 
execute tasks without previous domain-specific training 
[39]. We find that state-of-the-art LLMs are on par or even 

outperform traditional transfer learning methods in binary 
and three-class sentiment classification tasks.

Second, we investigate how textual data characteristics, 
including dataset origin, sentence and word count, and 
additional linguistic characteristics such as the presence of 
lengthy words, relate to classification accuracy. Addition-
ally, we assess the effects of variations in the analytical pro-
cedure, particularly in terms of the prompting method and 
the provision of examples within the prompt, distinguishing 
between zero-shot and few-shot settings. We observe that 
text documents originating from Twitter1 (as opposed to less 
noisy consumer reviews), along with the inclusion of a third 
output class (i.e., “neutral” in three-class sentiment analy-
sis), and documents comprising only a single sentence (vs. 
multiple) tend to reduce classification accuracy across all 
tested LLMs. Conversely, the presence of lengthy words in 
text documents increases classification performance for all 
LLMs. Interestingly, among the three LLMs, only GPT-3.5 
benefits from few-shot and contextual prompting.

Third, we evaluate the explainability of sentiment clas-
sifications of LLMs. We collected over 1,400 explainability 
ratings, focuses on measuring the understandability, level 
of detail, and perceived trustworthiness of the classification 
explanations generated by the LLMs. Our analysis reveals 
that Llama 2 stands out as the top performer, offering the 
best classification explanations. This level of explainability 
is closely comparable to GPT-4, yet Llama 2 significantly 
surpasses the capabilities of GPT-3.5. It is worth noting 
that all these LLMs demonstrate the ability to generate 
explainable results, particularly compared to transfer learn-
ing models. This distinction highlights the advanced natural 
language understanding and explanation synthesis inherent 
in the latest LLMs, challenging the notion of deep learning 
models as “black boxes” [53].

Taken together, this research breaks new ground by, to 
our best knowledge, offering the first comprehensive per-
formance comparison on binary, three-class, zero-shot, and 
few-shot sentiment analysis between three state-of-the-art 
LLMs and leading transfer learning techniques, such as SiE-
BERT and RoBERTa, while investigating the relationship of 
data and text characteristics on LLMs’ sentiment prediction 
accuracy. Our quantitative findings and subsequent discus-
sion enrich the existing empirical framework for sentiment 
analysis set forth by Hartmann et al. (2023), offering a sys-
tematic approach to aid researchers in selecting appropriate 
methods for sentiment analysis. The subsequent sections 
detail our experimental designs, findings, and their impli-
cations, concluding with future research directions.

1  As all our datasets originate from a time when Twitter was still 
called Twitter, we use this name instead of X for better readability.
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2 � Empirical Framework and Experimental 
Designs

2.1 � Empirical Framework

With LLMs like ChatGPT and Llama 2 now widely acces-
sible, businesses and researchers are presented with unprec-
edented opportunities to leverage these tools for natural 
language processing tasks like sentiment analysis [17]. 
This accessibility also introduces the challenge of choosing 
from a wide array of LLMs, each with its own strengths and 
limitations which are not yet fully understood. This choice 
complexity can lead to a one-model-fits-all approach, over-
looking the need for a detailed evaluation of each model’s 
suitability for specific sentiment analysis tasks. Pioneering 
investigations have showcased LLMs’ strong performance 
in sentiment analysis tasks [36, 66], and indicating robust 
results in multilingual sentiment analysis [54]. However, 
current research reveals three key limitations. First, there is a 
noticeable absence of a comprehensive empirical framework 
providing systematic guidance for businesses and research-
ers on selecting appropriate sentiment classification methods 
in the age of Generative AI. Second, research is limited by a 
lack of performance comparisons between different LLMs 
and established transfer learning models, like SiEBERT, 
on a uniform data sample. Lastly, there is a gap in detailed 
investigation into the influence of data characteristics and 
analytical procedure on the classification accuracy of LLMs. 
To address these research gaps, our paper builds and extends 

upon the empirical framework for sentiment analysis intro-
duced by Hartmann et al. (2023), adapting it to the context 
of Generative AI [24]. The framework guides the design of 
the subsequent experiments which are tailored to address 
the research gap in current sentiment analysis research. Fig-
ure 1 presents the extended framework, specifically adapted 
to extend the existing sentiment analysis method benchmark 
of Hartmann et al. (2019 & 2023) with the dimension of 
Generative AI, more specifically LLMs [24, 25]. The follow-
ing subsections 2.2, 2.3, and 2.4 briefly outline the objec-
tives of the three experiments whose scope is indicated by 
the light gray shading in Fig. 1.

2.2 � Binary and Three‑Class Sentiment Classification 
(Experiment 1)

The research question and context are critical factors in 
choosing a sentiment classification method, as they shape 
the decision between simple binary classification tasks and 
more complex multi-class classifications, which in turn 
influence classification accuracy [24]. Researchers must 
determine the number of classes for sentiment analysis 
based on their research objectives. This decision can vary 
from binary tasks like the prediction of positive or nega-
tive sentiment from social media posts [42] or the detection 
of firestorms [19] to more complex multi-class tasks like 
identifying emotions from email headlines [46]. Our first 
experiment (see Fig. 1 Experiment 1) is designed to evaluate 
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Fig. 1   Empirical framework for sentiment analysis in the age of Generative AI, adapted from Hartmann et al. (2023) [24]. Light gray shading 
indicates the  experimental scope of the present research
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performance differences in sentiment classification accuracy 
between binary and three-class tasks.

2.3 � Impact Analysis of Prompting Method and Data 
Characteristics (Experiment 2)

Data modality and their characteristics, alongside the cho-
sen analytical procedure, are key determinants of classifica-
tion accuracy in sentiment analysis (see Fig. 1 Experiment 
2). Data modality refers to the fundamental format of the 
data, whereas data characteristics describe the inherent data 
features such as the count of specific word categories. In 
sentiment analysis, the most used modalities include text 
and transcribed audio [2]. Additionally, sentiment analysis 
can be conducted on images [69] and multi-modal data, 
such as videos combining image, audio and text [68], or 
social media posts that feature both images and text [31]. 
Sentiment analysis techniques can also be applied to process 
dynamic data for real-time information extraction [70]. This 
includes the real-time analysis of Tweets, such as during 
elections to gauge public sentiment [10, 35], and the extrac-
tion of sentiment from live stream comments, which can 
assist content creators in adjusting their content in response 
to viewer feedback [13]. Given the present research’s empha-
sis on the application of LLMs in sentiment analysis, our 
experimental focus is centered on the modality of text data.

Hartmann et al. (2019 & 2023) identify text length and 
linguistic composition as relevant determinants of sentiment 
classification accuracy, noting that longer, more comprehen-
sive documents typically lead to improved results [24, 25]. 
Sentiment analysis can be categorized into three levels of 
granularity: document, sentence, and aspect level [44]. At 
the document level, sentiment is assessed for the entire text; 
at the sentence level, it is evaluated for individual sentences; 
and at the aspect level, sentiment is determined for specific 
elements within the text, e.g., certain product features [44]. 
In line with Hartmann et al. (2019), Experiment 2 controls 
for text document lengths and other linguistic characteristics 
that signal sentiment or introduce noise [25].

