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Abstract: To assess the meshing quality of spiral bevel gears, the static meshing characteristics are usually checked 
under different contact paths to simulate the deviation in the footprint from the design point to the heel or toe of the 
gear flank caused by the assembly error of two gear axes. However, the effect of the contact path on gear dynamics 
under lubricated conditions has not been reported. In addition, most studies regarding spiral bevel gears disregard the 
lubricated condition because of the complicated solutions of mixed elastohydrodynamic lubrication (EHL). Hence, 
an analytical friction model with a highly efficient solution, whose friction coefficient and film thickness predictions 
agree well with the results from a well-validated mixed EHL model for spiral bevel gears, is established in the 
present study to facilitate the study of the dynamics of lubricated spiral bevel gears. The obtained results reveal the 
significant effect of the contact path on the dynamic response and meshing efficiency of gear systems. Finally, a 
comparison of the numerical transmission efficiency under different contact paths with experimental measurements 
indicates good agreement. 
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1  Introduction 

Dynamics, which interrelates noise, durability, and 

vibration problems, is believed to be an important 

indicator in gear design owing to the mutual effect  

of dynamics, tribology, and fatigue problems. Mesh 

forces may increase significantly under dynamic 

conditions, and they are transmitted through the shaft 

and bearing into the gear housing, resulting in excessive 

structure vibration. Moreover, the fatigue life of the 

two interaction surfaces is significantly affected by 

the fluctuating load generated by vibration. Owing  

to mounting errors or deformations of the bearing 

supporting system, the tooth surface contact area will 

differ from the designed contact path during actual 

operations. Hence, the contact path is typically moved 

to the heel and toe of the gear flank to verify the 

static contact quality [1]. However, unlike spur gears, 

the contact geometry, kinematics, and mesh stiffness, 

believed to be important excitations for gear dynamics 

[2], are sensitive to the contact paths owing to the 

complicated spatial surface of gear flanks in spiral 

gears. Consequently, investigations into the effect of 

contact path on the dynamics and meshing efficiency 

of spiral bevel gears can provide a full assessment of 

their transmission quality. 

The dynamics of gears has been extensively 

investigated previously, particularly for parallel axis 

transmission, which focuses on various effect factors, 

such as time-variant parameters [2, 3], lubrication [4, 5],  
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Nomenclature 

V , J , H  Assembling parameters 

gr
L , 

gr
R   Axial and radial projections of initial  

     point of gear 

p
p ,

g
p   Unit vectors along pinion and gear  

     axes, respectively 

p
j ,

g
j   Unit vectors normal to 

p
p  and 

g
p ,  

     respectively 

p
t ,

g
t   Unit tangential vectors of pinion and  

     gear, respectively 

bp
R ,

bg
R   Position vectors of pinion and gear,  

     respectively 

p
n ,

g
n   Unit normal vectors of pinion and gear,  

     respectively 

minor
a ,

major
b  Unit vectors along minor and major  

     axes of contact ellipse, respectively 

zx
R ,

zy
R   Curvature radii along 

minor
a  and 

major
b , 

     respectively 

    Shaft angle (angle between 
p

p  and 
g

p ) 


p

, 
g

  Rotational angles of pinion and gear,  

     respectively  

 (g)

p p
,M p  Rotational matrix of pinion with angle  

     
p

 about (g)

p
p  

 
g g

,M p  Rotational matrix of pinion with  

     angle 
g

 about 
g

p  


d

R   Distance vector 


j

( )M   Transformation matrix 


tp

,
tg

  Angular increments of cutter for pinion  

     and gear machining, respectively 

p
q ,

g
q   Cradle rotations for pinion and gear  

     machining, respectively 

e
U ,

s
V   Entraining and sliding velocity vectors,  

     respectively 

m
( )k t   Mesh stiffness 

m
( )c t   Mesh damping 

b    Gear backlash 

m
( )e t   Kinematic transmission error 

h
p     Maximum Hertzian pressure 

t            Time 

i
x (  ,i p g ) Displacement component 


p

,
g

  Pinion and gear rotational angles during  

     meshing, respectively 

 


d
( )t    Dynamic transmission error (DTE) 

p
R ,

g
R    Contact radii of pinion and gear,  

      respectively 

m
( )F t    Dynamic mesh force 

ba
F , 

br
F    Axial and radial bearing loads,  

      respectively 

Z     Number of tapered rollers 


l
    Half-loaded area angle of bearing 


1

    Bearing contact angle 

n
k     Stiffness due to assembly of inner ring- 

      outer ring roller elements 


max

    Maximum bearing deflection in direction 

      of resultant force vector 

M , K , C , F  Mass, stiffness, damping, and force  

      matrices, respectively 

p
I ,

g
I     Rotational inertia of pinion and gear  

      about its axis, respectively 

p
m ,

g
m     Masses of pinion and gear, respectively 

p
T ,

g
T    Torques acting on pinion and gear,  

      respectively 

pf
T ,

gf
T    Friction torques of pinion and gear,  

      respectively 

f     Friction force 

v
f ,

b
f    Viscous shear friction and boundary  

      friction, respectively 


L

    Limiting shear stress of lubricant 

     Friction coefficient of dry contact 

a
W     Load shared by asperities 

a
A     Asperity contact area 

  
G G G

( )   Roughness parameter 

 
G G

( / )    Average asperity slope 

c
h     Film thickness 

     Composite root mean square roughness




 ch
   Film thickness ratio 

E     Equivalent elastic modulus,  

    
   

     

