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Abstract: The present study aims at introducing a newly developed natural fiber called castor oil fiber, termed 

ricinus communis, as a possible reinforcement in tribo-composites. Unidirectional short castor oil fiber reinforced 

epoxy resin composites of different fiber lengths with 40% volume fraction were fabricated using hand layup 

technique. Dry sliding wear tests were performed on a pin-on-disc tribometer based on full factorial design of 

experiments (DoE) at four fiber lengths (5, 10, 15, and 20 mm), three normal loads (15, 30, and 45 N), and three 

sliding distances (1,000, 2,000, and 3,000 m). The effect of individual parameters on the amount of wear, interfacial 

temperature, and coefficient of friction was studied using analysis of variance (ANOVA). The composite with 

5 mm fiber length provided the best tribological properties than 10, 15, and 20 mm fiber length composites. 

The worn surfaces were analyzed under scanning electron microscope. Also, the tribological behavior of the 

composites was predicted using regression, artificial neural network (ANN)-single hidden layer, and ANN-multi 

hidden layer models. The confirmatory test results show the reliability of predicted models. ANN with multi 

hidden layers are found to predict the tribological performance accurately and then followed by ANN with 

single hidden layer and regression model. 

 

Keywords: natural fiber; castor oil fiber; epoxy composite; full factorial design of experiments (DoE); analysis of 
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1  Introduction 

In the recent times, there has been an increased usage 

of polymeric materials for tribological components 

such as guide rails, plastic gears, sliding bearings, 

and artificial joints etc., as an alternative to metals [1]. 

This is due to the desirable characteristics of the poly-

mers such as light weight, self-lubrication, noise reduc-

tion, and high productivity. In general, the tribological 

performance of polymers is further improved by 

reinforcing fibers, particles, fillers, and whiskers. Among 

these, natural fibers as reinforcements in polymeric 

materials have gained new interests for tribological 

applications because of easy availability, simple fiber 

extraction process, less weight, inexpensive, and bio-

degradable. The natural fiber reinforced composites 

were in great demand in automobile [2, 3] and 

structural applications [3]. Some of the applications 

of natural fiber composites in automotive industry  

and structural industry are shown in Tables 1 and 2, 

respectively. During the fabrication of natural fiber 

composites, locally available inexpensive plant fibers 

can be preferred for tribological applications after 

analyzing their feasibility. 

With numerous applications, it is important to 

study the tribological performance of natural fiber 

reinforced polymer composites. Table 3 shows the 

tribological studies on various natural fiber reinforced 

polymer composites at different material parameters 

and operating conditions, also for few synthetic fibers 

were discussed. 

Apart from fiber volume fraction, orientation, and  
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chemical treatment, fiber length (FL) also plays a key 

role in enhancing the tribological behavior of natural 

fiber reinforced polymer composites. For instance, El- 

Tayeb [19−21] employed sugarcane fiber of different 

lengths for understanding the potential of short 

chopped fibers (SCF) in enhancing the tribological 

properties of polyester composites. Composites of 

fiber length 1, 5, and 10 mm were fabricated and tested. 

Table 1  Applications of natural fiber reinforced composites in automotive industry [3]. 

Model Original equipment 
manufacturer (OEM) 

Applications 

3, 5, and 7 series BMW Seat back, headliner, door, noise insulation panels, moulded foot well 
lining, and boot-lining 

A2, A3, A4, A6, and A8 Audi Seat back, side and back door panels, boot and spare tire-lining, and hat rack

Alfa romeo 146, 156, and 159 Fiat Door panel 

2000 Rover Rear storage shelf and panel 

ES3 Toyota Pillar garnish and other interior parts 

Golf, bora, passat variant Volkswagen Seat back, door panel, boot-liner, and boot-lid panel 

Chevrolet trail blazer, 
ccdillac de ville 

General motors Seat back and cargo area floor mat 

Table 2  Natural fiber reinforced composite applications in various industries [3]. 

Fiber Applications 

Hemp Construction, textiles, paper, packaging, furniture, cordage, geotextiles, and electrical 

Sisal Paper, pulp, and construction such as doors, panels, roofing sheets, and shutting plate 

Kenaf Packaging, insulations, mobile cases, bags, animal bedding, soilless potting mixes, oil, and liquid absorbent materials 

Jute Building parts such as door frames, shutters, panels, roofing sheets, packaging, transport, geotextiles, and chip boards 

Oil palm Building parts such as door frames, windows, insulated panels, fencing, siding, decking, and roofing 

Flax Railing systems, fencing, decking, tennis racket, snowboarding, bicycle frame, seat post, fork, and laptop cases 

Cotton Textile, yarn, furniture, cordage, and transport 

Table 3  Tribology study of fiber reinforced composites. 

Researchers Polymer Fiber Parameters* Responses* Ref.

Dwivedi and Chand Polyester Jute FO, NL SWR, CoF, Temp [4]

Bajpai et al. Polylactic acid (PLA) Nettle, sisal NL, SD, SV SWR, CoF [5]

Basumatary et al. Epoxy Ipomoea carnea FVF, NL, SD AW, SWR [6]

Nirmal et al. Epoxy Bamboo FO, NL, SD, SV SWR, CoF [7]

Chin and Yousif  Epoxy Kenaf FO, NL, SD, SV SWR, CoF, Temp [8]

Rashid et al. Phenolic Sugar palm FT, NL, SD AW, CoF [9]

Shalwan and Yousif  Epoxy Date palm FVF, F, NL, SV SWR, CoF [10]

Yousif et al. Polyester Betelnut NL, SD SWR, CoF, Temp [11]

Chand and Dwivedi Polyester Sisal FVF, FT, NL AW, CoF, Temp [12]

Shuhimi et al. Epoxy Oil palm, kenaf FVF, NL SWR, CoF, Temp [13]

Liu et al. Nitrile butadiene Corn stalk FT, Temp WR, CoF [14]

Kumar et al. Epoxy Grewia optiva / Bauhinia vahlii FVF, SV, NL, SD SWR [15]

Patel et al. Polyester Sour-weed FL, FVF SWR [16]

Pattanaik et al. Epoxy Fly–ash FVF, SV, NL AW, CoF [17]

Khun Epoxy Carbon FVF, NL WR, CoF [18]
*Note: NL: normal load; SV: sliding velocity; SD: sliding distance; F: filler; FO: fiber orientation; FT: fiber treatment; FVF: fiber volume 
fraction; CoF: coefficient of friction; AW: amount of wear; SWR: specific wear rate; Temp: temperature. 
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It was found that composite with fiber length of 5 mm 

exhibited lower weight loss of 20%–50% compared to 

other fiber lengths [21]. Mylsamy and Rajendran [22] 

studied the effect of fiber length on the tribological 

performance of chopped agave americana fiber rein-

forced epoxy composites. It was revealed that com-

posites with 3 mm fiber length provided the best 

tribological results than those with 5 and 7 mm fiber 

length. Boopathi et al. [23] studied the effect of fiber 

length on the tribological properties of borassus fruit 

fiber reinforced epoxy composites. The critical length 

of fiber was found to be 5 mm among 3, 5, and 7mm 

fiber length composites for the best tribological 

results. 

Artificial neural network (ANN) approach, based on 

biological nervous system, evolved as a fascinating 

computational tool to simulate a wide variety of 

complex engineering problems. An extensive literature 

review was carried out to find the feasibility of ANN 

to predict the tribological behavior of composites. 

Table 4 shows few studies on the tribological behavior 

of composites predicted by ANN. 

Observing the tremendous advantages of natural 

fibers, there is a need to further investigate the possi-

bility of new natural fibers to be used as reinforcement 

in polymer composites for tribological applications. 