In addition to data characteristics, the choice of analytical 
procedure, particularly the extent of model training, plays 
a key role in influencing classification performance [24]. 
One effective strategy to enhance performance of LLMs is 
through prompt engineering, a method involving the use of 
customized prompts to optimize model output [57]. Recent 
studies have indicated that the efficiency of LLMs varies 
with the nature of the prompts employed [8, 57, 71]. To 
assess the effects of prompt engineering, we conduct an 
evaluation using different prompting methods. In our experi-
mental setup, we differentiate between instructive prompts, 
which are concise and designed to direct the LLM with mini-
mal input, and contextual prompts, which provide a more 
detailed background to enhance model understanding and 

performance [18]. Besides prompt engineering, model fine-
tuning significantly impacts classification performance. Gen-
erally, two approaches are distinguished: in-context learning 
and fine-tuning. In-context learning, or few-shot prompting, 
involves presenting the LLM with a small set of text docu-
ments along with their classification ground truths within 
the prompt, thereby aiming to improve task performance [8]. 
Importantly, this approach does not adjust any model param-
eters. In contrast, fine-tuning updates the model parameters 
based on training data, customizing the LLM for specific 
tasks [16]. However, given the parameter size of LLMs, up 
to 70B parameters for Llama 2 [63], 175B for GPT-3.5 [8], 
and an estimated 1.8 trillion for GPT-4 [59], full parameter 
updates are often impractical and highly cost-inefficient. 
Thus, parameter-efficient fine-tuning methods, such as Low-
Rank Adoption (LoRA) of LLMs, are increasingly utilized, 
optimizing only a subset of the model’s parameters [32]. 
Fine-tuning is a complex and time-intensive process, requir-
ing substantial training data, comparable to fine-tuning of 
transfer learning models like SiEBERT, which is beyond 
the scope of this paper. Hence, we focus on evaluating the 
“off-the-shelf” applicability of LLMs in sentiment analysis 
(including few-shot prompting), with minimal adaptation 
requirements, which significantly add to their appeal to a 
broad user base.

2.4 � Explainability of Sentiment Classifications 
(Experiment 3)

Finally, explainability plays a role in choosing a sentiment 
classification method, particularly in scenarios involving 
sensitive, person-related data [67]. Methods like lexicons 
offer explainability by assigning scores to individual words, 
enabling a weighted sum that provides a rationale for the 
final sentiment classification [4]. However, this linear 
approach can struggle to capture the nonlinear intricacies of 
language. In contrast, machine learning and transfer learning 
models often deliver higher accuracy but lack explainabil-
ity given their “black-box” nature [24]. LLMs, as reasoning 
machines, have the potential to bridge this explainability 
gap by providing explanations for sentiment classification 
tasks both qualitative and quantitative, when prompted to 
do so. Huang et al. (2023) demonstrate that ChatGPT per-
forms comparably to traditional quantitative explainability 
methods, such as occlusion salience and Local Interpret-
able Model-agnostic Explanations (LIME), across various 
faithfulness metrics [33]. Given the human-like reasoning 
abilities of LLMs, the authors suggest reevaluating explain-
ability assessments and recommend an alternative qualita-
tive approach involving human subject studies [33]. Build-
ing on this, we design Experiment 3, a survey to assess the 
explainability of LLM sentiment classifications, asking 15 
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academics in the field of marketing to evaluate a total of 96 
sentiment classification explanations.

3 � Experiment 1: Binary and Three‑Class 
Sentiment Classification

3.1 � Objective

The objective of the first experiment is to empirically 
evaluate the performance of three state-of-the-art LLMs, 
i.e., GPT-3.5, GPT-4, and Llama 2, as zero-shot sentiment 
analyzers for binary and three-class sentiment classifica-
tion tasks. We evaluate all models on a balanced dataset 
with an equal amount of text documents from each class, 
resulting in a total of 3,120 unique text documents from 
16 diverse datasets for the binary classification task and 
792 documents from four datasets for the three-class task. 
The text documents cover product reviews from Amazon or 
Flipkart, user-generated comments on Twitter, movie, and 
restaurant reviews. Our comparative analysis utilizes 20 dif-
ferent datasets, among which 19 are publicly available and 
mainly originate from the meta-analytic sample derived by 
Hartmann et al. (2023) [24] (see Web Appendix Table A1 
and A2). Additionally, we use an Amazon review dataset 
from 2022 [1] to test the three LLMs on data produced post 
their last training session, addressing possible concerns 
of data contamination2 [63]. For each of the tested LLMs, 
sentiment was inferred directly without any prior explicit 
task-specific training, thus zero-shot. The model tempera-
ture was set to zero making outputs near deterministic. We 
use Google Colab notebooks to call APIs (GPT-3.5: ‘text-
davinci-003’; GPT-4: ‘gpt-4’; Llama 2: ‘llama-2-70b-chat’) 
of the cloud-deployed models, providing the respective text 
documents for review with the prompt to initiate sentiment 
classification (see Web Appendix Table A3 for prompt tem-
plates and this Github link for ready-to-use Python code) 
“Gitbub link” Link: https://​github.​com/j-​hartm​ann/​llm-​senti​
ment-​analy​sis. Figure 2 shows an overview of the methodo-
logical approach. 

We measure performance as accuracy (also known as hit 
rate), i.e., the number of correct sentiment classifications 
divided by the total number of a model’s predictions and 
compare the results with: (1) traditional transfer learning 
methods building on the empirical results from Hartmann 
et al. (2023), (2) the high-performing transfer learning mod-
els SiEBERT (binary) and a fine-tuned RoBERTa model 
(three-class), and (3) within the group of zero-shot prompted 
LLMs. We only choose transfer learning models for the com-
parison to LLMs as reference results from Hartmann et al. 
(2023) show that transfer learning methods outperform lexi-
con and rule-based systems as well as traditional machine 
learning methods in terms of accuracy by a margin more 
than 20 and 10 percentage points, respectively [24].

3.2 � Results Binary Sentiment Analysis

Table 1 presents a summary of the binary classification 
accuracy for each model across all datasets. Overall, SiE-
BERT shows the highest classification accuracy across all 
datasets with an average accuracy of nearly 96%. It surpasses 
all other traditional transfer learning models by a margin 
of at least four percentage points in 15 out of the 16 data-
sets. It is important to note that SiEBERT was specifically 
trained on a wide range of user-generated review datasets, 
which likely accounts for its high performance. Yet, when 
testing SiEBERT on the Amazon headphone review dataset 
from 2022 [1], a dataset absent from the training data of all 
assessed models, it maintained its high classification accu-
racy, underscoring its generalizability.

Among the LLMs, GPT-4 shows the strongest performance, 
recording an average accuracy of 93%, surpassing all other 
models, except for SiEBERT. Llama 2 records an average 
accuracy of 91%, surpassing GPT-3.5. GPT-3.5 achieves an 
average accuracy score of nearly 88%, closely on par with 
other traditional transfer learning models such as ULMFiT and 
BERT. Given that GPT-3.5, along with the other LLMs, was 
assessed in a zero-shot setting, this performance is still notable.

Overall, all three LLMs do not consistently outperform 
traditional transfer learning models, such as ULMFiT, 
BERT, XLNet, and RoBERTa, in sentiment classification 
of Tweets. In fact, in three out of the five Twitter datasets 
examined, a traditional transfer learning model achieved 
superior accuracy over the LLMs, suggesting that training a 

Fig. 2   Overview of the methodological process and tools used for the binary and three-class classification experiment

2  For Llama 2, the pretraining data has a cutoff of September 2022, 
some tuning data is more recent, up to July 2023 [43].

https://github.com/j-hartmann/llm-sentiment-analysis
https://github.com/j-hartmann/llm-sentiment-analysis
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fine-tuned model can pay off in less structured application 
contexts.

To explore the performance disparities of the LLMs 
in a more granular way, we visualize confusion matrices 
comparing predictions from GPT-3.5, GPT-4, and Llama 2 
versus actual values (see Fig. 3 panels A-C). Additionally, 
we report precision and recall in Fig. 3 (panel D). Preci-
sion is defined as the number of true positives in relation to 
the number of false positives plus true positives. Recall is 
defined as the number of true positives over the number of 
false negatives plus the number of true positives [45].

GPT-3.5 obtains the lowest precision score of 0.87 com-
pared to 0.96 for GPT-4 and 0.91 for Llama 2. The reduced 
precision is explained by the higher rate of false positives, 
with 14% of actual negative sentiments labeled as positives 
(see Fig. 3, panel A). This indicates that GPT-3.5 is predis-
posed to a positive bias. Conversely, GPT-4 leans slightly 
towards negativity, incorrectly labeling 9% of positive senti-
ments as negative. Llama 2 also exhibits a slight tendency of 
falsely predicting negative reviews as positive.