2 2

1 2

1 2

1 11 1

2E E E
 

 1 2,    Poisson’s ratio of bodies 1 and 2 

     Viscosity–pressure coefficient 

        Equivalent viscosity of lubricating oil 

G        Limiting elastic shear modulus 
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        Shear stress 

p       Pressure 

cT     Temperature 


e

    Lubricant flow entrainment angle 

pf
R ,

gf
R    Moment arms of pinion and gear,  

      respectively 

pf
T ,

gf
T    Total frictional torques of pinion and gear, 

      respectively 

     Friction coefficient 

k    k-th meshing gear pair 

e    Meshing efficiency
 

ro
F    Rolling friction force 

T
C    Thermal reduction factor 

SRR   Slide-to-roll ratio, 
e s

SRR U V  

    Temperature–viscosity coefficient 

f
K    Heat conduction coefficient 

    Average viscous shear stress 

     Shear rate of lubricant 

  
 

multi-degree of freedom (DOF) [6, 7], tooth profiles [8], 

and assembling errors [9]. Although numerous studies 

regarding gear dynamics have been published, studies 

regarding the dynamics of spiral bevel gears are 

limited owing to the complicated meshing geometry 

and kinematics. Donley et al. [10] proposed a dynamic 

hypoid gear model, in which the line-of-action and 

mesh position were assumed to be invariant. Further-

more, nonlinear dynamic behaviors of spiral bevel 

and hypoid gears have been simulated [11, 12], where 

time-variant parameters were involved. Based on the 

proposed dynamic model, the effects of the drive and 

coast sides (asymmetry of mesh stiffness nonlinearity) 

on spiral bevel and hypoid gear dynamics were 

investigated [13]. In Refs. [11–13], a torsional dynamic 

model (two-DOF) was reduced to a one-DOF model 

that disregarded the bearing support and gear flank 

friction. Furthermore, multi-DOF models of bevel 

and hypoid gear systems have been proposed [14, 15], 

and the dynamic responses to the bearing stiffness 

and torque load were investigated. To obtain more 

detailed dynamic characteristics for each meshing 

pair, a multipoint hypoid gear mesh model based 

on tooth contact analysis (TCA) was established in 

Ref. [16]. The aforementioned dynamic models were 

assumed to be dry instead of the lubricated condition 

of the meshing tooth pair. The dynamics of lubricated 

spiral bevel gears were analyzed [17] based on a 

torsional dynamic model, and the results were com-

pared with those from a one-DOF model developed 

by Ref. [11]. Mohammadpour et al. [18–21] proposed a 

multiphysics tribo-dynamic model considering mixed 

lubrication and bearing supports to investigate the 

transmission efficiency and other dynamic behaviors. 

Yavuz et al. [22] investigated the dynamic mesh force 

in the frequency domain under different backlash  

and bearing stiffnesses. The shafts and their flexibilities 

were numerically simulated using Timoshenko beam 

finite elements, but the mesh line-of-action and 

position were equivalently treated as invariant. Alves 

et al. [23] proposed a static and dynamic model    

for spiral bevel gears to investigate the tooth flank 

contact pressure under dynamic and static con-

ditions. Friction was omitted in the abovementioned 

studies [22, 23]. 

As mentioned above, most studies focused on the 

effect of nonlinear time-varying mesh parameters, 

backlash nonlinearity, load, etc. on dynamic responses, 

whereas lubricated conditions were disregarded. Only 

a few reports regarding the effect of assembly errors 

on elastohydrodynamic lubrication [24] and the effect 

of contact path on contact fatigue [25] under static 

conditions in spiral bevels have been published. The 

conclusions indicated that the contact path affects the 

lubrication characteristics and fatigue life significantly. 

However, the effects of the contact path on the 

dynamics and efficiency of a lubricated spiral bevel 

gear have not been reported. Therefore, the investi-

gation into the effect of the contact path on dynamics 

will benefit future studies pertaining to lubrication 

and fatigue life under nonlinear dynamic conditions. 

Hence, an eight-DOF dynamic model was developed 

in the present study based on a TCA model and an 

analytical friction model to simulate the nonlinear 

dynamics and meshing efficiency of spiral bevel 

gears under different meshing paths. The analytical 

friction model was demonstrated to be reasonable by 

comparing the present friction model with a previously 

published mixed elastohydrodynamic lubrication (EHL) 

model of spiral bevel gears. Finally, the meshing 

efficiency was calculated and compared with the 

numerical results.  
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2 Methodology 

2.1 Assembling parameters for different contact 

paths 

The aim of this study is to reveal the effect of contact 

path on dynamic responses; a schematic illustration 

of the contact path is shown in Fig. 1. Unlike involute 

spur gears, the contact path and surface parameters 

of spiral bevel gears are difficult to obtain analytically. 

Therefore, before modeling the dynamics of spiral 

bevel gears, a TCA model is required to determine 

the contact path and relevant contact parameters, 

such as the principal directions, principal curvatures, 

contact radii, entraining and sliding vectors, contact 

load, and static transmission error at transient meshing 

positions. The TCA model was programmed as a com-

puter package using Formula Translation (FORTRAN), 

and the methodology has been described in Refs. [26, 

27]. The derivations of tooth contact parameters are 

laborious; therefore, this study focuses on the effect of 

contact path on the dynamics and meshing efficiency  

 

Fig. 1 Schematic illustration of contact paths and initial contact 
point. 

of spiral bevel gears. Hence, the determination of the 

contact path is provided briefly below for clarity. 

To obtain the different contact paths, the gear and 

pinion were first assembled at the designed point 

(Fig. 1) using the assembling parameters [27, 28], 

which included the pinion axial, vertical offset, and 

gear axial adjustment, denoted as ΔH, ΔV, and ΔJ, 

respectively. The initial point was determined by the 

axial and radial projections 
gr

L  and 
gr

R , respectively. 

Subsequently, the mesh parameters for the different 

contact paths were computed using the TCA model. 

Figure 2 shows the contact relationship between the 

pinion and gear, in which O and O  are the intersection 

points between the pinion axis 
p

p  and gear axis 
g

p  (unit 

vector) before and after the adjustment, respectively, 

whereas points 
p

O  and 
g

O  denote the predesigned 

crossing points of the two axes. As shown in Fig. 2, 

two local coordinate systems 
p p p p p
( , , , )

O
S O i j k  and 

gO g g g g
( , , , )S O i j k  connected with the pinion and gear 

axis are defined to compute the surface parameters 

and assembling parameters. It is noteworthy that 
p

i  

and 
g

i  are along 
p

p  and 
g

p , and the direction of 
p

j  

coincides with 
g

j . The vectors in system 
pO

S  are 

expressed in system 
gO

S  to describe the vector operation. 

Subsequently, the re-expressed vectors in system 
gO

S  

are as follows: 

      
T T(g) (g) (g) (g)

bp p p p bp p p p, , , , , ,
j

R p n t M R p n t  (1) 

where 
bi

R , 
i

n , and 
i

t  (i = p, g) are the position vector, 

unit normal vector, and surface unit tangential vector 

at a transient meshing position, respectively.   is 

the two-axis angle (shaft angle) between 
p

p  and 
g

p , 

and ( )
j

M denotes the transformation matrix from 

 
Fig. 2 Contact and assembling relationship between pinion and gear. 
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system 
pO

S  to system 
gO

S . If the two points on the 

pinion and gear flank are conjugated, then the 

directions of the two surface normal vectors (g)

p
n  and 

g
n  coincide with each other, namely 

 (g)

g p
n n                 (2) 

It is assumed that Eq. (2) is satisfied when normal 

vectors (g)

p
n  and 

g
n  rotate about (g)

p
p  and 

g
p  with 

angle 
p

 and 
g

 [28], respectively.  