India is known for abundant natural resources, mostly 

from agriculture and forest. Castor oil cultivation 

was widely spread across all parts of India and the 

3rd largest producer in the world. Therefore, the 

castor oil plant stalk will be readily available to extract 

the fiber at very low cost. The preliminary studies 

emphasized that castor oil fiber, which was termed as 

ricinus communis, can be used as a reinforcement in 

polymer matrix composites based on mechanical, 

physical, and chemical properties. The main objective 

of this study was to analyze the tribological behavior 

of newly developed castor oil fiber reinforced epoxy 

composites. Also, regression models and ANN models 

were developed to predict the tribological behavior 

of composites for unknown data. 

2  Materials and experiments 

2.1  Fiber extraction 

Castor oil plant stalk was collected from Kompally, 

Hyderabad, India. The collected stalk was immersed 

in water at room temperature for nine consecutive 

days for microbial degradation, such that cortex, 

xylem, and pith were separated easily. Two fibers 

extracted were cortex (bark type) fibers and xylem 

(wood type) fibers. The extracted fibers were dried and 

mechanically tested. An overview of fiber extraction 

process followed was mentioned in Fig. 1. Our 

primary investigation revealed that the tensile strength 

of a single cortex fiber and single xylem fiber was 323 

and 100 MPa, respectively. The diameter of cortex fiber 

was found to be 0.3 mm. Also, the fibers extracted were 

conditioned at 28 °C to maintain relative humidity of 

65% before fabrication of samples. As the extracted 

castor oil cortex fiber length ranges from 6−8 m, it was 

Table 4  Tribology results and fatigue behavior of composites predicted using ANN. 

Authors ANN prediction Ref.

Biswal and Satapathy Specific wear rate of epoxy-palmyra fiber composites [24]

Parikh and Gohil Wear of cotton fiber polyester composites [25]

Satapathy et al. Specific wear rate of TiO2-polyester composites [26]

Fathy and Megahed Specific wear rate of Cu-Al2O3 nano composite [27]

Jiang et al. Specific wear rate and CoF of short glass fiber and carbon fiber reinforced polyamide composites 
with PTFE and graphite fillers 

[28]

Canakci et al. Specific wear rate and volume loss of B4C/AA2014 MMC’s [29]

Stojanović Wear rate and CoF of Al/SiC/Gr hybrid composites [30]

Saravanan and 
Senthilkumar 

Wear rate and CoF of rice husk ash reinforced aluminum alloy composites [31]

Kranthi and Satapathy Specific wear rate of pine wood dust reinforced epoxy composites [32]

Hassan et al. Bending fatigue behavior of glass fiber/polyester composite shafts [33]
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chopped into lengths of 5, 10, 15, and 20 mm respec-

tively for fabricating the short fiber composites. 

2.2  Resin 

The matrix material, epoxy is a thermosetting polymer 

that polymerizes and cross links, when mixed with a 

hardener. With addition of hardener, epoxy can be 

made flexible or rigid, transparent or colored, and 

also for setting extremely fast or slow. The degree of 

wetting during the composite fabrication process is 

highly important for strong adhesion between matrix 

and fiber. Epoxy grade (LY556) and hardener grade 

(HY 951) were used for fabrication of unidirectional 

epoxy composites. Matrix and hardener were mixed 

in the ratio 10:1 by weights as used by Basumatary et 

al for fabricating ipomoea carnea reinforced epoxy 

composites [6]. 

2.3  Fabrication of composites 

Manual hand layup process was used for fabrication 

of unidirectional short castor oil fiber reinforced 

epoxy composites [11]. As mentioned earlier, the 

tensile strength of cortex fiber was much greater than 

that of xylem fiber. Hence, castor oil cortex fibers 

were preferred over xylem fibers to achieve better 

mechanical and tribological properties. The composites 

were fabricated with 40% volume fraction of cortex 

fiber with fiber lengths 5, 10, 15, and 20 mm, respectively. 

2.4  Tribology setup 

The tribological behavior of fabricated castor oil fiber 

reinforced epoxy composites was investigated using 

pin on disc tribometer supplied by DUCOM. The 

schematic diagram of pin on disc tribometer was 

shown in Fig 2. Dry sliding wear experiments were 

performed as per the American Society for Testing 

and Materials (ASTM) G 99 standard. The specimens 

were fixed in a specimen holder with one face sliding  

 

Fig. 2  Schematic of pin on disc tribometer. 

 

Fig. 1  Fiber extraction procedure. (a) Castor oil plant, (b) stems immersed in water, (c) stems after immersion, (d) extracted fibers, and 
(e) chopped fibers. 
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over the disc. The contour surface is a hardened EN-31 

steel disc with hardness 69 HRC, surface roughness 

0.6 μm and thickness 8 mm. The required load on to 

the pin is applied by means of pulley in the range of 

15, 30, and 45 N. The rotations per minute (RPM) are 

set to constant at 500 and the track diameters are set to 

100, 110, and 120 mm to achieve the sliding distances 

of 1,000, 2,000, and 3,000 m, respectively, by adjusting 

the running time successively. Initial roughness of 

disc surface and specimens are maintained by rubbing 

against emery papers of grit sizes 220 and 600 

respectively such that the initial roughness was in the 

range of Ra 0.02 to 0.07 μm for the disc and Ra 0.33 to 

0.45 μm for the specimen. The samples are weighed 

before and after the experiment to estimate the amount 

of wear. 

2.5  Experimental plan and responses 

Design of experiment is a powerful tool for modeling 

and analyzing the influence of control factors (input 

parameters) on output performances. The tribology  

tests on the fabricated composites were performed 

under different operating conditions considering 

three parameters, fiber length, normal load, and 

sliding distance. Fiber length was varied at four 

levels, and the other two parameters such as load and 

sliding distance were varied at three levels. The 

three parameters with different levels were listed in 

Table 5. Conventional full factorial design of experi-

ments was deployed for the experimentation. The 

full factorial list of experiments and their correspond-

ing output responses are tabulated in Table 6. Each 

test was repeated twice. The results from each trail 

and also, the mean of the results were represented 

in Table 6. 

Table 5  Factors and their corresponding levels. 

Factor Type Levels Unit Level 1 Level 2 Level 3 Level 4

FL Fixed 4 mm 5 10 15 20 

Load Fixed 3 N 15 30 45 — 

SD Fixed 3 m 1,000 2,000 3,000 — 

Table 6  Full factorial design of experiments. 

Wear (mg) Temp (°C) CoF 
No FL 

(mm) 
Load 
(N) 

SD 
(m) Trail1 Trail2 Mean Trail1 Trail2 Mean Trail1 Trail2 Mean

1 5 15 1,000 2 2.1 2.05 25 25 25.0 0.247 0.231 0.239 

2 5 15 2,000 2.5 2.7 2.6 25 25 25.0 0.258 0.243 0.251 

3 5 15 3,000 3.3 3.5 3.4 25 26 25.5 0.289 0.259 0.274 

4 5 30 1,000 2.7 2.9 2.8 26 26 26.0 0.311 0.299 0.305 

5 5 30 2,000 3.3 3.7 3.5 26 27 26.5 0.323 0.319 0.321 

6 5 30 3,000 4 4.2 4.1 27 27 27.0 0.345 0.337 0.341 

7 5 45 1,000 4.5 4.6 4.55 27 27 27.0 0.371 0.365 0.368 

8 5 45 2,000 4.8 5.3 5.05 27 28 27.5 0.402 0.388 0.395 

9 5 45 3,000 5.5 5.8 5.65 28 28 28.0 0.418 0.406 0.412 

10 10 15 1,000 2.7 2.2 2.45 25 25 25.0 0.256 0.233 0.245 

11 10 15 2,000 3.0 3.6 3.30 25 26 25.5 0.281 0.254 0.268 

12 10 15 3,000 4.0 4.3 4.15 26 26 26.0 0.303 0.287 0.295 

13 10 30 1,000 3.2 3.5 3.35 27 26 26.5 0.332 0.305 0.319 

14 10 30 2,000 4.0 4.3 4.15 27 27 27.0 0.344 0.319 0.332 

15 10 30 3,000 4.6 4.8 4.70 27 28 27.5 0.381 0.356 0.369 

16 10 45 1,000 4.9 5.0 4.95 27 28 27.5 0.405 0.388 0.397 

17 10 45 2,000 5.3 5.5 5.40 27 28 27.5 0.414 0.407 0.411 

18 10 45 3,000 6.2 6.4 6.30 28 28 28.0 0.431 0.428 0.430 

19 15 15 1,000 2.8 2.6 2.70 26 26 26.0 0.283 0.267 0.275 
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3  Results and discussion 