It is noteworthy that none of the models adhered to the 
prompted instruction of exclusively using positive or nega-
tive sentiment classifications in their responses. Each of 
the three tested LLMs occasionally predicts sentiments as 
neutral. Specifically, GPT-3.5 classifies a total of 2.7% of 
reviews as neutral compared to only 0.6% for Llama 2 and 
0.3% for GPT-4. Since we categorize neutral classifications 
as incorrect in our binary sentiment analysis setup, these 
mislabels significantly affect GPT-3.5’s accuracy score, 
making up more than 20% of its misclassifications. Beyond 

neutral classifications, Llama 2 occasionally rejects senti-
ment classification, particularly when it considers the lan-
guage offensive, a behavior observed in 1.2% of the evalu-
ated samples (see Web Appendix Table A4 for examples). 
This tendency is more noticeable with datasets comprising 
Tweets, reflecting the colloquial and sometimes offensive 
language used on Twitter.

3.3 � Results Three‑Class Sentiment Analysis

Table 2 provides an overview of the classification accuracy 
for the three-class sentiment classification experiment. 
Overall, average accuracy decreases in the multi-class 
task, compared to the binary task. GPT-4 demonstrates the 
highest classification accuracy in three out of four data-
sets, achieving superior performance over other LLMs and 
RoBERTa by a margin of at least 4.9 percentage points 
on average. GPT-3.5 and RoBERTa show comparable 
results, each recording an average accuracy of about 78%. 
In contrast to the binary task, Llama 2 shows a marginally 
lower performance of two percentage points compared to 
GPT-3.5. RoBERTa, specifically fine-tuned on a corpus 
of over 5,000 social media posts [23], exhibits the highest 
accuracy in one of the Twitter dataset (see Table 2, Twitter 
Various II). This enhanced performance can be attributed 
to its training on data similar to the tested Twitter dataset, 
underlining the advantages of model specialization. Con-
sistent with the binary classification task, there is a general 
trend towards reduced model efficacy for datasets sourced 
from Twitter. The three-class experiment underscores a 

Table 1   Binary sentiment classification accuracy for transfer learning models and LLMs building on Hartmann et al. (2023) [24]

Transfer Learning Models (fine-tuned) LLMs (zero-shot)

Model ULMFiT BERT XLNet RoBERTa SiEBERT GPT-3.5 GPT-4 Llama 2

Amazon (Various) 94.0 94.0 95.6 95.9 96.5 90.5 94.5 95.0
Amazon Titles (Various) 84.8 87.6 86.7 87.8 86.5 82.0 88.5 87.0
Yelp (Various) 96.8 95.6 97.2 97.0 98.5 96.5 97.5 98.5
IMDb (Movies I) 94.4 93.3 95.0 95.2 97.0 92.0 95.5 95.5
Twitter (Airlines I) 93.3 94.8 95.5 94.8 93.5 91.5 92.5 92.5
Rotten Tomatoes (Movies) 78.4 86.9 87.5 89.0 90.5 88.5 93.0 87.5
Twitter (Various I) 78.4 88.4 89.1 88.9 91.0 80.0 88.0 80.0
Twitter (Politics I) 80.1 87.8 85.8 89.8 96.5 86.0 93.0 92.5
Amazon (Books) 84.8 92.5 93.8 94.0 97.5 85.0 96.5 91.5
Amazon (DVDs) 83.8 90.3 90.8 91.0 100 90.5 94.5 95.0
Amazon (Electronics) 81.8 92.8 92.8 92.8 100 90.5 94.5 95.5
Amazon (Household) 84.0 89.3 94.3 93.3 99.0 93.0 95.0 94.0
IMDb (Movies II) 91.5 88.0 90.0 91.3 99.0 90.0 94.0 95.0
Twitter (Politics II) 76.4 84.4 83.9 85.2 98.0 77.5 84.0 78.5
Twitter (Consumer Goods) 91.0 92.2 94.9 94.5 96.7 80.8 95.0 82.5
Amazon (Headphones) - - - - 93.0 88.5 93.5 93.5
Average 86.2 90.5 91.5 92.0 95.8 87.7 93.1 90.9
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noteworthy aspect of LLMs: their remarkable zero-shot 
performance in sentiment analysis. However, it also high-
lights that specialized, fine-tuned transfer-learning mod-
els like RoBERTa can surpass LLMs in certain contexts. 
This finding reinforces the notion that while LLMs exhibit 
broad capabilities, targeted training can yield superior out-
comes in specific domains.

The confusion matrices and precision scores from the 
three-class experiment, as depicted in Fig. 4 (panels A-D), 
exhibit model patterns that closely mirror those observed 
in the binary classification experiment, highlighting con-
sistent tendencies across different experimental setups. 
GPT-3.5 registers the lowest precision scores for neutral 
and positive sentiments at 0.71 and 0.74, respectively. This 
aligns with the previously noted positive bias in binary 
classification. GPT-3.5 incorrectly classifies 27% of neu-
tral reviews as positive and 20% of negative reviews as 
neutral. Llama 2 displays a similar pattern, albeit less pro-
nounced, misclassifying 21% of neutral reviews as posi-
tive and 11% of negative reviews as neutral. In contrast, 
GPT-4 demonstrates a more evenly distributed error pat-
tern in its confusion matrix. It mislabels a nearly equal 
proportion (range of 10%-15%) of negative and positive 
reviews as neutral and neutral reviews as either positive or 
negative, showing a more balanced approach in sentiment 
classification.

Fig. 3   Confusion matrices for binary zero-shot sentiment classification for GPT-3.5, GPT-4, and Llama 2

Table 2   Three-class sentiment classification accuracy for the transfer 
learning model RoBERTa and LLMs

Transfer Learn-
ing (fine-tuned)

LLMs (zero-shot)

Model RoBERTa GPT-3.5 GPT-4 Llama 2

Amazon (iPhone) 73.2 85.4 88.9 87.9
Flipkart (Various) 78.3 91.9 92.4 90.9
Twitter (Airlines II) 72.7 69.2 77.8 67.7
Twitter (Various II) 86.4 60.1 71.2 56.1
Average 77.7 77.7 82.6 75.7
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3.4 � Discussion

In sum, all three tested LLMs exhibit remarkable zero-shot 
sentiment classification accuracy in binary and three-class 
settings. Our results represent a conservative estimate of 
LLMs’ potential, given that the models will likely improve 
over the next generations, and we purposefully did not 
explore advanced techniques such as model fine-tuning. The 
superior performance of GPT-4 can be partially attributed 
to its immense size—estimated 1.8 trillion parameters—in 
contrast to its precedent GPT-3.5 with 175B parameters 
and Llama 2 with 70B parameters. Interestingly, Llama 2 
performs better in the binary task and on par with GPT-3.5 
in the three-class task, despite its smaller size in terms of 
model parameters. This suggests that parameter count does 
not solely explain LLMs’ efficacy in sentiment classifica-
tion. Moreover, in contrast to ChatGPT, Llama 2 is an open-
source model, which is an additional appealing property for 
marketing researchers.