In addition, the vectors in system 
gO

S  will be updated 

owing to the rotation angles of the pinion and gear, 

which are expressed as 

        
T T(g) (g) (g) (g)( ) ( ) ( )

bp p p p p bp p p, , , , ,R n t M p R n t    (3) 

       
T T

( ) ( ) ( )
bg g g g g bg g g, , , , ,R n t M p R n t     (4) 

where  (g)

p p
,M p  is the rotational transform matrix  

of the pinion with respect to vector (g)

p
p  with angle  


p

; similarly,  
g g

,M p  represents the rotational  

transform matrix of the gear. 

Furthermore, the conjugated points must satisfy 

the conjugation theory of a space curved surface as 

follows [27]:  

 ( ) ( )

g p
n n ,    ( ) ( )

g s p s
= 0n V n V         (5) 

where 
s

V  is the relative sliding velocity of two 

conjugated surfaces. 

When the initial running position (designed point) 

is determined, the mating gear and pinion are 

assembled in the target position through adjustments 

H , J , and V , as depicted in Fig. 1. The adjustments 

can be computed as follows [25, 27]: 

            (g) (g)( ) ( )

d bg bp p p g g
 = H V JR R R p p p p  (6) 

If H , J , and V  are calculated, the pinion  

and gear can be assembled at the expected contact 

point based on the corresponding adjustment values. 

Generally, H  and V  are sufficient for mating the 

pinion and gear on the designed point, i.e., J  can be 

set as zero.  

After the pinion and gear are assembled, the contact 

parameters can be obtained using the TCA model [25]  

under different contact paths in a mesh cycle. In fact, 

the contact parameters are dependent on the machining 

settings during the machining process, particularly the 

relative kinematics between the cutter and gear blank 

[26]. Relevant descriptions of the contact geometries 

and surface parameters are available in a previous 

study [25].  

2.2 Dynamic model  

The geared system adopted in the present study 

comprised a spiral bevel gear pair and tapered roller 

bearings, as illustrated in Fig. 3. If the flexibility of 

the shaft is considered, then a finite element method 

(FEM) can generally be used to model the gear shafts 

[22]. It is well known that the FEM is time consuming. 

In fact, the bending effect of a shaft on the system 

dynamics is limited, as indicated experimentally (Fujii 

et al. [29]) and theoretically (Gosselin [30]) for a similar 

dynamic system. Hence, the deformation of the shaft 

was not considered in the present study. A three- 

dimensional (3D) dynamic model under different 

contact paths in the spiral bevel gears is illustrated in 

Fig. 4. The transmission model of the pinion and gear 

was discretized in terms of the time-varying mesh 

stiffness 
m

( )k t , mesh damping 
m

( )c t , gear backlash 

2b, and kinematic transmission error 
m

( )e t  along the 

line-of-action direction. As shown in Fig. 4, the 

translational displacements, which can be defined 

as  ( , , , )
i i i i i

x y zx , were considered; furthermore, 

the subscript  ,i p g  refers to the pinion and gear, 

respectively. It is noteworthy that the dynamic 

model is described in the global coordinate system 

( , , , )
O

S O x y z ; 
i

x , 
i

y , and 
i

z  are the displacement 

 

Fig. 3 Schematic illustration of spiral bevel gear train. 
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Fig. 4 Dynamic mesh model. 

components along the x-, y-, and z-directions, respec-

tively; 
p

 and 
g

 are the pinion and gear rotational 

angles during the meshing process, respectively. 

The dynamic transmission error (DTE) is defined as 

 
 





     

  

   T
( )

d p p g g p p p p

T
( )
g g g g m

( ) d d , ,

, , ( )

t R t R t x y z

x y z e t

n

n
    

(7)
 

where 
p

R  and 
g

R  are the contact radii. Owing to the 

change in the contact path, the contact radii are variant 

and can be computed as follows:  

    (g)( ) ( )

p p p bp
R n p R               (8) 

    (g)( ) ( )

g g g bg
R n p R               (9) 

It is noteworthy that  T
p p p( , , )x y yn  and 

g g
( , ,x yn  

T
g )y  denote nonlinear displacements along the 

line-of-action due to the lateral and axial motions   

of the pinion and gear axis, respectively. Using the 

backlash nonlinear, the dynamic mesh force 
m

F  can 

be expressed as 

    
m m n d m d( ) ( ) ( ) ( )F t k t f t c t         (10) 

where the nonlinear displacement function  
n d

( )f t  

is expressed as  

 
 

 
 

 
 
   

d d

n d d

d d

( ) , ( )

( ) 0, ( )

( ) , ( )

t b t b

f t t b

t b t b

      (11) 

In Eq. (10), 
m

( )k t  is the mesh stiffness that can be 

calculated using the loaded tooth contact analysis 

(LTCA) model. LTCA is typically developed based on 

a finite element (FE) model or FE-based models [31, 32]. 

However, the FE model is extremely time consuming 

[33]. In this study, an efficient LTCA model proposed 

by Sheveleva et al. [34] was adopted, and detailed 

explanations of this model are available in Ref. [34].  

Displacements 
i

x , 
i

y , and 
i

z  (  ,i p g ) are axial 

and lateral motions that correspond to the deflections 

of the supporting bearings. The tapered roller bearing 

is shown in Fig. 5. The method for calculating the load 

and stiffness calculation is mature [35]. For conciseness, 

only a brief introduction of the bearing load is presented 

herein. The bearing loads caused by the axial and 

radial displacements are expressed in the integral 

form as follows [35]:  









  


   






       
 

       
 





l

l

l

l

ba n max 1

br n max 1

1 cos
sin 1 d

2π 2

1 cos
cos 1 cos d

2π 2

n
n

n
n

Z
F k

Z
F k

   

(12) 

where n is a constant, i.e., n = 10/9 for a line contact;  

Z is the number of tapered rollers; 
n

k  is the nonlinear 

stiffness due to the assembly of the inner ring, outer 

ring, and roller elements, and it is related to the material 

properties and bearing geometry;    max 1d sinx  

1d cosr  represents the maximum bearing deflection 

in the direction of the resultant force vector; 
l
 is the 

half-loaded area angle; 
1

 denotes the bearing contact 

angle. When the bearing load is attained, the bearing 

supporting stiffness is calculated. 