The one of the objectives of reinforcing polymers with 

natural fibers was to enhance the tribological properties 

of the polymers. Fiber volume fraction, length, and 

orientation were the key constituents of polymer com-

posites, to reduce the amount of wear, coefficient of 

friction, and interfacial temperature. The volume fraction 

of fiber considered was 40 vol%. The excessive addi-

tion of fiber i.e. above 40 vol% resulted in the fiber 

pulling out from the resin during the test due to poor 

wetting and interfacial adhesion [6]. It was revealed that 

the wear performance was much superior in normal 

orientation of natural fiber compared to parallel and 

anti-parallel orientations [7]. The normal orientation of 

fiber will be obtained only for unidirectional samples 

while performing tribology tests using pin on disc tribo-

meter as the sample is fixed normal to the rotating steel 

counter face. Hence, 40 vol % fraction of unidirectional 

short castor fiber reinforced epoxy composites were 

used for this study. The input parameters considered for 

the study are fiber length, load, and sliding distance. 

The output responses evaluated were amount of 

wear, CoF, and interfacial temperature. 

3.1  Effect of input parameters on the amount of 

wear 

The primary investigation revealed that the amount 

of wear is unpredictable when the applied load is 

low (5 or 10 N). Therefore, the lowest amount of wear 

can be measured with an applied load of 15 N. At 

this loading condition, less penetration with counter 

surface was observed resulting in less amount of 

wear. As the load increased gradually, the amount of 

wear increased proportionally and can be seen in 

main effects plot of Fig. 3. This is due to the higher 

amount of penetration and deeper grooves created, 

resulting in high material removal by ploughing. Also, 

the wear mechanism of the composites at higher 

loads was predominated by micro and macro-cracks 

in the epoxy regions and de-bonding of fibers. As the 

fiber length was increased gradually, the amount of 

wear also proportionally increased and can be seen 

in main effects plot of Fig. 3. The 5 mm length fiber 

composite produced better wear performance due to 

strong interfacial bonding between the matrix and 

the fiber. The sample with fiber length 20 mm has 

weight loss about 3 times higher than that of 5 mm  

(Continued) 

Wear (mg) Temp (°C) CoF 
No FL 

(mm) 
Load 
(N) 

SD 
(m) Trail1 Trail2 Mean Trail1 Trail2 Mean Trail1 Trail2 Mean

20 15 15 2,000 3.5 3.3 3.40 26 26 26.0 0.302 0.297 0.300 

21 15 15 3,000 3.7 3.5 3.60 26 27 26.5 0.324 0.308 0.316 

22 15 30 1,000 4.0 4.0 4.00 27 27 27.0 0.341 0.333 0.337 

23 15 30 2,000 4.5 4.9 4.70 27 27 27.0 0.38 0.369 0.375 

24 15 30 3,000 5.0 5.7 5.35 28 28 28.0 0.41 0.391 0.401 

25 15 45 1,000 5.4 5.8 5.60 28 28 28.0 0.421 0.407 0.414 

26 15 45 2,000 5.8 6.2 6.00 28 29 28.5 0.446 0.424 0.435 

27 15 45 3,000 6.2 6.5 6.35 29 29 29.0 0.453 0.437 0.445 

28 20 15 1,000 2.8 2.8 2.80 26 27 26.5 0.305 0.305 0.305 

29 20 15 2,000 3.6 3.6 3.60 27 27 27.0 0.311 0.309 0.310 

30 20 15 3,000 3.8 3.8 3.80 27 27 27.0 0.351 0.339 0.345 

31 20 30 1,000 4.0 4.2 4.10 27 28 27.5 0.382 0.367 0.375 

32 20 30 2,000 5.0 4.1 4.55 28 28 28.0 0.391 0.376 0.384 

33 20 30 3,000 5.5 5.3 5.40 28 29 28.5 0.4 0.403 0.402 

34 20 45 1,000 5.0 6.2 5.60 28 29 28.5 0.442 0.428 0.435 

35 20 45 2,000 6.0 6.7 6.35 29 29 29.0 0.464 0.446 0.455 

36 20 45 3,000 6.5 6.6 6.55 30 30 30.0 0.472 0.465 0.469 
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length fiber under similar operating conditions. In-

creasing fiber length from 5 to 20 mm increased the 

amount of wear. The similar behavior of wear was 

observed by Mylsamy and Rajendran [22] for short 

agave americana fiber reinforced epoxy resin com-

posites and Boopathi et al. [23] for borassus fruit fiber 

reinforced epoxy resin composites. The 5 mm length 

fibers provided more hindrance along the path of the 

sliding direction than 10, 15, and 20 mm fiber length 

and resisted the movement of wear particles [22]. 

This may emphasize, that the critical fiber length can 

be close to 5 mm, at which, the lowest amount of 

wear was attained. The chemical compatibility of matrix 

bonding, mechanical properties of fiber, and fiber 

length play a major role in reducing the amount of 

wear. It is clear that, minimum amount of wear occurs 

at 5 mm length, is a favorable length to establish the 

cross linking of the polymer quite well, resulting in 

high tribological performance. Therefore, it can be 

concluded that the increased wear performance of 5 mm 

fiber length at an optimum load could be possibly 

due to a fiber rich surface, high chemical bonding, and 

high cross linking, thereby protecting the contacting 

composite surface and minimizing wear of the matrix. 

Figure 4 shows the wear behavior with interaction 

effects. As seen in the interaction plots, at a particular 

fiber length, the amount of wear increases with 

increase in sliding distance and load. At a particular 

load, the amount of wear increases with increase in 

fiber length and sliding distance. The weak bonding 

between the fiber and the matrix facilitates the easier 

removal of fiber at longer sliding distance and fiber 

length. At a particular sliding distance, the amount of 

wear increases with increase in fiber length and load 

because of weak bonding and high penetration respec- 

tively. The rate of wear decreased for 20 mm fiber 

length with increase in sliding distance. This might be  

 
Fig. 4  Interaction plot for wear. 

due to the wear debris that filled the space between the 

contacting surfaces, reduced the depth of penetration 

in the composite. Based on the full factorial experimental 

data, the lowest wear of 2.09 mg was obtained for 

following combinations: fiber length 5 mm, load 15 N, 

and sliding distance 1,000 m, and the highest of 6.55 mg 

was obtained for combinations: fiber length 20 mm, 

load 45 N, and sliding distance 3,000 m. 

The influence of each input parameter on the amount 

of wear was analyzed. The percentage contribution of 

fiber length, load, and sliding distance on the amount 

of wear of unidirectional castor oil reinforced epoxy 

composites was analyzed using a statistical analysis 

of variance method. Table 7 shows the ANOVA 

results for the amount of wear. ANOVA analysis pre-

sented in this paper was carried out at 5% significance 

level and 95% confidence level. The calculated pro-

bability values for all the input parameters is 0.000. 