Overall, the achieved classification accuracy levels posi-
tion LLMs as promising off-the-shelf sentiment analyzers for 

a variety of business applications. The fact, that no training 
is required for highly accurate results further enhances their 
suitability for business applications by eliminating tradi-
tional costs associated with model training, maintenance, 
and fine-tuning. However, our experiment provides evidence 
that fine-tuned transfer learning models, such as SiEBERT 
and RoBERTa, frequently surpass general-purpose LLMs in 
performance, particularly in application domains for which 
they have been optimized. These specialized models offer 
substantial advantages, including reduced computational 
costs, accessibility as open-source tools and like LLMs, they 
can be easily implemented with just a few lines of code. In 
addition, it is essential to consider inherent LLM biases and 
tendencies for model choice. For instance, GPT-3.5 shows a 
high rate of false positive predictions, which could be prob-
lematic in contexts where minimizing this type of error is 
critical – such as in sentiment prediction for product quality 
innovation. Overall, GPT-4 and Llama 2 demonstrate a more 
balanced approach to sentiment classification compared to 
GPT-3.5. The noticeable differences between GPT-3.5 and 
GPT-4 are striking, particularly their contrasting sentiment 

Fig. 4   Confusion matrices for three-class zero-shot sentiment classification for GPT-3.5, GPT-4, and Llama 2



Customer Needs and Solutions            (2024) 11:3 	 Page 9 of 19      3 

polarity biases. These variances could offer valuable insights 
into approaches used for model fine-tuning. Our findings 
on accuracy, precision, and recall reinforce empirical stud-
ies that highlight substantial differences in performance 
and behavior between consecutive model generations like 
GPT-3.5 and GPT-4 [12]. Furthermore, the dataset’s ori-
gin matters. All LLMs underperformed on Twitter datasets, 
compared to datasets containing less noisy product reviews. 
This underscores the importance of understanding the data-
set characteristics when selecting the most appropriate LLM 
for a given task. We will explore this aspect as well as the 
impact of the prompting method on classification accuracy 
in the subsequent chapter.

4 � Experiment 2: Impact Analysis 
of Prompting Method and Data 
Characteristics

4.1 � Objective

The goal of the second experiment is to evaluate the impact 
of the analytical procedure (i.e., prompting method) and 
data characteristics on the sentiment classification perfor-
mance of LLMs. First, we empirically evaluate the classi-
fication accuracy of GPT-3.5, GPT-4, and Llama 2 using 
an alternative prompting method, i.e., contextual prompt-
ing (vs. instructive prompts which are used in Experiment 
1), on eight datasets. We ensure a balance between Twit-
ter and non-Twitter datasets and choose datasets that have 
demonstrated high, medium, and low accuracy levels in the 
binary and three-class experiment. This selection allows us 
to examine the impact of prompting methods across vary-
ing levels of performance. In sum, we evaluate 1,592 text 
documents. Second, we repeat the process on the same tex-
tual documents using a few-shot prompting method. This 
method involves providing six in-context examples with 
their correct classification within the prompt. This method is 

supported by the findings of Simmering (2023), which indi-
cate improved classification performance for GPT-3.5 and 
GPT-4 in aspect-based sentiment analysis tasks when pro-
vided with six in-context examples, with no significant per-
formance gain observed with more examples [61]. This com-
parative analysis aims to identify any performance variances 
between zero-shot and few-shot prompting methods. Third, 
we extract linguistic features using LIWC [6] and TextA-
nalyzer [5] to better understand the relationship between 
linguistic features and LLM performance. We extract fea-
tures including word count, the frequency of lengthy words 
(more than seven letters), the proportion of capitalized words 
(e.g., “GREAT”), netspeak (a measure of informal language 
usage), and the grade level score (an indicator of text com-
plexity) [37]. Among others, these linguistic features serve 
as independent variables for a logistic regression model with 
the prediction correctness (true vs. false) as the dependent 
variable. Additionally, this model considers various influ-
encing factors from our empirical framework as independent 
variables. Specifically, we evaluate the influence of (1) text 
origin, (2) number of classes, (3) choice of analytical pro-
cedure/prompting method, (4) sentence level vs. document 
level, and (5) data characteristics such as text length and 
complexity on LLM prediction performance. We perform 
the logistic regression on the sentiment classification results 
of in total 7,096 text documents across all experiments.

4.2 � Results for Alternative Prompting Method

Table 3 provides a summary of the contextual prompting 
study results, highlighting three key insights. First, GPT-
3.5 exhibits a notable improvement in performance across 
most datasets, both binary and three-class. This enhance-
ment is particularly pronounced in the three-class Twitter 
datasets, where the accuracy increases by over five percent-
age points. Second, GPT-4 presents a mixed outcome. While 
there is a modest improvement in the Yelp dataset (binary 
classification), with an increase in accuracy of about two 

Table 3   Contextual prompting 
vs. instructive prompting zero-
shot sentiment classification 
accuracy for LLMs (percentage 
point change in brackets)

Arrows for LLMs indicate change in accuracy for contextual (vs. instructive) prompting

Transfer Learning 
Models

LLMs (contextual prompting)

Model SiEBERT RoBERTa GPT-3.5 GPT-4 Llama 2

Binary Yelp (Various) 98.5 n.a 97.0 (+ 0.5) ↑ 99.5 (+ 2) ↑ 98.0 (-0.5) ↓
Amazon (Various) 96.5 n.a 94.5 (+ 4) ↑ 95.0 (+ 0.5) ↑ 95.0 (0) → 
Twitter (Airlines I) 93.5 n.a 91.5 (0) →  93.0 (+ 0.5) ↑ 94.0 (+ 1.5) ↑
Twitter (Politics II) 98.0 n.a 80.5 (+ 3) ↑ 79.0 (-5) ↓ 77.5 (-1) ↓

Three-class Amazon (iPhone) n.a 73.2 86.4 (+ 1) ↑ 87.4 (-1.5) ↓ 79.3 (-8.6) ↓
Flipkart (Various) n.a 78.3 91.9 (0) →  92.9 (+ 0.5) ↑ 85.9 (-5) ↓
Twitter (Airlines II) n.a 72.7 74.2 (+ 5) ↑ 80.8 (+ 3) ↑ 70.7 (+ 3) ↑
Twitter (Various II) n.a 86.4 67.7 (+ 7.6) ↑ 69.7 (-1.5) ↓ 50.5 (-5.6) ↓
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percentage points now surpassing SiEBERT, it also experi-
ences a decline in performance, notably up to five percent-
age points, in a binary dataset comprising political Tweets. 
Finally, Llama 2 also displays significant variance in its per-
formance under the contextual prompting method, similar to 
the observed trends in GPT-4. In summary, we find that the 
prompting method matters. GPT-3.5 consistently benefits 
from the contextual prompting method across different data-
sets, while GPT-4 and Llama 2 show more varied results. 
The specific prompt used can be found in the Web Appendix 
(see Web Appendix Table A3).

4.3 � Results for Few‑Shot Prompting

Table 4 provides an overview into how few-shot prompting 
impacts the sentiment classification accuracy of LLMs. For 
GPT-4, the introduction of few-shot prompting leads to an 
increase in prediction accuracy in seven out of eight data-
sets. Notably, with this method, GPT-4 surpasses SiEBERT 
in two additional datasets. GPT-3.5 shows an increase in 
prediction accuracy for five out of eight datasets. However, 
a slight decrease is observed in three datasets. The preci-
sion for binary classification tasks notably improves by four 
percentage points (see Fig. A1 in Web Appendix). Contrast-
ingly, Llama 2 experiences a reduction in accuracy across all 
datasets, with the decrease being as high as 8.6 percentage 
points in a three-class dataset containing a mix of various 
Tweets. Interestingly, Llama 2 occasionally fails to adhere 
to the prompt in the few-shot and alternative prompting 
study, either rejecting a classification due to offensive lan-
guage or not answering the classification question, leading 
to instances of hallucination. In the three-class experiment 
using an instructive prompt, Llama 2 consistently adhered 
to the task without rejecting any classification, highlight-
ing the significant influence of the prompting method on 
task adherence. (Example of a Tweet where Llama 2 did not 
adhere to the few-shot classification prompt; Tweet: “How 
to not drink at a concert”; Response:” Sure! Here are some 

tips on how to not drink at a concert: 1. Don't bring money 
for alcoholic drinks. 2. Bring a sober friend with you who 
can help keep you accountable. 3. Choose seats that are far 
away from the bar area.…”).