 

Fig. 5 Schematic illustration of tapered roller bearing. 
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Methods to calculate the gear mesh and bearing 

forces have been developed; therefore, the differential 

equation governing the dynamics of the spiral bevel 

gear system is expressed as 

   ( ) ( ) ( ) ( )t t t tMx Cx Kx F         (13) 

where  

 
p g p p p g g g

( , , , , , , , )x y z x y zx       (14) 


p g p p p g g g

diag( , , , , , , , )I I m m m m m mM   (15) 

where 
p

I  and 
g

I  denote the rotational inertia of the 

pinion and gear about its axis, respectively; 
p

m  and 

g
m  are the masses of the pinion and gear, respectively. 

The stiffness matrix K  includes the mesh stiffness and 

bearing stiffness. The damping matrix C  is expressed 

as  2 mC K , where   is the damping ratio, 

which can be obtained from Refs. [17, 18]. F  is the 

force vector that includes external excitations and 

internal forces. The external excitation force is the 

torque fluctuation, and the internal excitation force is 

a result of the time-varying spatial vector, transmission 

error, backlash, and friction torque [17]. 

Matrices K  and C , and vector F  will not be 

expanded comprehensively herein for brevity, as they 

have been derived previously [36]. It is noteworthy 

that   
p g

0R R  was assumed in Refs. [18, 21]; 

subsequently, the dynamic model was reduced as a 

seven-DOF system. However, the rate of change of gear 

teeth contact radii may result in more complicated 

dynamic responses, such as severe tooth separations, 

particularly at higher speeds [17]. Hence, the rate 

of change of the contact radii was considered in the 

present study. To improve the computational efficiency 

when using Eq. (13), the normalization was performed 

in this study as follows:  


i i

X x b , 
i i

Y y b , 
i i

Z z b ,  ,i p g ;  nT t  

(16) 

where 
n

 is the reference frequency, which is often 

selected as the resonant frequency. Based on Eq. (16), 

the equation of motion is rewritten as 

       ( ) ( ) ( ) ( )t t t tX CX KX F           (17) 

where 

   


   


   


 

 


 




 

  





 



 















1 p n 2 g n 3 p 4 p

n

5 p 6 g 7 g 8 g

1 p n 2 n 3 p 4 p2
n

5 p 6 g 7 g 8 g

1 p 2 g 3 p 4 p2
n

T

5 p 6 g 7 g 8 g

T

p g p p p g g g

1

1

, , , ,
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F
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In Eq. (18), 
i

C , 
i

K , and 
i

F  (i = 1, 8) are the 

corresponding elements in matrices C , K , and F , 

respectively. Subsequently, Eq. (17) can be solved 

using the Runge–Kutta method. 

2.3 Gear friction model 

The excitation in the torsional direction comprises 

the applied torques 
p

T  and 
g

T  as well as the friction 

torques 
pf

T  and 
gf

T  of the pinion and gear owing to 

gear flank friction, respectively. When the film in the 

conjugated gear flank is thin, mixed lubrication occurs, 

and the mesh load is supported by asperity contact 

and a film simultaneously. The authors have previously 

investigated the friction characteristics of spiral bevel 

gears under different contact paths [25] using a 

mixed EHL model that can accommodate 3D surface 

roughness. However, the computations of the governing 

equation of the mixed EHL model are time consuming. 

To reduce the solving burden, the friction coefficient 

was predicted using an analytical method, and it will 

be compared to the results from the mixed EHL model 

[25] in later discussions to demonstrate the feasibility 

of the proposed analytical friction model. 

A mixed lubrication condition was considered. The 

friction force f action on the gear flank comprised 

viscous shear friction 
v

f  and boundary friction
b

f , 

expressed as follows: 

 
v b

f f f                (19) 

To calculate the boundary friction 
b

f , a Gaussian 

asperity contact model [18, 36] was used in the present 

study. The boundary friction force can be calculated 

using the boundary friction coefficient [25, 36]: 
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
b a

f W                  (20) 

where   denotes the coefficient of dry or boundary 

contact, generally assumed to be constant [25, 36]. In 

this case,   was set to 0.13. According to Ref. [37], the 

load shared by asperities 
a

W  and the asperity contact 

area 
a

A  can be expressed as 


   


 2 G

a G G G 2 5

G

16 2
π ( ) ( )

15
W A E F       (21) 

    2 2
a G G G 2π ( ) ( )A A F            (22) 

As suggested by Greenwood and Tripp [37], the 

roughness parameter   
G G G

( )  should range from 0.03 

to 0.05, whereas the average asperity slope  
G G

( )  

should range from 0.0001 to 0.01. The statistical func-

tions 2 5 ( )F  and 2 ( )F  are described as follows [37]: 

   

 

5 4 3
2 5

2

( ) = 0.00358 + 0.04975 0.27498

+ 0.7615 1.06924 + 0.6– 2

–

165

F

   (23) 

   

 

 



5 4 3
2

2

( ) = 0.00195 + 0.029180 0.17501

+ 0.52742 0.80423 + 0.500

F

  (24) 

where 


 ch
 is the film thickness ratio,   is the  

composite root mean square roughness, and 
c

h  is 

the film thickness. The 
c

h  was calculated using an 

analytical film thickness formula for elliptical point 

contacts considering the oblique entraining angle [38, 

39], which was originally obtained under light load 

conditions [38]. However, Wang et al. [40] and Jalali- 

Vahid et al. [41] discovered that the curve-fitting 

formula by Chittenden et al. [38] can yield reasonable 

predictions of the film thickness compared with 

numerical results under a heavy-load operating 

environment with arbitrary entrainment. The curve- 

fitting formula is expressed as follows:  



  
          
     

2

3
0.68 0.49 0.073 s

c e

e

4.31 1 exp 1.23
R

h R U G W
R

 (25) 

where the dimensional parameters are 




m

2

e

π

2

F
W

E R
, 





0 e

e

π

4
U

E R

U
,  

2

π
G E      (26) 

In the Eq. (26), E  is the material modulus,   is the 

viscosity–pressure coefficient, and 
0

 is the viscosity 

of the lubricant. 
e

R  and 
s

R  are the effective curvature 

radii, which are defined as  

 
 