Since all the probabilities are below 0.05. It implies 

that all the input parameters i.e., load, fiber length, and 

sliding distance have a significant effect on the amount 

of wear. Meanwhile, the P-value of lack of fit is non- 

significant as it is more than 0.05. Therefore, the 

analysis obtained based on experimental data is  

Fig. 3  Main effects plot for wear. 
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Table 7  Analysis of variance for the amount of wear. 

Source DF Adj SS Adj MS F- 
value 

P- 
value

% 
Cont

FL (mm) 1 10.067 10.0668 99.97 0.000 9.0

Load (N) 1 77.521 77.5208 769.84 0.000 69.4

SD (m) 1 17.280 17.2800 171.60 0.000 15.5

Error 68 6.847 0.1007 — — 6.1

Lack- 
of-fit 

32 3.997 0.1249 1.58 0.093 —

Pure 
error 

36 2.850 0.0792 — — —

Total 71 111.715 — — — 100

Note: DF-Degrees of freedom; Adj SS-Adjusted sum of squares; Adj MS- 
Adjusted mean of squares; % Cont-Percentage contribution. 
 
significant. It was observed that the load contributed 

by 69%, sliding distance by 15%, and fiber length by 

9%. Therefore, the most significant parameter on 

the amount of wear was load followed by sliding 

distance, fiber length, and others. 

3.2  Effect of input parameters on the interfacial 

temperature 

It was evident that the incorporation of natural 

fibers in a thermosetting polymer enhances the 

thermal stability of the polymer. This is due to the 

higher thermal conductivity of fibers than that of the 

polymer matrix. Therefore, the improved thermal 

stability of natural fiber reinforced epoxy composites 

prevents the surface film transfer to the counter 

surface. The experiments were conducted at room 

temperature (25 °C). The main effects plot for interfacial 

temperature is shown in Fig. 5. Due to increase in 

the applied normal load, the interfacial temperature 

increases due to the increase in frictional heat with 

increase in load. The higher interfacial temperature 

was found at the highest applied load 45 N, which is 

about 30 °C. Interfacial temperature increased with 

increase in fiber length. Highest interfacial temperature 

is found in case of 20 mm fiber length, which can be 

directly linked with coefficient of friction. The same 

phenomenon was observed for kenaf fiber reinforced 

epoxy composites [8] and jute fiber reinforced polyester 

composites [4]. 

Figure 6 shows the interfacial temperature behavior 

with interaction effects. As seen in the interaction 

plots, at a particular fiber length, the interfacial tem-

perature increases with increase in sliding distance 

and load because of high frictional force. The frictional 

forces increased with increase in load and fiber 

length. The temperature of the specimen at interface 

increases by 0−3 °C for 5 and 10 mm fiber length, 1−4 °C 

for 15 mm fiber length, and  2−5 °C for 20 mm fiber 

length, respectively. At a particular load, the interfacial 

temperature increases with increase in fiber length 

and sliding distance. Similarly, at a particular sliding 

distance, the interfacial temperature increases with 

increase in fiber length and load. Hence, it can be 

concluded that there is no significant rise in interfacial  

temperature and it is witnessed physically as there 

are no softening characteristics of specimens observed 

during experimentation. Based on the full factorial 

experimental data, no change in interface temperature 

was obtained for following combinations: fiber length 

5 mm, load 15 N, and sliding distance 1,000 m, and the 

highest change of 5 °C was obtained for combinations: 

fiber length 20 mm, load 45 N, and sliding distance 

3,000 m. Therefore, 5 mm fiber length can be considered 

as a critical fiber length for the lowest interfacial 

temperature. This might be due to high thermal 

conductivity in 5 mm fiber length composite than 

other combinations tested. 

Fig. 5  Main effects plot for interfacial temperature.  
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Fig. 6  Interaction plot for interfacial temperature.  

 

The influence and the percentage contribution of 

each control parameter i.e., fiber length, load, and 

sliding distance on the interfacial temperature were 

analyzed using a statistical analysis of variance 

method. Table 8 shows the ANOVA results for the 

interfacial temperature. The probability value for all the 

input parameters is 0.000. Since all the probabilities are 

below 0.05, it implies that all the input parameters i.e., 

load, fiber length, and sliding distance have a significant 

effect on the interfacial temperature. Meanwhile, the 

P-value of lack of fit is non-significant as it is more 

than 0.05. Therefore, the analysis obtained based on 

experimental data is quite reliable. It was observed that 

the load contributed by 58%, fiber length by 24%, and 

sliding distance by 8%. Therefore, the most significant 

parameter on the interfacial temperature was load 

followed by fiber length, sliding distance, and others. 

3.3  Effect of input parameters on CoF 

Generally, a higher CoF of epoxy polymer is due to  

Table 8  Analysis of variance for interfacial temperature. 

Source DF Adj SS Adj MS F- 
value 

P- 
value

% Cont

FL (mm) 1 26.678 26.6778 177.42 0.000 24.4

Load (N) 1 63.021 63.0208 419.11 0.000 57.7

SD (m) 1 9.188 9.1875 61.10 0.000 8.4

Error 68 10.225 0.1504 — — 9.4

Lack- 
of-fit 

32 3.225 0.1008 0.52 0.969 —

Pure  
error 

36 7.000 0.1944 — — —

Total 71 109.111 — — — 100

larger contact between the polymer and its counterpart 

during dry sliding. Therefore, incorporation of short 

natural fiber on the surface can lower the CoF of the 

epoxy composite by reducing the direct contact between 

the polymer and steel disc. The main effects plot for 

the CoF is shown in Fig. 7. As the applied load 

gradually increased from 15 to 45 N, the CoF of the 

epoxy composite increased proportionally due to 

increase in frictional forces at the interface. As the fiber 

length increases, the CoF of the epoxy composite also 

increases. Increase in the CoF of the composite material 

with increase in fiber length can be attributed to the 

toughness of the composite material. The toughness 

of the natural fiber composite material increases with 

increase in fiber length. As shown in Fig. 7, the CoF 

reduces due to decrease in the fiber length from 20 to 

5 mm. The similar behavior of CoF was observed by 

Mylsamy and Rajendran [22] for chopped agave ameri-

cana fiber reinforced epoxy composites and Boopathi 

et al. [23] for borassus fruit fiber reinforced epoxy 

composites. The surface of 5 mm fiber length specimen 

acted as a protective layer by reducing the mechanical 

interlocking at the interface, thus reducing the CoF 

[1]. As the sliding distance increased from 1,000 to 

3,000 m, the CoF of the epoxy composite also increased. 

The primary investigation revealed that the fluctuation 

in the CoF of the epoxy composite was highly 

significant at prolonged sliding distance, which indi-

cates pronounced stick-slip phenomenon with pro-

moted adhesion and wear of the epoxy. Hence, the 

sliding distance is limited to 3,000 m. 

The interaction plots for CoF for all levels of the 

input parameters were presented in Fig. 8. As seen in 

the interaction plots, at a particular fiber length, CoF 

increases with increase in sliding distance and load 

because of prompted adhesive wear and high inter- 

mechanical locking respectively. At a particular load, 

CoF increases with increase in fiber length and sliding 

distance. This is due to weakening of surface protective 

layer and adhesion of polymer. At a particular sliding 

distance, CoF increases with increase in fiber length 

and load because of low fiber ends and high inter- 

mechanical locking respectively. Based on the full 

factorial experimental data, the minimum CoF of 

0.239 was associated with the following combination 

of factors: fiber length 5 mm, 15 N load, and 1,000 m 

sliding distance, and the highest of 0.469 for the  
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Fig. 8  Interaction plot for CoF. 

combination: fiber length 20 mm, 45 N Load, and 

3,000 m sliding distance. The above discussions 

conclude that the critical fiber length for better CoF is 

5 mm. This is because of protective fiber rich surface 

at interface, which in turn lead to reduced mechanical 

interlocking.  