The few-shot results indicate no consistent pattern regard-
ing dataset origin. Specifically, there is no uniform increase 
or decrease across all Twitter datasets for any single model. 
This suggests that few-shot prompting, while on average 
enhancing prediction performance for OpenAI models, does 
not uniformly benefit all datasets. Confusion matrices and 
the specific prompts used can be found in the Web Appendix 
(see Web Appendix Fig. A1, A2 and Table A3).

4.4 � Results of Logistic Regression Analysis: Impact 
of Prompting Method and Data Characteristics

We select a set of five dummy variables and five linguistic 
features to assess the influence on prediction correctness as 
dependent variable (see Table 5 for variable descriptions). 
Specifically, we include dummy variables for the dataset ori-
gin (Twitter vs. Review), for the number of classes, few-shot 
vs. zero-shot, contextual prompt vs. instructive prompt, and 
whether the text document comprises a single or multiple 
sentences. Additionally, we include three general linguistic 
features (i.e., word count, big words, and share of capital-
ized words) as well as two features for linguistic pattern 
interpretation (i.e., grade level and netspeak). In total, we 
automatically extract all features for 7,096 text documents 
used across the previous experiments.

Before conducting the regression analysis, we visualize 
the data by plotting histograms for the independent variables 
and subsequently assessing multicollinearity using both a 
correlation matrix and Variance Inflation Factors (VIF). 
Both the correlation matrix and VIFs reveal no significant 
multicollinearity, with all VIFs remaining under 5 and no 
correlation values approaching 1 or -1 (see Web Appendix 
Fig. A3 and Table A5). Data analysis of the independent 
variables reveals a skewed distribution for the features word 

Table 4   Few-shot vs. zero-
shot sentiment classification 
accuracy for LLMs (percentage 
point change in brackets)

Arrows for LLMs indicate change in accuracy for few-shot (vs. zero-shot) classification

Transfer Learning 
Models (zero-shot)

LLMs (few-shot)

Model SiEBERT RoBERTa GPT-3.5 GPT-4 Llama 2

Binary Yelp (Various) 98.5 n.a 95.5 (-1) ↓ 99.0 (+ 1.5) ↑ 97.5 (-1) ↓
Amazon (Various) 96.5 n.a 91.0 (+ 0.5) ↑ 95.0 (+ 0.5) ↑ 94.0 (-1) ↓
Twitter (Airlines I) 93.5 n.a 89.5 (-2) ↓ 94.0 (+ 1.5) ↑ 88.5 (-4) ↓
Twitter (Politics II) 98.0 n.a 79.0 (+ 1.5) ↑ 84.0 (0) →  78.0 (-0.5) ↓

Three-class Amazon (iPhone) n.a 73.2 84.8 (-0.6) ↓ 90.4 (+ 2.5) ↑ 86.4 (-1.5) ↓
Flipkart (Various) n.a 78.3 92.4 (+ 0.5) ↑ 93.9 (+ 1.5) ↑ 86.4 (-4.5) ↓
Twitter (Airlines II) n.a 72.7 72.2 (+ 3) ↑ 78.8 (+ 1) ↑ 64.1 (-3.6) ↓
Twitter (Various II) n.a 86.4 63.1 (+ 3) ↑ 72.7 (+ 1.5) ↑ 47.5 (-8.6) ↓
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count, big words, and netspeak. We therefore apply a loga-
rithmic transformation to these variables prior to running 
the regressions (see Web Appendix Fig. A4 for histograms). 
Specifically, we estimate the following regression (1):

where P(CorrectnessModel = 1) denotes the probability of a 
correct prediction of the model, αi (i ∈ {1,… 10}) represents 
the coefficients of the independent variables. To account for 
dataset-specific fixed effects, we categorize each dataset into 
one of two primary groups: either as a ‘product review’ (13 
datasets) or as a ‘Tweet’ (seven datasets). We select text docu-
ments from the ‘product review’ category as the reference 
group for regression analysis and cluster standard errors on 
the dataset level. This categorization is designed to investigate 
the influence of dataset category on prediction accuracy, given 
the observations that Twitter datasets tend to have lower accu-
racy compared to ‘product review’ datasets. Regressions are 
run for the sentiment classifications of GPT-3.5, GPT-4, and 
Llama 2. Table 6 reports the regression results.

From the regression analysis, we highlight six primary 
insights: First, as expected, prediction accuracy declines 
when the text document originates from a Twitter dataset 
compared to a product review dataset across all LLMs. This 
effect pertaining to the text origin is highly statistically 
significant for all LLMs (p < 0.001). The odds of correctly 

(1)

logit(P
(

CorrectnessModel = 1
)

= �0 + �1(TwitterDocument)

+ �2(3Class) + �3(FewShot) + �4(ContextualPrompt)

+ �5(1Sentence)+�6log(WordCount) + �7log(BigWords + 1)

+ �8(GradeLevel) + �9log(Netspeak + 1)

+ �10(ShareofAllCapsWords)

predicting sentiment in a Twitter document are about 65% 
lower than in a consumer review. This effect may be due 
to the LLMs’ emphasis on training with high-quality, 
non-offensive data, thereby deprioritizing the frequently 
observed colloquial and misleading language prevalent on 
Twitter [27, 64]. This approach is consistent with the obser-
vation that Llama 2 faced challenges in accurately interpret-
ing sarcastic Tweets. (Example of a sarcastic Tweet that was 
falsely classified as positively by Llama 2: "@AmericanAir 
Hopefully you guys are willing to cover my lovely car rental 
and living charges…I love being here for two extra days..”).

Second, the models demonstrate a decrease in prediction 
accuracy for three-class sentiment classification tasks com-
pared to binary sentiment analysis. This effect is statistically 
significant for all models (p < 0.01 for GPT-3.5, p < 0.001 
for GPT-4 and Llama 2). The odds of correctly predicting 
sentiment in a three-class setting are approximately 54% to 
63% lower than in a binary setting, with the highest abso-
lute effect for Llama 2. This reduced performance in more 
complex classification scenarios can be attributed to the 
increased difficulty in distinguishing between three senti-
ment categories as opposed to a simpler positive/negative 
dichotomy.

Third, sentiment prediction accuracy correlates positively 
and statistically significantly with word length, as evidenced 
by the presence of ‘Big Words’, across all LLMs (p < 0.001). 
This phenomenon may be attributed to extensive and volu-
minous datasets used for LLM training, making them inher-
ently more proficient at dealing with complex and domain-
specific language. The most pronounced effect is observed 
in GPT-4, with a coefficient of 1.137, followed by Llama 2, 

Table 5   Variable overview and summary statistics

Feature Description Min Max Share / Mean SD

Twitter Document Dummy variable indicating whether the text document is a Twitter document 
(coded as 1) or a traditional product review (coded as 0)

0 1 29.6% 0.46

3-Class Dummy variable at the document level indicating whether a three-class senti-
ment classification was performed (coded as 1) or a binary (coded as 0)

0 1 33.5% 0.47

Few-Shot Dummy variable at the document level indicating whether a few-shot sentiment 
classification was performed (coded as 1) or a zero-shot (coded as 0)

0 1 22.4% 0.41

Contextual Prompt Dummy variable at the document level indicating whether a contextual prompt 
was used (coded as 1) versus an instructive prompt (coded as 0)

0 1 22.4% 0.41

1 Sentence Dummy variable indicating whether the text document comprises a single 
sentence (coded as 1) or multiple sentences (coded as 0)

0 1 35.5% 0.49

Word Count Number of words at the text document level 1 1775 70 148.15
Big Words Number of words with more than seven letters 0 100 20 14.09
Grade Level Score extracted with the TextAnalyzer [5] as a measure for text readability/

complexity (i.e., level indicates the required grade level to understand the 
text) [37]

-3.4 694.4 27 56.45

Netspeak Score extracted with the LIWC-22 dictionary indicating the degree of informal 
language used in a text document (e.g., b4, lol, haha,…) [6]

0 100 1.2 3.72

Share of All Caps Words Share of words in a text document entirely written in capitalized letters 0 1 0.04 0.098
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and aligns with expectations, given that GPT-4 was trained 
on an estimated 14 trillion tokens, compared to Llama 2 
with 2 trillion tokens [59, 63]. (Example of a movie review 
incl. domain-specific language that was correctly classified 
as negative by GPT-4 and incorrectly classified as positive 
by Llama 2: “a battle between bug-eye theatre and dead-eye 
matinee”).