2 2

e e

e

cos sin1

zy zx
R R R

,  
 

 
2 2

e e

s

cos sin1

zx zy
R R R

  (27) 

where 
e

 denotes the lubricant flow entrainment  

angle;      
e e minor e minor

arc cos U a U a ; 
zx

R  and  

zy
R  are the curvature radii along the minor axis 

minor
a   

and major axis 
major

b  of the contact ellipse, respectively; 

similarly, these parameters were obtained using the 

TCA model. The direction of friction was determined 

by the sliding vector 
s

V . Hence, the sliding velocity 

vector 
s

V  and the entraining vector 
e

U  are expressed 

as follows:  

         
s p p bp g g bg p g

( ) ( )V p R p R x x     (28) 

        
   

e p p bp g g bg p g

1
( ) ( )

2
U p R p R x x   (29)  

For viscous stress  , a viscoelastic non-Newtonian 

fluid model (Bair and Winer [42]) can be used as 

follows:  

 
 

 
  

 

 L

L

= ln 1
G

           (30) 

where the lubricant viscosity   is assumed to be a 

function of pressure, and a typical relationship is 
  pe  [25], which has been justified to be suitable 

experimentally by He et al. [43] for computing the 

shear force in a wide range of loads. The limiting shear 

elastic modulus G  and the limiting shear stress 


L

 were calculated as a function of temperature and 

contact pressure, expressed as follows [44]:  

 






  



8

c c

L c

( , ) 1.2 2.52 0.024 10

( , ) 0.25

G p T p T

p T G
     (31) 

The viscous shear stress in the contact zone is 

related to the contact pressure. In the present study, 

contact pressure was discretized using a Hertzian 

contact model [39], which has been demonstrated as a 

reasonable assumption for spiral bevel gears [45]. 

Once the central film thickness and sliding velocity 
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vector are provided, the shear rate of the lubricant at 

the center of the mesh can be computed. The shear rate 

can be expressed as a linear relationship, as widely 

used in Refs. [39, 44], which can be expressed as  

  s

c
h

V
                 (32) 

Solving Eq. (30), the average viscous shear stress, 

 , can be obtained by averaging the local shear in 

the elliptical contact zone. Subsequently, the viscous 

friction is obtained as follows: 

  
v a

f A A               (33) 

Before calculating the frictional torque, the moment 

arms 
pf

R  and 
gf

R  applied to the pinion and gear must 

be computed. The sign of friction is determined by the 

direction of the sliding velocity. The friction torque 

may assist or resist the motion of the pinion and gear. 

Hence, it is necessary to compute the moment 

arms 
pf

R  and 
gf

R  while considering the sign of the 

relative sliding velocity, as follows: 

 

 

 
 








bp p s

pf

s

bg g s

gf

s

R

R

R p V

V

R p V

V

            (34) 

Subsequently, the total frictional torques 
pf

T  and 

gf
T  are expressed as 













 
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


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pf pf m
1

( ) ( ) ( )

gf gf m
1

N
k k k

k

N
k k k

k

T R F

T R F

            (35) 

where  1, ,k N  is the k-th meshing gear pair that  

is determined using the TCA model. The friction 

coefficient  ( )k  for each conjugated gear pair k is com-

puted using Eq. (19). 

Based on the friction model, the instantaneous 

efficiency of the spiral bevel gear can be estimated as 

  


 
      

  
 

( ) ( ) ( ) ( ) ( )

e m s ro e
1 p p

1
1 2 100%

N
k k k k k

k

F F
T

V U    

(36) 

It is noteworthy that the rolling friction loss is con-

sidered, and the rolling friction force roF  is calculated 

as [46, 47] 

 


   
         

0.658 0.0126

0 e eT m
ro

cos( )4.318
x

zx zx

C R F
F

R E R

U
 (37) 

The thermal reduction factor 
T

C  is defined as   

[45, 46] 

 
 




 

0.42

h s

T 0.83 0.64

s

1 13.2

1 0.213 1 2.23

p E L
C

SRR L
       (38) 

where 
s e

SRR V U  represents the slide-to-roll  

ratio; 
h

p  is the maximum Hertzian contact pressure;  

  
2

s 0 e f
L KU ;   and 

f
K  are the temperature–  

viscosity and heat conduction coefficients of the 

lubricant, respectively. 

3 Results and discussion 

3.1 Numerical result analysis 

The parameters of the spiral bevel gears and assembled 

bearings are listed in Table 1. Additionally, three 

different contact paths are depicted in Fig. 1. The 

width of the gear flank is 
w

B , and design points 1, 2, 

and 3 are located at the pitch cone; their coordinates 

(
gr

L ,
gr

R ) are (40.01 mm, 117.43 mm), (36.54 mm, 

107.25 mm), and (33.08 mm, 97.08 mm), respectively. 

The contact paths through points 1, 2, and 3 are 

referred to as the heel, middle, and toe contacts. The 

input torque acting on the pinion was set as 200 N·m. 

The flowchart of the methodology of the dynamics 

of a spiral bevel gear under different contact paths 

is summarized in Fig. 6. As shown in Fig. 6, the TCA 

analysis involves complicated numerical processes for 

attaining the assembling and meshing parameters 

under different contact paths.  

The three types of tooth contact trajectories are 

plotted in Fig. 7, and the corresponding assembling 

adjustments, obtained using the methods described 

in Section 2.1, are listed in Table 2. Under different 

contact paths, the relevant parameters for the dynamic 

model were calculated using the TCA model. Figure 8 

shows the variations in the meshing stiffness and  
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Table 1 Gear pair and bearing parameters. 