The influence and the percentage contribution of 

each input parameter i.e., fiber length, load, and sliding 

distance on CoF were analyzed using a statistical 

analysis of variance method. Table 9 shows the ANOVA 

Table 9  Analysis of variance of CoF. 

Source DF Adj SS Adj MS F- 
value 

P- 
value

% Cont

FL (mm) 1 0.042337 0.042337 411.31 0.000 14.4

Load (N) 1 0.224954 0.224954 2,185.49 0.000 76.5

SD (m) 1 0.019562 0.019562 190.05 0.000 6.6 

Error 68 0.006999 0.000103 — — 2.5 

Lack- 
of-fit 

32 0.002491 0.000078 0.62 0.912 — 

Pure  
error 

36 0.004508 0.000125 — — — 

Total 71 0.293852 — — — 100
 

results for CoF. The probability value for all the input 

parameters is 0.000. Since all the probabilities are 

below 0.05, it implies that all the input parameters have 

a significant effect on CoF. Meanwhile, the P-value of 

lack of fit is non-significant as it is more than 0.05. 

Therefore, the data obtained from experiments is highly 

significant. It was observed that the load contributed 

by 76%, fiber length by 14%, and sliding distance by 

6%. Therefore, the most significant parameter on the 

interfacial temperature was load followed by fiber 

length, sliding distance, and others. 

3.4  Comparison of tribological properties for 5 mm 

fiber length composites and pure epoxy 

The experimental analysis reveals that 5-mm fiber 

length composites exhibited better tribological perfor-

mance. As a result, a comparative study was performed 

for pure epoxy and 5 mm fiber length unidirectional 

castor oil reinforced epoxy composites at extreme 

chosen tribological conditions such as load 45 N and 

sliding distance 3,000 m. The results for lower and 

higher extreme conditions were presented in Tables 10 

and 11, respectively. At lower extreme conditions, 

addition of 40 vol% unidirectional short 5 mm fiber 

length castor oil fibers improved the wear of epoxy 

by 58.66%, CoF by 40.40%, and interfacial temperature 

by 19.35%. At higher extreme conditions, addition of 

40 vol% unidirectional short 5 mm fiber length castor 

oil fibers improved the wear of epoxy by 40.46%, CoF 

by 30.64%, and interfacial temperature by 24.32%. 

3.5  Worn surface analysis 

The information about tribo-failure of short natural 

fiber reinforced polymer composite is important to 

exploit its use in industrial applications. The micro-

graphs of the worn surfaces at different fiber lengths,  

Fig. 7  Main effect plots for CoF. 
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Table 10  Comparison of results at test condition: load 15 N and 
sliding distance 1,000 m. 

% Improvement 
Specimen Wear 

(mg) 
CoF Temp 

(°C) Wear CoF Temp

Pure epoxy 6.91 0.401 31 

5 mm FL 
composite 

2.03 0.239 25 
70.62 40.40 19.35

Table 11  Comparison of results at test condition: load 45 N and 
sliding distance 3,000 m. 

% Improvement 
Specimen Wear 

(mg) 
CoF Temp (°C) 

Wear CoF Temp

Pure epoxy 16.49 0.594 37 

5 mm FL  
composite 

5.65 0.412 28 
65.74 30.64 24.32

 

normal loads, and sliding distances of unidirectional 

short castor oil fiber reinforced epoxy composites 

were presented in Fig. 9, respectively. Generally, tribo- 

failure of polymer composites proceeds by fiber 

wear, fiber fracture, matrix wear, and interfacial de- 

bonding [22]. Figure 9(a) shows the worn surface 

morphology of 5 mm fiber length composite at normal 

load 45 N and sliding distance 2,000 m. It was very 

clear from the micrograph that the fiber offered 

tremendous resistance to wear relative to matrix, as it 

can be evident from the distinct wear tracks in matrix, 

while mild wear tracks were observed in fiber. This 

can be attributed to the high strength of castor oil 

fiber, well entanglement of fiber at 5 mm fiber length, 

fiber rich surface, and high interfacial bonding. 

 

Fig. 9  Worn surface SEM micrographs of composites for the conditions: (a) FL-5 mm, NL-45 N, SD-2,000 m; (b) FL-10 mm, NL-30 N, 
SD-3,000 m; (c) FL-15 mm, NL-45 N, SD-1,000 m; (d) magnified image of (c); and (e) FL-20 mm, NL-15 N, SD-1,000 m. 
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Evidently, 5 mm fiber length castor oil fiber offered 

more abrasion wear resistance and well embedded in 

the matrix. Figure 9(b) depicts the adhesive and 

abrasive wear of 10 mm fiber length composite at 30 N 

normal load and 3,000 m sliding distance. At higher 

loads and sliding distances, the degree of abrasion 

and adhesion was very high. This was due to the 

abrasive particles (wear debris), that were penetrated 

into the surface, created more grooves resulting in 

more material removal by severe plastic deformation. 

As a result of ploughing, the polymer material transfers 

and adheres along the wear tracks. Similar behavior 

was reported for 7 mm fiber length agave americana/  

epoxy composites [22]. 

The fiber cracks and fiber failure for 15 mm fiber 

length composites at normal load 45 N and 1,000 m 

sliding distance were depicted in Figs. 9(c) and 9(d). 

The castor oil fibers were highly fractured and sheared, 

resulting in lower wear performance. The similar pheno-

menon was observed for 10 mm fiber length sugarcane 

fiber reinforced polyester composites [21]. Figure 9(e) 

depicts the interfacial de-bonding between epoxy 

matrix and castor oil fiber reinforcement for 20 mm 

fiber length at normal load 15 N and sliding distance 

1,000 m. The poor entanglement of fiber and high 

fiber bending resulted in lower mechanical bond 

between matrix and fiber for 20 mm fiber length 

composites. As a result, high amount of wear and 

low wear resistance was observed for 20 mm fiber 

length composites even at the lowest tribological 

condition as well. The effect was much more pro-

nounced at higher tribological conditions. 

The worn surface analysis clearly embarks that the 

lowest fiber length i.e., 5 mm provides the best wear 

resistant surface for tribological applications. This 

can be attributed to the fact that 5 mm fiber length 

provides high entanglement, fiber rich surface, high 

fiber ends, and high bonding strength at 40% volume 

fraction of castor oil fiber. 

3.6  Prediction of results 

3.6.1  Linear regression 

The relationship between the FL, NL, and SD on 

amount of wear, temperature, and CoF of the 40 vol % 

unidirectional castor oil fiber reinforced epoxy com-

posites was obtained by linear regression analysis. The 

calculated probability values for all the input parameters 

is 0.000. Since all the probabilities are below 0.05, this 

means that the developed regression equations are 

significant. Meanwhile, the P-value of lack of fit is 

non-significant as it is more than 0.05 and can be seen 

in Table 12. The determination coefficient, R² indicates 

the goodness of fit. R² for all the output parameters is 

summarized in Table 13. In this case, the value of the 

determination coefficient, R² = 0.93 for the amount of 

wear, R² = 0.90 for interfacial temperature, and R² = 

0.97 for coefficient of friction indicates that only 3%−10% 

of the total variations are not explained by these models. 

The regression equations developed are presented in 

Table 14. Therefore, the models developed have high 

goodness of fit. From the regression equations, it is 

evident that the fiber length, normal load, and sliding 

distance have positive coefficients for all the output 

responses. A positive coefficient of fiber length indicates 

that the tribological performance of fiber reinforced 

epoxy composite gets deteriorated with increase in 

fiber length. The same conclusions are reported for 

short agave americana fiber and borassus fruit fiber 

reinforced epoxy resin composites in Refs. [22, 23], 

respectively. But, load is the dominating parameter 

followed by fiber length and sliding distance. A similar 

trend was also noticed in the experimental results. 