Fourth, the analysis reveals that all models exhibit a 
decline in prediction accuracy when dealing with docu-
ments consisting of a single sentence compared to multiple 
sentences. This effect is highly statistically significant for 
GPT-4 and Llama 2 (p < 0.001), and marginally significant 
for GPT-3.5 (p < 0.095). These findings suggest that shorter 
texts, such as single-sentence documents, pose a greater 
challenge for sentiment prediction in LLMs. A possible 
explanation could be that shorter texts offer limited con-
textual information and words serving as sentiment signals, 
making it more difficult for the models to accurately dis-
cern sentiment. This is particularly evident in the case of 
GPT-4 (odds ratio = 0.747) and Llama 2 (odds ratio = 0.716), 
where the odds of correct prediction are significantly lower 
for single-sentence documents compared to those with 
multiple sentences. In contrast, longer documents, typically 
consisting of multiple sentences, provide more context and 
narrative, which seems to aid the models in making more 
accurate sentiment predictions. This observation aligns with 
the notion that LLMs, which are often trained on extensive 
and diverse text corpora, are better equipped to handle texts 
with richer contextual information. However, this capability 

can become particularly problematic when LLMs are tasked 
with binary classification, forcing the model into neglect-
ing textual nuances. (Example of a nuanced movie review 
that was falsely classified negatively by GPT-4: “When I 
first found the Broadway Lost Treasure Series on Amazon, 
I nearly jumped up and down in my seat. Any Broadway 
clips that I can get a hold of I definitly must get. I bought 
Broadway Lost Treasure I and Broadway Lost Treasures II 
together. I must say the performances were very good, just 
because you can't call broadway bad. The way the perfor-
mances were put together, however, was boring and gave 
off cheaply made vibes. Dont get me wrong the hosts were 
fantastic(Jerry Orbach,Angela Lansbery.etc.)some of my 
favorite people, but I wanted I little bit more background 
information on the shows and things like that…”).

Fifth, the regression analysis reveals an advantage for 
the use of contextual prompts over instructive prompts in 
sentiment prediction for GPT-3.5. The odds ratio of 1.382 
(p < 0.001) indicates a notably higher probability of accu-
rate sentiment prediction when using contextual prompts. 
However, for GPT-4 and Llama 2, this effect is statistically 
insignificant, with odds ratios of 1.02 and 0.849 respectively, 
suggesting that while contextual prompts may enhance GPT-
3.5’s performance, they do not have a similarly substantial 
impact on the other LLMs.

Lastly, the impact of ‘netspeak’ on sentiment prediction 
accuracy varies across the LLMs. Llama 2 shows a significant 
decrease in sentiment prediction accuracy with text documents 
containing ‘netspeak’, as indicated by an odds ratio of 0.852 

Table 6   Logistic regression results with correctness of sentiment prediction as dependent variable

 + p < .1; *p < .05; **p < .01, *** p < .001. Clustered standard errors on dataset level in parentheses

Correctness of sentiment prediction as dependent variable (true vs. false)

Regression Feature GPT-3.5 (odds ratios) GPT-4 (odds ratios) Llama 2 (odds ratios)

Text origin
  Twitter Document (vs. Review) 0.34*** (.27) 0.342*** (.266) 0.356*** (.16)

Number of classes
  3-Class (vs. Binary) 0.461** (.261) 0.429*** (.253) 0.369*** (.211)

Analytical procedure/prompting method
  Few-Shot (vs. Zero-Shot) 1.175* (.082) 1.161 (.119) 0.788 (.275)
  Contextual Prompt (vs. Instructive Prompt) 1.382*** (.097) 1.02 (.148) 0.849 (.287)

Document length
  1 Sentence (vs. multiple sentences) 0.859 + (.091) 0.747*** (.069) 0.716*** (.072)

Data characteristics/linguistic features
  log(Word Count) 0.893 (.137) 0.931 (.185) 1.008 (.079)
  log(Big Words) 1.082** (.03) 1.137* (.05) 1.117* (.046)
  Grade Level 0.999 (.001) 0.999 (.002) 0.998 (.001)
  log(Netspeak) 0.964 (.073) 0.888 (.121) 0.852** (.059)
  Share of All Caps Words 1.495 (.414) 0.732 (.512) 0.504 + (.366)
  Log-Likelihood -2,787 -2,208 -2,658
  N 7,096
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(p < 0.01). This outcome may be partly due to Llama 2’s train-
ing approach. Meta has specifically focused on selecting and 
weighting its training data based on the truthfulness, toxicity, 
and bias inherent in the language when training Llama 2 [63]. 
Additionally, we observed that Llama 2 partially rejected sen-
timent classifications in the binary experiment, particularly 
for text documents containing offensive language. This sug-
gests that Llama 2’s training on non-offensive data and safety 
instructions to partially reject processing offensive language 
may lead it to be more sensitive or even averse to netspeak that 
contains such elements. In contrast, GPT-3.5 and GPT-4 show 
insignificant effects in the same direction with odds ratios of 
0.964 and 0.888, respectively.

4.5 � Discussion

In interpreting these results, four key implications for both 
business applications and academic research emerge. First, 
experiment 2 highlights the critical role of the prompting 
method, particularly its notable statistically significant impact 
on GPT-3.5. Similar to the findings of other researchers [56, 
58], this variability in results, which depends on the prompts 
chosen, poses a reproducibility challenge that is particularly 
important for researchers in the field of Generative AI. Second, 
our findings indicate a potential advantage of using automated 
prompt optimization [71]. This approach could substantially 
improve the performance of LLMs, thereby enhancing the 
accuracy and reliability of insights derived for business and 
research purposes. Third, the observed decrease in accuracy 
in more complex, multi-class classification tasks indicates an 
increased need for task-specific fine-tuning for LLMs, similar 
to transfer learning models. The results indicate that the gen-
eral capabilities of LLMs may not always be able to match 
those of specialized models as the complexity of classification 
tasks increases. This is especially relevant for classification 
tasks using very specific categories such as emotions, a topic 
we discuss in more detail in the general discussion. Lastly, the 
distinct performance differences based on dataset character-
istics and origin reveal the significant influence these factors 
have on LLM accuracy. This insight is vital for both academic 
researchers and businesses, as it highlights the importance of 
selecting a suitable LLM and analytical procedure based on 
specific tasks requirements and datasets characteristics.

5 � Experiment 3: Explainability of Sentiment 
Classifications

5.1 � Objective

To explore the explainability of LLMs in sentiment classifi-
cation, we design Experiment 3: a survey involving 15 mar-
keting academics asked to assess a total of 96 classification 

explanations generated by all three LLMs across the 16 data-
sets from the binary classification experiment. Participants 
received the text document, sentiment ground truth, and 
an explanation generated by the LLM without knowledge 
of which LLM created the explanation. We assess under-
standability (“The explanation helps me understand how 
the LLM works”), level of detail (“The explanation of the 
LLM is sufficiently detailed”), and the trustworthiness (“The 
explanation lets me know how trustworthy the LLM is”) on a 
five-point Likert scale, building on the “Explanation Good-
ness Checklist” for explainable AI by Hoffmann et al. (2018) 
[29]. In total, we collect 1,440 votes, 3 * 5 votes for each of 
the 96 explanations.