Gear parameter Pinion (mm) Gear (mm)

Number of teeth 15 44 

Module (mm) 5.8 

Tooth width (mm) 43 

Average pressure angle (°) 20 

Mean spiral angle (°) 30 

Shaft angle (°) 90 

Face angle (°) 22.17 72.83 

Pitch angle (°) 18.82 71.18 

Root angle (°) 17.17 67.84 

Outside diameter (mm) 100.08 257.08 

Hand of spiral Left Right 

Mass (kg) 1.40 6.20 

Inertia (kg·m2) 1.23 × 10–3 6.23 × 10–2

Backlash (μm) 75 

Tapered roller bearing 

Number of tapered roller elements, Z 
13 

Bearing contact angle, 1  (°) 15 

Effective stiffness of inner  
ring-rolling-outer ring, nk  (N·m–1) 4 × 108 

 

Fig. 6 Flowchart of methodology of dynamics and efficiency of 
spiral bevel gear. 

static transmission error (kinematic error) from the 

meshing-in to the meshing-out point. It is clear that 

the mesh stiffness 
m

( )k t  was relatively large for the 

heel contact, and the stiffness was affected by the 

contact ratio. The static transmission error 
m

( )e t  

depended on the microgeometry and manufacturing, 

and it appeared as a sinusoidal-like form, as shown 

in Fig. 8. The transmission error was significant at the 

toe contact. Figure 9 summarizes the pinion and gear 

contact radii, 
p

R  and 
g

R . The results show that the 

variation in the contact radii was limited. Therefore, 

the assumptions of constant contact radii and invariant 

rate of change of the contact radii can be reasonable 

at low speeds. Figure 10 shows the curvature radii 

along the minor and major axes of the contact ellipse, 

which are related to friction calculations. The frictional 

moment arms of the pinion and gear are shown in 

Fig. 11, and it is clear that the sign of the arms changed 

at design points 1, 2, and 3. To incorporate these 

time-variant parameters into a dynamic model, Fourier 

series functions with respect to the pinion rotational 

angle were applied in the present study to simulate 

the periodical parameters [17] during the meshing of 

spiral bevel gears. 

The gear materials, lubricant, and roughness 

parameters for the present simulations were based on 

those in Ref. [25]. Figure 12 presents the maximum 

and minimum amplitudes of the DTE during different 

speeds for the heel, middle, and toe contacts. During 

the speed sweep, the critical resonance regions occurred 

at approximately 10,400 rpm for the toe and middle 

contacts and 11,000 rpm for the heel contact. In the 

resonance region, the amplitudes of the DTE of the 

middle and heel contacts fluctuated in a range larger   

 

Fig. 7 Three contact paths and contact ellipses. 

Table 2 V  and H  values for different contact paths (mm). 

Contact path Toe contact Middle contact Heel contact

V  1.084 0.0248 –1.943 

H  –0.113 0.155 1.194 
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Fig. 8 Mesh stiffness and kinematic error in mesh cycle for different contact paths. 

 

Fig. 9 Contact radii of pinion and gear for mesh cycle. 

 

Fig. 10 Curvature radii along minor and major axis of contact ellipse in mesh cycle. 

 

Fig. 11 Frictional moment arm of pinion and gear during engaging cycle. 
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than that of the toe contact. Except for the resonance, 

the toe contact exhibited a large DTE. A clear jump 

phenomenon was observed, as was discovered in 

Refs. [11, 18], particularly for middle and heel contacts. 

The time histories of the dynamic transmission error 

for the toe, middle, and heel contacts under the critical 

resonance speed are plotted in Fig. 13, depicting that 

the contact paths primarily affected the values of the 

minimum DTE instead of the maximum DTE at the 

resonance regions. 

The dynamic mesh force amplitudes at different 

speeds are illustrated in Fig. 14. The responses of the 

dynamic mesh force with respect to the pinion speed 

were similar to the dynamic transmission error. In 

the vicinity of resonance, the minimum force became 

zero, indicating the occurrence of teeth separation, 

resulting in contact loss. In addition, in the frequency 

region, the heel contact occupied a wider speed range, 

where separation occurred, compared with the case 

of middle and toe contacts. The periods of responses 

of the dynamic mesh force and its corresponding 

maximum Hertzian contact pressure are summarized 

in Figs. 15 and 16. As shown in Fig. 15, the dynamic 

mesh force of the heel contact was the greatest, 

 

Fig. 12 Maximum and minimum DTE amplitude during pinion 
speed sweep. 

 
Fig. 13 Time histories of DTE at resonant speed. 

 

Fig. 14 Maximum and minimum mesh force amplitudes during 
pinion speed sweep. 

 

Fig. 15 Time histories of dynamic mesh force at resonances. 

 

Fig. 16 Time histories of maximum Hertzian pressure at 
resonances. 

whereas the force was the minimum for the toe 

contact. However, as shown in Fig. 16, the maximum 

Hertzian contact pressure 
h

p  was high for the toe 

contact compared with those of the heel and middle 

contacts, although the meshing force was relatively 

low for the toe contact. This was because the surface 

geometries were different under different contact paths, 

as indicated in Fig. 10 by the curvature radii 
zx

R  and 

zy
R  along the minor and major axes of the contact 

ellipse, respectively. The maximum Hertzian pressures 

for the toe, middle, and heel contacts at resonance 
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were 3.84, 3.18, and 2.64 GPa, respectively. The 

octahedral stress distributions were calculated under 

the maximum Hertzian pressures. The Hertzian contact 

pressure and octahedral stress contours are shown in 

Fig. 17. The maximum octahedral stresses were 1.76, 

2.27, and 2.44 GPa under the heel, middle, and toe 

contacts, respectively. Despite the relatively small 

contact force for the toe contact, as shown in Fig. 15, 

conspicuous surface stress concentrations were 

observed owing to intermittent asperity contacts, which 

directly caused premature surface micropitting [48, 49]. 

The stress solution was obtained from a mixed EHL 

model and an octahedral stress equation, which have 

been described in our previous study [25]. For brevity, 

the formulae of the mixed EHL model and stress 

are omitted herein, and readers can refer to Ref. [25] 

for details. Additionally, the higher Hertzian contact 

pressure generated larger stress distributions and 

stress-affected volumes, which dominated the contact 

fatigue life [25]. 

The radial and axial displacements of the pinion 

and gear under different contact paths during a speed 

sweep are shown in Figs. 18 and 19, respectively. For 

the pinion, the radial displacement was the resultant 

displacement of 
p

x  and 
p

y , and the axial displacement 

was 
p

z . For the gear, 
g

y  and 
g

z  represent the radial 

displacement, and 
g

x represents the axial displacement. 