Table 12  Regression model. 

Regression DF Adj SS Adj MS F- 
value

P- 
value

Wear 3 104.868 34.9559 347.14 0.000

Temp 3 98.886 32.9620 219.21 0.000

CoF 3 0.286852 0.095617 928.95 0.000

Table 13  Model summary. 

Output S R-sq R-sq(adj) R-sq(pred)

Wear 0.317328 93.87% 93.60% 93.13% 

Temp 0.387773 90.63% 90.22% 89.51% 

CoF 0.0101455 97.62% 97.51% 97.36% 

Note: S: Standard error; R-sq: R-square; R-sq(adj): Adjusted 
R-square; R-sq(pred): Predicted R-square. 

Table 14  Regression equations 

Output Equation 

Wear –0.219 + 0.06689 FL + 0.08472 Load + 0.000600 SD 

CoF 0.12243 + 0.004338 FL + 0.004564 Load + 0.000020 SD

Temp 22.583 + 0.10889 FL + 0.07639 Load + 0.000438 SD 
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3.6.2  ANN predictions 

ANN modeling is a mathematical technique, exclusively 

useful for any correlation that is difficult to simulate 

with physical models. This is because of its ability  

to learn and recognize patterns from a series of input 

and output responses of example cases and repro-

ducibility. In recent years, ANN has been extensively 

used to predict the tribological [19−27], mechanical [34], 

and the physical properties [35] of materials. Among 

the artificial intelligence techniques, ANN was found 

to provide the best performance in predicting the 

tribological behavior of materials [36]. 

It was evident that the tribological behavior of 

chopped natural fiber reinforced polymer composite 

materials was mainly related to material properties 

such as fiber volume fraction, fiber length, fiber orien-

tation, fiber treatment, morphology, and interfacial 

strength, and operating conditions such as normal 

load, sliding distance, sliding velocity, temperature, and 

humidity. Accordingly, interpretation of tribological 

properties requires a huge experimental data, which 

consumes time and money extensively. Therefore, the 

main objective of the present work is to develop the 

best ANN model to predict the tribological behavior of 

40 vol% unidirectional short castor oil fiber reinforced 

epoxy resin composites for different fiber lengths, 

normal loads, and sliding distances other than the 

experimental data.  

Matlab platform was used for ANN training and 

testing. The inputs to the network were fiber length, 

load, and sliding distance. The outputs from the 

network were amount of wear, CoF, and interfacial 

temperature. Schematic diagram of single hidden 

layer ANN model constructed in Matlab was shown 

in Fig. 10. In the present study, the experimental data 

sets consist of 36 pair of results, which include wear, 

temperature, and CoF. Among them, a total of 30 

results were chosen for training set and 6 results for 

testing set. Within the training set, the ANN structure 

divides input and target vectors randomly into three 

sub sets as follows: 60% for training, 20% to validate 

and to stop training before over fitting, and the last 

20% to provide an independent test of the network. 

The testing set was used for validating the trained 

network. Finally, a total of 5 confirmatory experiments 

were tested to find the performance of the best trained  

 

Fig. 10  Schematic of single hidden layer ANN model used in 
present study. 

network. The best ANN architecture for predicting the 

tribological behavior of unidirectional short castor fiber 

reinforced epoxy resin composite was found by varying 

neural network type, no of hidden layers, no of neurons 

in each hidden layer and transfer function by using 

trainlm as training function. The optimization flow 

chart followed for obtaining best ANN architecture for 

single and multi-hidden layer was presented in Table 15. 

Table 15  Optimization flow chart. 

Optimization flow chart followed for obtaining best ANN 
architecture 

Single hidden layer Multi hidden layer 

 

 

 

Additionally, the input data was normalized between 

slightly offset values (0.1–0.9). After the neural network 

was trained, tested, and simulated successfully, the 

simulated data was de-normalized corresponded with 

normalization. The input and output variables were 

normalized between [0.1, 0.9] and de-normalized as 

per the formulae given below: 

 
 

     
min

n

max min

Normalization equation,

0.1 0.9 0.1
P P

P
P P

         (1) 
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        
max min

n min

De-normalization equation,

0.1
0.9 0.1

P P
P P P          (2) 

where 
n

P , 
max

P , and 
min

P  are the normalized, maximum, 

and minimum values of P, respectively, and P is the 

de-normalized value of 
n

P . 

The mean square error (MSE) was considered as a 

measurement criteria for a training set and the for-

mula for the same is given in Eq. (3). The test data was 

used to validate the network prediction capabilities. 

Test data presented to the trained network undergoes 

many iterations till the convergence criteria was 

satisfied and gives testing output results (predicted 

results). The error in the network response is calculated 

by comparing the predicted result with the actual 

result. Average error% and standard deviation for a 

particular network based on predicted test data was 

also calculated and the formulae for the same were 

given in Eqs. (4) and (5). Average total error% for 

representing upper deviation and lower deviation 

was calculated using Eq. (6). 

 


 
2

1

ˆMSE
n

i

Y Y                         (3) 

 


   
   

  


1

100
Avg error%, /

Actual

n

t

x X
Z N        (4) 

       


1/ 2

2
ˆ

SD
1

Z Z

N
                      (5) 

 Avg total error% SDZ                            (6) 

where i is the number of iterations from 1 to n; Y  is 

predicted value and Ŷ  is true value during validation, 

respectively. N is no of test data, x is predicted value, 

and X is experimental value, respectively during testing. 

Z is average error% and Ẑ  is mean of average error% 

of test data, respectively. 

Among various ANN models, ANN with bk- 

propagation learning algorithm had become the most 

popular model in engineering applications. Therefore, 

two back-propagation (feed-forward and cascade- 

forward) networks and layer recurrent networks were 

used in the present work. However, the performance 

of the network depends on the number of hidden 

layers and number of neurons. As there is no specific 

rule for selecting number of neurons and hidden 

layers, networks with different architectures are 

tested by trial and error and the network with the 

highest performance has been chosen. Hence, the 

optimization of ANN architecture is carried out to 

find the best predicted results. Once the optimal 

ANN architecture is designed and trained efficiently, 

then it can be recalled to do the prediction of the 

tribological performance. A preliminary investigation 

(Network Nos. 1−18) was carried out to find the best 

transfer function using single hidden layer (SHL) 

with 9 and 10 neurons and the data was presented in 

Table 16. Based on the average error% and standard 

deviation, it was found that Purelin transfer function 

provided the best results for single hidden layer than 

Table 16  Optimizing the transfer function in single hidden layer with 9 and 10 neurons. 

Wear Temp CoF Network 
No. 

Network type Training 
function 

No. of 
layers

No. of 
neurons

Transfer 
function Avg error% SD Avg error% SD Avg error% SD

1 Cascade forward back prop Trainlm 1 9 Logsig 25.86 39.29 3.46 5.36 16.51 23.42

2 Cascade forward back prop Trainlm 1 9 Purelin –0.40 5.46 0.11 0.57 1.16 2.88

3 Cascade forward back prop Trainlm 1 9 Transig 0.08 10.63 –0.08 1.32 3.73 6.51

4 Feed forward back prop Trainlm 1 9 Logsig 25.87 39.24 3.93 5.28 16.07 23.36

5 Feed forward back prop Trainlm 1 9 Purelin –2.48 7.34 –0.05 0.65 1.49 3.03

6 Feed forward back prop Trainlm 1 9 Transig –4.53 9.20 –1.80 3.30 2.51 4.16

7 Layer recurrent Trainlm 1 9 Logsig 28.55 39.84 3.56 5.34 17.58 23.56

8 Layer recurrent Trainlm 1 9 Purelin –1.25 7.57 0.21 0.66 2.02 3.56

9 Layer recurrent Trainlm 1 9 Transig 0.16 9.60 –0.02 1.74 0.79 3.84

10 Cascade forward back prop Trainlm 1 10 Logsig 25.71 39.21 3.48 5.35 15.67 23.58
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Tan-Sigmoid and Log-Sigmoid transfer functions. 