5.2 � Results

The bar plots, provide a comparative overview of the mean 
scores for three questions designed to assess the capability 
of the LLMs to create useful classification explanations 
(see Fig. 5 and Web Appendix Table A6 for summary sta-
tistics). Alongside the visual representations, a Tukey test 
was employed to determine the statistical significance of 
the mean differences (see Web Appendix Table A7). From 
these analytical observations, we highlight the following 
insights:

First, Llama 2 achieved the highest mean ratings for 
explainability across all evaluated questions, closely fol-
lowed by GPT-4. The mean difference between the average 
scores for Llama 2 and GPT-4 is statistically significant 
(p < 0.05) only for the first question (“The explanation 
helps me understand how the LLM works”). In sum, the 
high scores of Llama 2 and GPT-4 across all dimensions 
confirm the general capability of LLMs to generate expla-
nations that users perceive as detailed and comprehensible. 
Second, GPT-3.5 recorded the lowest explainability scores 
across all three evaluated dimensions when compared to 
its counterparts. The difference in scores between GPT-
3.5 and the other LLMs are statistically significant across 
all questions, especially between Llama 2 and GPT-3.5 
(p < 0.001). The most substantial difference is the per-
ceived level of detail between Llama 2 and GPT-3.5 (“The 
explanation of the LLM is sufficiently detailed”) with a 
mean score of 4.2 (SE = 0.074) for Llama 2 in contrast to a 
mean score of 3.2 (SE = 0.1) for GPT-3.5 (see Web Appen-
dix Table A6). Third, trustworthiness is the dimension 
that received the lowest average scores from respondents 
for all LLMs (GPT-3.5 = 3.2 (SE = 0.073); GPT-4 = 3.4 
(SE = 0.074); Llama 2 = 3.6 (SE = 0.072)). This pattern 
indicates a general ambivalence toward the trustworthiness 
of LLM-generated explanations. In contrast, the perceived 
level of detail in explanations achieved the highest mean 
scores (GPT-3.5 = 3.2 (SE = 0.1); GPT-4 = 4 (SE = 0.077); 
Llama 2 = 4.2 (SE = 0.074)), emphasizing the overall 
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ability of LLMs to produce sufficiently detailed explana-
tions, facilitating understanding of the reasoning.

To explore the determinants of effective explanations, 
we estimate an OLS regression analysis. The dependent 
variable is the aggregated explainability score, encompass-
ing all questions across all three LLMs. The independent 
variables include mean-centered word count, its squared 
term to capture non-linear effects, LIWC summary fea-
tures (i.e., Analytical, Clout, Authentic, Tone, Words per 
Sentence, Big Words), and the count of citations, which 
encompasses direct quotations from the original text docu-
ment and quoted hashtags (see Web Appendix Table A8 
for detailed results). The analysis reveals that word count 
is a significant predictor of explainability, exhibiting an 
inverted U-shaped relationship, with the optimum explain-
ability score at 100. The inflection point suggests that 
explainability scores increase with each additional word 
until they reach 100 words before declining again. This 
pattern is attributable to the dual requirement that LLMs 
provide detailed information while keeping their expla-
nations short and concise. Additionally, citations have a 
statistically significant positive impact on explainability 
scores, which is intuitive as quotations from the original 
text document help users better connect the LLMs’ expla-
nations to subsections of the text document (Exemplary 
sentiment explanation with quotations by Llama 2: “The 
reviewer's use of enthusiastic language such as "LOVE" 
and "YUMMO" and their excitement about the food and 
atmosphere suggest a positive sentiment.”). This implies 
that LLMs that incorporate direct quotes from original 
sources in their explanation enhance the understandability 
of their explanatory working mechanisms and increase the 
perceived trustworthiness.

5.3 � Discussion

The explainability challenge of AI, traditionally perceived 
as a “black box”, is addressed by LLMs which demonstrate 
the capability to offer qualitative, human-like explanations. 
This advancement is crucial for businesses and researchers, 
as it provides a more accessible insight into AI decision-
making, especially compared to traditional machine learn-
ing and transfer learning models. It is important to note that 
while the explanations generated by LLMs are helpful, they 
do not decode the inner working mechanisms of the mod-
els’ billions of parameters. The achievement of the highest 
explainability rating by Llama 2, an open-source model, 
stands out as a significant finding in our study. Our results 
suggest open-source models could lead advancements in 
transparent and explainable AI. For researchers, advancing 
and evaluating AI performance should be complemented by 
efforts to enhance transparency and explainability of results, 
a strategy that can nurture deeper trust and broader accept-
ance in real-world applications.

6 � General Discussion

6.1 � Summary

The emergence of Generative AI is revolutionizing the 
marketing landscape through its dual role: it serves to both 
generate [9, 22, 55] and analyze content [36, 38, 41, 54, 
66]. This dual capacity makes it a flexible and dynamic tool 
that can handle a wide range of marketing tasks. Sentiment 
analysis based on natural language processing stands out 
as a prevalent use case in marketing, drawing significant 

Fig. 5   Bar plots of the survey results per survey question for GPT-
3.5, GPT-4, and Llama 2 incl. results of Tukey test for statistical 
significance of mean difference between LLMs Note: + p < 0.1; 
*p < 0.05; **p < 0.01, *** p < 0.001; Error bars indicate SE of the 

mean. Y-Axis lables:1 = strongly disagree; 2 = somewhat disagree; 
3 = Neither agree nor disagree; 4 = somewhat agree; 5 = strongly 
agree 
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attention across application contexts [2, 28, 65]. This 
research presents a comprehensive benchmark of three 
state-of-the-art LLMs, i.e., GPT-3.5, GPT-4, and Llama 
2, in sentiment analysis, benchmarking their performance 
with fine-tuned transfer-learning models. Drawing on the 
expanded empirical framework of Hartmann et al. (2023), 
we identified and evaluated critical factors that influence 
the classification accuracy of LLMs in sentiment analysis.

First, we explored the zero-shot sentiment analysis capa-
bilities of state-of-the-art LLMs on binary and three-class 
classification tasks. This study involved an analysis of over 
3,900 unique text documents sourced from 20 different 
online review datasets. Overall, we found that LLMs are on 
par or even outperform traditional transfer learning methods 
in binary and three-class sentiment analysis tasks. GPT-4 
showed the strongest performance of all tested LLMs in a 
zero-shot manner, recording an average accuracy of 93% 
(binary) and 83% (three-class), surpassing all other models, 
except for SiEBERT in the binary experiment. Interestingly, 
Llama 2 performed stronger than GPT-3.5 in the binary 
classification task with an average accuracy of about 91% 
despite its smaller size in terms of model parameters (70B 
vs. 175B). This suggests that parameter count does not solely 
explain LLMs’ performance in sentiment classification. This 
finding could further drive the open-source movement for 
LLMs, which is already gaining momentum with the release 
of powerful new models like Mixtral [34]. Upon examina-
tion of the confusion matrices, distinct behavioral patterns 
were evident among the LLMs. For instance, GPT-3.5 and 
Llama 2 showed a tendency towards positive interpretations. 
Conversely, GPT-4 demonstrated a slight bias towards nega-
tive interpretations. Surprisingly, all models occasionally 
deviated from their instructions for the binary classification 
task (“positive” vs. “negative”) and occasionally classified 
reviews as “neutral”.

Second, we evaluated how data characteristics, linguistic 
features, and analytical procedure affect LLM performance. 
All models demonstrated lower accuracy on Twitter datasets 
compared to other user-generated online product reviews, 
with LLMs particularly challenged by the colloquial and 
ambiguous language common on Twitter. Content-laden text 
documents, containing longer words and comprising multi-
sentence documents, significantly increased sentiment pre-
diction accuracy across LLMs, highlighting their proficiency 
with detailed and context-rich content. Interestingly, among 
the three LLMs, only GPT-3.5 benefited from few-shot and 
contextual prompting.

Third, we explored the explainability of sentiment classi-
fications generated by LLMs. This study assessed 96 classi-
fication explanations generated by LLMs across the 16 data-
sets from the binary classification experiment, examining 
their understandability, level of detail, and trustworthiness. 
All LLMs demonstrated the ability to generate explainable 

results. Especially Llama 2 showcased an impressive abil-
ity to provide understandable and detailed classification 
explanations, challenging the common perception of AI as 
inscrutable “black boxes” [53]. Conversely, transfer learning 
models such as SiEBERT only provide explainability when 
used in conjunction with other models, such as LIME [21].