The radial and axial displacements of the pinion 

exhibited a trend similar to that of the dynamic 

transmission error. In a wide speed range, the amplitude 

of the radial displacement response of the pinion was 

greater than that of the gear. However, for the toe 

contact of the gear, a significant discontinuity in radial 

displacement was discovered at 8,800 r/min, and the 

amplitude was approximately 100 μm, which was much 

larger than the radial displacement of the pinion. In 

addition, the tendency of the gear axial displacement 

with respect to speed differed from that of the pinion, 

as shown in Fig. 19. Compared with the middle 

and heel contacts, the axial displacement amplitude 

of the toe contact fluctuated in a wide range, and 

the maximum displacement was large. Analyses of 

Figs. 12, 14, 18, and 19 show that the responses of 

the mesh force and DTE were similar to those of the 

axial and radial displacements of the pinion. It can be 

concluded that the dynamic mesh force and dynamic 

transmission error under different contact paths were 

primarily affected by the pinion displacements. In 

addition, the vibration of the gear was severe under 

the toe contact path. 

The lateral and axial displacements of the shaft 

resulted in structural excitations that transmitted   

to the differential housing through bearings. A 

case study of bearings A nd C was performed, and 

the variation in the transmitted force through the 

supporting bearings in the axial and lateral directions 

are depicted in Figs. 20 and 21, respectively. For 

bearing A, the results were generally similar to the 

trends of the DTE and dynamic mesh force variation. 

For bearing C, the axial and radial bearing forces under 

toe contact were extremely high at approximately 

8,800 r/min, consistent with the variation in the gear 

lateral displacement, as depicted in Fig. 18. Furthermore, 

it was discovered that the bearing force under the 

toe contact was greater than those under the middle  

and heel contacts apart from the resonance regions. 

Additionally, it was observed that the axial bearing 

force was much lower than the lateral bearing force, 

particularly in the resonance region.  

The meshing efficiency of spiral bevel gears is related 

to the friction power loss; therefore, an accurate friction 

model is required for predicting the instantaneous 

 

Fig. 17 Contact stress distributions under maximum Hertzian pressure for different contact paths. 
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Fig. 18 Response of radial displacement of pinion and gear under 
different contact paths. 

 

Fig. 19 Response of axial displacement of pinion and gear under 
different contact paths. 

meshing efficiency. Only a few studies have focused 

on friction in spiral bevel or hypoid gears, such as 

those from Xu and Kahraman [46], Kolivand at al. [47], 

and Paouris et al. [39]. An analytical method of the 

friction model was used in Refs. [18, 19, 39]; however, 

it has not been validated for the application of spiral 

bevel or hypoid gears. Xu et al. [46, 47] investigated 

the efficiency of hypoid gears, whereas the contact 

was assumed to be a line contact. Xu and Kahraman 

[46] proposed a fitting formula for the friction 

coefficient based on a significant amount of mixed 

EHL (line-contact model) analyses; it was expressed 

as a function of the maximum Hertzian contact 

pressure 
h

p , slid-to-roll ratio SRR, entraining velocity  

 

Fig. 20 Maximum and minimum radial and axial bearing forces 
(bearing A) during pinion speed sweep. 

 

Fig. 21 Maximum and minimum lateral and axial bearing forces 
(bearing C) during pinion speed sweep. 

e
U , viscosity of lubricant 

0
, contact geometry 

zx
R , 

and surface roughness  , i.e.,  
h 0 s

( , , ,| |,f SRR p V  


e

| |, , )
zx

RU . To indicate the effect of the line-contact 

assumption on friction predictions, the results obtained 

using the method from Xu and Kahraman [46] were 

compared to those obtained from the mixed EHL 

model of spiral bevel gears [25]. The reliability of the 

mixed EHL model applied in spiral bevel gears was 

validated in Ref. [50]. In addition, the predictions of 

the present analytical friction model were compared 

with the results from the mixed EHL model. The 

friction coefficient predictions from different friction 

models under different contact paths are plotted in 

Fig. 22. It is noteworthy that the applied rotational 



Friction 10(2): 247–267 (2022) 261 

www.Springer.com/journal/40544 | Friction 
 

speed and torque of the pinion were 3,000 r/min and 

190 N·m, respectively. It was observed that the friction 

coefficient from the mixed EHL model [25] first 

increased and subsequently decreased, reaching the 

maximum at the pitch cone. Similar results have been 

reported in Refs. [51, 52], where a relatively realistic 

lubrication model (the entrainment angle was con-

sidered) of a spiral bevel gear was employed. The 

friction coefficient of the toe contact was relatively 

high compared with those of the middle and heel 

contacts. As shown in Fig. 22, the friction model with 

a line-contact assumption proposed by Xu and 

Kahraman [46] indicated a relatively large prediction 

error around the pitch cone owing to the negligence 

of the entrainment angle. This indicates that the 

simplification of the line contact was reasonable for 

the friction analysis of spiral bevel gears apart from 

the neighboring pitch cone. The friction coefficient of 

the present analytical model was consistent with the 

results of the mixed EHL model for the toe, middle, and 

heel contacts. To further demonstrate the analytical 

model, the center film thickness was analyzed, as 

shown in Fig. 23. It was clear that the film thickness 

from the analytical model agreed well with the mixed 

EHL predictions. The static meshing efficiency achieved  

 

Fig. 22 Variations in friction coefficient obtained from different 
models. 

by the proposed model for the toe, middle, and heel 

contacts is plotted in Fig. 24. The maximum efficiency 

was reached in the vicinity of the pitch cone where 

the sliding velocity was the minimum [25]. 

Once the friction model was developed, the 

instantaneous meshing efficiency can be analyzed 

using the tribo-dynamic model. Figure 25 shows the 

averaged meshing efficiency over a wide speed 

 
Fig. 23 Variation in film thickness in mesh cycle under different 
contact paths. 

 
Fig. 24 Predictions of meshing efficiency during mesh cycle 
under static condition. 

 

Fig. 25 Dynamic meshing efficiency during pinion speed sweep. 
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range. It was observed that the efficiency increased 

with the pinion speed when the pinion speed was less 

than 6,000 rpm. In the resonance regions, the efficiency 

fluctuated significantly owing to the tooth separations, 

thereby resulting in the disappearance of friction loss. 

Furthermore, it was evident that the efficiency of the 

toe contact was higher than those of the middle and 

heel contacts. Figure 26 shows the history of the 

meshing efficiency and the dynamic friction coefficient 

in a mesh cycle for the case where the rotational speed 

and torque of the pinion were 3,000 r/min and 190 N·m, 

respectively. Compared with Fig. 24, the dynamic 

meshing efficiency was lower than the static efficiency, 

as expected, owing to the power loss in vibration of 

the shaft in the spiral bevel gears along the lateral and 

axial directions. Although the difference in the friction 

coefficient was limited for different contact paths, the 

minimum instantaneous efficiencies were 89.1%, 89.5%, 

and 91.6% for the heel, middle, and toe contacts, 

respectively. This was because the sliding velocity 

was relatively high for the heel contact [25] owing to 

the large rotational radii, as illustrated in Fig. 9.  