The upper limit and lower limit error% of wear for 

each ANN architecture was found using average 

total error%. The optimization procedure was carried 

out considering the error% of wear only as the 

error% of interfacial temperature and CoF were 

similar for most of the ANN models. Figure 11 repre-

sents the average total error% of wear for Network 

Nos. 1−18. Based on the average total error%, Purelin  

 

Fig. 11  Average total error% of wear for SHL-ANN architecture 
(Network Nos. 1−18). 

transfer function was found to provide the better 

results than Tan-Sigmoid and Log-Sigmoid transfer 

functions. 

Now, network type and number of neurons in 

single hidden layer are optimized for the best prediction 

of results by considering Purelin as transfer function 

and the results (Network Nos. 19−41) were shown in 

Table 17. Also, the average total error% of wear was 

presented in Fig. 12. Based on Table 17 and Fig. 12, it 

can be found that Cascade forward back propagation 

network with 9 neurons predicted the results accurately 

than other combinations. Therefore, the optimized 

network with single hidden layer for best prediction 

of tribological performance of unidirectional short 

castor oil fiber reinforced epoxy composites was 

Cascade forward back propagation network with 

Trainlm training function, Purelin transfer function, 

and 9 neurons in hidden layer. The total error% for 

optimized network (Network No. 21) was found to be 

±5% for the amount of wear, ±0.5% for temperature, 

and ±4% for the coefficient of friction. 

(Continued) 

Wear Temp CoF Network 
No. 

Network type Training 
function 

No. of 
layers

No. of 
neurons

Transfer 
function Avg error% SD Avg error% SD Avg error% SD

11 Cascade forward back prop Trainlm 1 10 Purelin –0.37 8.24 0.07 0.66 1.51 3.15

12 Cascade forward back prop Trainlm 1 10 Transig 5.57 8.69 0.30 1.00 4.27 6.28

13 Feed forward back prop Trainlm 1 10 Logsig 27.16 39.29 3.64 5.33 15.99 23.47

14 Feed forward back prop Trainlm 1 10 Purelin 0.12 7.01 0.09 0.64 1.12 2.86

15 Feed forward back prop Trainlm 1 10 Transig 6.76 12.05 –0.39 2.22 0.93 7.66

16 Layer recurrent Trainlm 1 10 Logsig 24.22 39.38 3.46 5.36 14.43 23.50

17 Layer recurrent Trainlm 1 10 Purelin –1.85 6.54 0.07 0.68 1.86 3.47

18 Layer recurrent Trainlm 1 10 Transig 4.79 6.06 0.16 0.88 0.48 3.61

Table 17  Optimizing the network type and number of neurons in single hidden layer. 

Wear Temp CoF Network 
No. 

Network type Training 
function 

No. of 
layers

No. of 
neurons

Transfer 
function Avg error% SD Avg error% SD Avg error% SD

19 Cascade forward back prop Trainlm 1 7 Purelin 0.54 6.02 0.28 1.08 2.23 4.38

20 Cascade forward back prop Trainlm 1 8 Purelin –0.48 7.17 0.03 0.82 1.24 2.88

21 Cascade forward back prop Trainlm 1 9 Purelin –0.40 5.04 0.11 0.57 1.16 2.58

22 Cascade forward back prop Trainlm 1 10 Purelin –0.37 8.24 0.07 0.66 1.51 3.15

23 Cascade forward back prop Trainlm 1 11 Purelin –0.53 6.34 0.29 0.63 0.53 2.77

24 Cascade forward back prop Trainlm 1 12 Purelin 29.03 36.19 –0.03 0.99 –1.77 3.08

25 Feed forward back prop Trainlm 1 7 Purelin –0.47 6.91 –0.12 0.70 1.05 2.87
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Fig. 12  Average total error% of wear for SHL-ANN archi-
tecture (Network Nos. 19−41). 

As mentioned earlier, MSE was considered as a 

measurement criterion for evaluating the validation 

performance of ANN model. The MSE of single 

hidden layer ANN architectures (Network Nos. 1−41) 

were represented in Fig. 13. The MSE of optimized 

network (Network No. 21) can be found to be very low 

indicating that the optimized ANN model captured 

the nonlinear behavior of experimental data quite 

well. MSE of optimized network (Network No. 21) 

was 0.001828 and can be seen in Fig. 14. 

Regression plots for the optimized network (Network 

No. 21) were represented in Fig. 15. The plots represent  

 

Fig. 13  Mean square error of SHL- ANN architecture (Network 
Nos. 1−41). 

 

Fig. 14  Performance plot of optimized SHL-ANN architecture 
(Network No. 21). 

(Continued) 

Wear Temp CoF Network 
No. 

Network type Training 
function 

No. of 
layers

No. of 
neurons

Transfer 
function Avg error% SD Avg error% SD Avg error% SD

26 Feed forward back prop Trainlm 1 8 Purelin 0.25 7.56 -0.02 0.60 0.90 2.76

27 Feed forward back prop Trainlm 1 9 Purelin –2.48 7.34 -0.05 0.65 1.49 3.03

28 Feed forward back prop Trainlm 1 10 Purelin 0.12 7.01 0.09 0.64 1.12 2.86

29 Feed forward back prop Trainlm 1 11 Purelin –1.08 6.57 0.15 0.69 0.42 2.66

30 Feed forward back prop Trainlm 1 12 Purelin –0.83 7.04 0.21 0.62 1.61 3.37

31 Feed forward back prop Trainlm 1 13 Purelin –1.30 6.86 -0.17 0.82 1.09 2.74

32 Feed forward back prop Trainlm 1 14 Purelin –1.44 7.54 0.11 0.62 0.71 2.72

33 Feed forward back prop Trainlm 1 15 Purelin –1.38 5.80 -0.06 0.75 1.20 2.70

34 Layer recurrent Trainlm 1 7 Purelin –0.91 6.07 -0.34 0.79 1.92 3.56

35 Layer recurrent Trainlm 1 8 Purelin –0.26 6.83 -0.01 0.82 0.92 2.83

36 Layer recurrent Trainlm 1 9 Purelin –1.25 7.57 0.21 0.66 2.02 3.56

37 Layer recurrent Trainlm 1 10 Purelin –1.85 6.54 0.07 0.68 1.86 3.47

38 Layer recurrent Trainlm 1 11 Purelin –1.82 7.31 0.07 0.81 1.93 3.36

39 Layer recurrent Trainlm 1 12 Purelin –1.51 6.28 0.07 0.63 0.86 2.99

40 Layer recurrent Trainlm 1 13 Purelin 1.81 7.73 -0.07 0.83 1.41 2.84

41 Layer recurrent Trainlm 1 14 Purelin 8.28 21.91 -0.05 1.29 4.36 7.22
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Fig. 15  Regression plot of optimized SHL-ANN architecture 
(Network No. 21). 

the training errors, validation errors, and test errors 

for the amount of wear, interface temperature, and 

coefficient of friction. The closeness between the data 

clusters line with central lines will indicate the 

accuracy of the model. It can be observed from Fig. 15 

that most of the data was closer to the central line 

which demonstrates that the developed ANN model 

was more accurate. The overall correlation coefficient 

was 0.99, which indicates good agreement between 

the test results and the SHL-ANN model prediction 

results. The best linear fit was indicated by a dashed 

line. 