6.2 � Implications and Contributions

Our research contributes to the evaluation of Generative AI 
in sentiment analysis, extending existing research on perfor-
mance evaluation of LLMs [36, 66]. We offer an extended 
empirical framework and a multidimensional benchmark, 
guiding and simplifying method selection for researchers 
and businesses in the age of Generative AI. Our experi-
mental design builds on a large and diverse data sample, 
accounting for data contamination and systematic investiga-
tion of influencing factors, such as dataset origin, linguis-
tic characteristics, and analytical procedure. For marketing 
practitioners, the remarkable zero-shot sentiment classifica-
tion performance achieved by all three tested LLMs under-
scores a paradigm shift where the convention of developing 
or fine-tuning models for sentiment analysis on specific and 
proprietary datasets might become less relevant with the 
proliferation of state-of-the-art LLMs. Figure 6 summarizes 
our key findings, serving as a practical guide for sentiment 
analysis method selection.

Three key caveats are critical to consider when applying 
LLMs in sentiment analysis: (1) Performance decreases with 
an increasing number of classes; (2) Data characteristics and 
analytical procedure significantly influence classification 
accuracy; (3) Factors such as reproducibility, fine-tuning 
options, and computing costs also impact method choice.

First, we observe a classification performance drop in 
LLMs when increasing the number of classes from two to 
three. Additionally, in a seven-class sentiment classification 
study on the Google Emotions Dataset [15], the accuracy 
gap between a fine-tuned transfer learning model (Emotion 
English DistilRoBERTa-base) [20] and the lowest-perform-
ing LLM (Llama 2) was 16.4 percentage points, compared 
to 8.1 percentage points in the binary experiment (SiEBERT 
vs. GPT-3.5) (see Web Appendix Table A9 for results). This 
trend suggests that as classification tasks become more 
nuanced and specific, the applications of LLMs in a zero-
shot setting may be less suitable compared to specifically 
fine-tuned transfer learning models.

Second, data characteristics, analytical procedure, 
and inherent tendencies of LLMs matter for the choice of 
method. It is essential to optimize performance by reduc-
ing the model’s tendency for certain errors, e.g., confusing 
negative for positive reviews, which might be problematic if 
the objective is the detection of social media firestorms [19].
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Finally, reproducibility of results is a key concern in 
the application of LLMs in any research context, as high-
lighted by Ollion et al. (2024) [48]. Setting the tempera-
ture parameter to zero results in model outputs that are only 
near deterministic. Differentiating model outputs under 
the same external parameter settings are particularly pro-
nounced in closed-source models, which often undergo 
model updates that can significantly impact their perfor-
mance [12]. Our observations also indicate that prompt 
adjustments can substantially influence the performance of 
models like GPT-3.5. Addressing this challenge, OpenAI 
has recently introduced an option to specify a seed param-
eter [49], aiming to provide greater control and yield mostly 
deterministic outputs. Despite this advancement, achieving 
full reproducibility with LLMs remains an elusive goal as 
of now. The variability in reproducibility is further compli-
cated by the differing approaches of LLM fine-tuning. For 
example, open-source models like Llama 2 are designed to 
be fine-tuned by users in local environments, offering greater 
flexibility. In contrast, OpenAI’s closed-source models, such 
as GPT-3.5 and GPT-4, take a more restrictive fine-tuning 
approach that requires the submission of fine-tuning data 
to OpenAI’s servers [51]. This restriction could make fine-
tuning OpenAI models impractical for any tasks involving 
proprietary or sensitive data. Moreover, an essential caveat 
to consider is the significant computational costs associ-
ated with advanced models, such as GPT-4 (e.g., output 
cost per thousand tokens of GPT-4 32 k are 30 times higher 

compared to GPT-3.5 turbo 16 K [50]). Tools such as the 
TCO Calculator [60] can help users gauge the total costs of 
different sentiment analysis options.

In summary, while LLMs present a powerful option for 
sentiment analysis, careful consideration of model selec-
tion, data characteristics, and practical constraints such as 
reproducibility and cost are essential for optimal application. 
Besides, ethical considerations should always play a crucial 
role in the selection of sentiment analysis methods. The use 
of LLMs in this area requires careful attention to data pro-
tection and consent, especially if it involves the processing 
of extensive user-generated content. This raises significant 
ethical issues in relation to the protection of personal data 
and the need to obtain informed consent. In addition, there 
is a risk that LLMs perpetuate existing biases due to their 
training on historical datasets. Robust measures are required 
to ensure fairness and objectivity to prevent outcomes that 
may treat certain groups or individuals unfairly.

6.3 � Limitations and Future Research Directions

Our research, while comprehensive, acknowledges the fol-
lowing limitations which also provide opportunities for 
future exploration: First, our study was designed to evaluate 
the off-the-shelf applicability of LLMs in sentiment analysis, 
meaning we did not fine-tune or specifically train the models 
for the tasks. It is imperative to investigate opportunities 
beyond the zero-shot and few-shot capabilities of LLMs. 

Fig. 6   Evaluation matrix for 
method selection summariz-
ing the consolidated results. 
Note: The table records average 
accuracy per feature without 
accounting for multiple interac-
tions between dataset charac-
teristics (e.g., number of classes 
and text origin). Nevertheless, 
it helps researchers to gauge 
efficacy and the relative perfor-
mance of LLMs 
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Hence, the results from our study likely represent the lower 
bound of the potential of LLMs in sentiment analysis, sug-
gesting that domain-specific training or model fine-tuning 
can yield even more accurate results. Of special interest is 
evaluating the influence of training data scale on LLMs’ sen-
timent analysis performance, especially in domains requiring 
specialized expertise, such as financial or medical advice.

Second, while our research provides insights into the per-
formance differences of LLMs in document level and sen-
tence level sentiment analysis, the area of aspect-based senti-
ment analysis warrants further investigation. Aspect-based 
sentiment analysis aims to extract specific aspects or features 
of the subject of the review (WHAT), classify the sentiment 
(HOW), and optionally explain the rationale (WHY) [52]. 
Aspect-based sentiment analysis can help firms understand 
consumer needs [62] and motivations [11]. Future research 
could compare the capabilities and examine inherent biases 
of state-of-the-art LLMs on aspect-based sentiment analy-
sis in a zero-shot and few-shot setting comparable to our 
experiment.

Finally, building on our study focusing on the data modal-
ity of text for sentiment analysis, future research should 
investigate the performance of Generative AI in different 
data modalities. The emerging fields of image-based senti-
ment analysis [69] and multimodal analysis of videos [68], 
which combine image and audio, offer a wide range of pos-
sibilities for deeper and more differentiated sentiment extrac-
tion. Additionally, the application of sentiment analysis to 
real-time data streams such as social media posts [31] and 
live-streamed comments [13] presents opportunities for lev-
eraging Generative AI in capturing immediate public senti-
ment. These areas promise to expand the scope and appli-
cability of Generative AI in sentiment analysis, pushing the 
boundaries of current methodologies and technologies.

7 � Conclusion

The emergence of Generative AI tools will have a substantial 
impact on sentiment analysis research. This paper unveils 
that LLMs not only compete with but sometimes exceed 
high-performing transfer learning models in sentiment clas-
sification accuracy, making them suitable for immediate 
business integration. Our analysis extends beyond a perfor-
mance benchmark and examines how factors like analytical 
procedure, linguistic features, and data characteristics, such 
as origin and text length, significantly influence LLM perfor-
mance. It is essential to manage the use of LLMs in research, 
considering their inherent biases, tendencies, and reproduc-
ibility challenges as well as to ensure that the results are both 
accurate and ethical. We hope our paper inspires future work 

on the transformative potential of Generative AI for market-
ing research in sentiment analysis.
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