3.2 Experimental results 

The friction, which is related to the transmission 

efficiency, was introduced to the dynamic model under 

different contact paths. Hence, the transmission 

efficiency was tested to verify the methodology used 

in the present study. Transmission efficiency tests were 

performed using a gear transmission system test rig, 

as shown in Fig. 27, to validate the dynamic model 

coupled with friction. The parameters of the tested 

gear pair are shown in Table 3, and the parameters of 

the assembled bearings in the test rig were the same 

as those listed in Table 1. The assembly adjustments 

for the toe, middle, and heel contacts, obtained using 

the methods described in Section 2.1, are listed in 

Table 4. In the experiment, Mobil gear oil 600XP150 

was used as the lubricant. The parameters of the gear 

materials, lubricant, and root mean square (RMS)  

 

Fig. 26 History of (a) meshing efficiency and (b) dynamic friction coefficient in mesh cycle. 

 

Fig. 27 Gear transmission system test rig and mounted gears. 
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Table 3 Gear pair parameters. 

Gear parameter Pinion (mm) Gear (mm) 

Number of teeth 25 34 

Module (mm) 5.0 

Tooth width (mm) 30 

Average pressure angle (°) 20 

Mean spiral angle (°) 35 

Shaft angle (°) 90 

Face angle (°) 39.63 56.00 

Pitch angle (°) 36.33 53.67 

Root angle (°) 34.00 20.37 

Outside diameter (mm) 105.50 105.50 

Hand of spiral Left Right 

Mass (kg) 1.64 3.81 

Inertia (Kg·m2) 3.45 × 10–3 1.36 × 10–2

Backlash (μm) 75 

Table 4 V  and H  value for different contact paths (mm). 

Contact path Toe contact Middle contact Heel contact

V  0.860 –1.491 –1.644 

H  –0.292 0.106 1.370 
 

roughness are listed in Table 5, and the operating 

temperature was 30 °C. The transmission efficiency 

during the test was defined as   e p p g g( )T T , where 

the torque and angular speed were measured based 

on the torque sensor and angular encoder at a sampling 

frequency of 1,000 Hz.  

The maximum mechanical speed of the output 

angular encoder (mounted on the driven side) and 

input angular encoder (mounted on the driving side) 

were 1,000 and 3,000 r/min, respectively. The maximum 

input and output torques of the motor were 96 and 

236 N·m, respectively. It is noteworthy that the shaft 

speeds were measured using an angular encoder 

integrated in a motor with a wide speed range of 

0–6,000 r/min, and they were not affected by the 

protective speed of the output angular encoder  

(1,000 r/min). In a smaller torque range, the effect of 

torque on efficiency was limited compared with that 

of speed. Hence, the efficiency was tested in a pinion 

speed range of 10–1,500 r/min with a load of 60 N·m 

acting on the gear, and the results are summarized in 

Fig. 28. As shown in Fig. 28(a), the measured efficiency  

Table 5 Parameters of gear materials, lubricant, and roughness. 

Effective elastic 
modulus (GPa) 

Density of lubricant 
(kg/L) 

Lubricant viscosity 
(mm2/s) 

Viscosity–pressure 
coefficient (1/Pa) 

RMS roughness 
(μm) 

219.78  0.89  
150 (40 °C)  

14.7 (100 °C) 
2.57 × 10–8  0.5 

 
Fig. 28 Transmission efficiencies of (a) tested results and numerical results: (b) toe contact, (c) middle contact, and (d) heel contact. 
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increased with the speed, and the efficiency from large 

to small was that of the toe, middle, and heel contacts, 

coinciding with the trend of the numerical results. In 

addition, the numerical predictions agreed well with 

the tests at different speeds and contact paths; however, 

the former appeared slightly larger than the latter. 

This deviation may be a result of the subtraction error 

of the internal friction caused by the motor, bearing, 

and shafting, particularly at 10 r/min. The deviations 

between the experimental and numerical results were 

significant because of the effect of internal friction 

loss. 

4 Conclusions 

The static meshing quality in spiral bevel gears is 

generally verified under different contact paths; 

however, the dynamic characteristics under different 

contact paths have not been reported. Hence, the 

effects of contact paths on the dynamic response and 

meshing efficiency of a lubricated spiral bevel gear 

pair were analyzed based on the combination of an 

eight-DOF dynamic model, a TCA model, and an 

analytical friction model. The friction model was 

validated through a comparison between the present 

analytical results and the predictions of a mixed EHL 

model proposed previously in terms of the friction 

coefficient and film thickness. Based on the presented 

results, the following conclusions were obtained: 

1) The effects of contact paths on gear dynamics 

revealed a complicated nonlinear response in the 

vicinity of resonance, where the amplitudes of DTE 

of the middle and heel contacts exhibited significant 

jump discontinuities. Except for resonance, the DTE 

amplitudes, dynamic meshing force, and lateral 

and axial bearing forces of the toe contact fluctuated 

significantly during a wide speed sweep. 

2) At resonance, the dynamic meshing force was 

small for the toe contact. However, the maximum 

Hertzian contact pressure was higher than those of 

the middle and heel contacts owing to the effect of 

contact geometry, causing high surface stress con-

centrations, which were closely related to surface 

micropitting and contact fatigue. 

3) The friction coefficient and film thickness from 

the present analytical model agreed well with the 

results from a mixed EHL model of spiral bevel gears 

proposed previously. In addition, the line contact 

assumption for the conjugation of the spiral bevel 

gear appeared unreasonable owing to the significant 

prediction error of the friction coefficient at the neighbor 

of the pitch cone. 

4) The dynamic efficiency was lower than the quasi- 

static efficiency, as expected, owing to the energy loss 

caused by the vibration of the gear shaft. At resonance, 

the efficiency fluctuated because of the tooth separations. 

The contact radii of the toe contact were relatively 

small, and correspondingly, the sliding velocity was 

relatively low, resulting in a high meshing efficiency 

for the toe contact.  

5) A comparison of the numerical transmission 

efficiencies under different contact paths with the 

experimental measurements indicated good agreement. 

The tested efficiency was slightly smaller than the 

predicted values owing to the effect of the internal 

friction loss. 
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