Now the attempt was made to improve the 

prediction accuracy further using multi hidden layer 

(MHL) network. By Kolmogorov’s theorem, it was 

reported that any function could be approximated by 

at most four layers [37, 38]. Therefore, various ANN 

architectures in the range from two to four layers 

were analyzed. Initially, the different networks were 

tested with 2, 3, and 4 hidden layers with 9 neurons 

in each hidden layer using Trainlm and Purelin as 

training and transfer functions, respectively, and the 

corresponding results (Network Nos. 42−50) were pre-

sented in Table 18. Also, the average total error% of 

wear was presented in Fig. 16. Considering Table 18 and 

Fig. 16, it can be found that MHL-ANN architectures 

with 3 hidden layers predicted the results accurately 

than those with 2 and 4 hidden layers. It is also found 

that feed forward back propagation network provided  

 

Fig. 16  Average total error% for MHL-ANN architectures 
(Network Nos. 42−50). 

Table 18  Optimizing the network type and number of multi hidden layers. 

Wear Temp CoF Network 
No. 

Network type Training 
function 

No. of 
layers

No. of 
neurons

Transfer 
function Avg error% SD Avg error% SD Avg error% SD

42 Cascade forward back prop Trainlm 2 9, 9 Purelin 2.65 7.88 –0.02 0.77 0.65 2.53

43 Cascade forward back prop Trainlm 3 9, 9, 9 Purelin –0.98 6.73 –0.01 0.74 1.59 3.16

44 Cascade forward back prop Trainlm 4 9, 9, 9, 9 Purelin –2.21 7.07 0.00 0.64 0.88 2.83

45 Feed forward back prop Trainlm 2 9, 9 Purelin 1.92 6.25 0.11 0.64 0.61 2.68

46 Feed forward back prop Trainlm 3 9, 9, 9 Purelin –0.26 5.64 –0.11 0.81 1.30 2.97

47 Feed forward back prop Trainlm 4 9, 9, 9, 9 Purelin –4.09 8.48 –0.05 0.67 1.35 3.04

48 Layer recurrent Trainlm 2 9, 9 Purelin –0.97 8.21 0.10 0.72 1.14 2.92

49 Layer recurrent Trainlm 3 9, 9, 9 Purelin –1.98 7.66 0.25 0.66 1.48 3.15

50 Layer recurrent Trainlm 4 9, 9, 9, 9 Purelin –1.22 7.71 0.21 0.72 0.84 2.79
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the best results in multi hidden layer. 

The number of neurons was varied in three hidden 

layers to find the optimum number of neurons in each 

layer by considering feed forward back propagation 

as network type, trainlm as training function and 

purelin as transfer function, and the results of 

network Nos. 51 to 73 were shown in Table 19. Also, 

the average total error% of wear was presented in  

Fig. 17. Based on Table 19 and Fig. 17, it can be found 

that feed forward back propagation network with 9, 13, 

and 9 neurons in hidden layer 1, 2, and 3 respectively, 

predicted the results accurately than other combinations. 

Therefore, the optimized network with multi hidden 

layer for best prediction of tribological performance 

of unidirectional short castor oil fiber reinforced 

epoxy composites was feed forward back propagation 

network with Trainlm training function, Purelin  

 

Fig. 17  Average total error% for multi hidden layer ANN 
architectures (Network Nos. 51−73). 

transfer function, and 9, 13, 9 neurons in each hidden 

layer, respectively. The total error% for optimized 

network (Network No. 64) was found to be ±4.5% for 

the amount of wear, ±0.5% for temperature, and ±3% 

Table 19  Optimizing the number of neurons in multi hidden layers. 

Wear Temp CoF Network 
No. 

Network type Training 
function 

No. of 
layers 

No. of 
neurons

Transfer 
function Avg error% SD Avg error% SD Avg error% SD

51 Feed forward back prop Trainlm 3 9, 9, 1 Purelin 2.44 10.13 –0.23 1.07 0.57 2.54

52 Feed forward back prop Trainlm 3 9, 9, 3 Purelin 0.35 7.25 –0.16 0.77 1.12 2.88

53 Feed forward back prop Trainlm 3 9, 9, 5 Purelin –0.97 5.81 0.15 0.61 0.91 2.85

54 Feed forward back prop Trainlm 3 9, 9, 7 Purelin –1.19 8 –0.01 0.83 1.78 3.31

55 Feed forward back prop Trainlm 3 9, 9, 9 Purelin –0.26 5.64 –0.11 0.81 1.3 2.97

56 Feed forward back prop Trainlm 3 9, 9, 11 Purelin 1.09 7.36 –0.06 0.8 1.08 2.96

57 Feed forward back prop Trainlm 3 9, 9, 13 Purelin –1.9 7.79 0.24 0.58 0.99 2.87

58 Feed forward back prop Trainlm 3 9, 1, 9 Purelin 0.79 9.4 –0.33 1.11 0.65 2.74

59 Feed forward back prop Trainlm 3 9, 3, 9 Purelin –0.09 6.12 0.18 0.59 0.67 2.77

60 Feed forward back prop Trainlm 3 9, 5, 9 Purelin 0.5 7.93 0.04 0.75 0.75 2.89

61 Feed forward back prop Trainlm 3 9, 7, 9 Purelin 0.18 7.39 0.16 0.59 1.18 2.96

62 Feed forward back prop Trainlm 3 9, 9, 9 Purelin –0.26 5.64 –0.11 0.81 1.3 2.97

63 Feed forward back prop Trainlm 3 9, 11, 9 Purelin –1.03 7.96 0.13 0.61 0.31 2.32

64 Feed forward back prop Trainlm 3 9, 13, 9 Purelin 0.15 4.49 0.23 0.6 1.08 2.09

65 Feed forward back prop Trainlm 3 9, 15, 9 Purelin –2.08 6.72 –0.03 0.6 0.9 2.8

66 Feed forward back prop Trainlm 3 1, 13, 9 Purelin 1.08 9.63 –0.03 0.98 0.82 2.8

67 Feed forward back prop Trainlm 3 3, 13, 9 Purelin –1.71 6.59 0.26 0.63 1.47 3.26

68 Feed forward back prop Trainlm 3 5, 13, 9 Purelin –1.23 6.44 0.13 0.74 1.49 3.21

69 Feed forward back prop Trainlm 3 7, 13, 9 Purelin 0.91 6.87 0.05 0.6 0.66 2.8

70 Feed forward back prop Trainlm 3 9, 13, 9 Purelin 0.15 5.49 0.23 0.6 1.08 2.99

71 Feed forward back prop Trainlm 3 11, 13, 9 Purelin 0.16 6.44 0.06 0.67 2.16 3.85

72 Feed forward back prop Trainlm 3 13, 13, 9 Purelin 0.14 7.44 0.03 0.58 0.23 2.59

73 Feed forward back prop Trainlm 3 13, 13, 13 Purelin –0.35 8.31 -0.1 0.67 1.27 2.89
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for the coefficient of friction. 

The MSE of multi hidden layer ANN architectures 

(Network Nos. 42−73) were represented in Fig. 18. 

The MSE of optimized network (Network No. 64) can 

be found to be very low indicating that the optimized 

ANN model captured the nonlinear behavior of experi-

mental data quite well. MSE of optimized network 

(Network No. 64) was 0.0011701 and can be seen in 

Fig. 19. It can be observed that MSE of optimized 

MHL-ANN architecture (Network No. 64) was   

1.56 times lower than that of optimized SHL-ANN 

architecture (Network No. 21). 

Regression plots for the optimized network (Network 

No. 64) were represented in Fig. 20. The plots represent 

the training errors, validation errors, and test errors 

for the amount of wear, interface temperature, and 

coefficient of friction. It can be observed from Fig. 20 

that most of the data was closer to the central line 

which demonstrates that the developed ANN model 

was more accurate. The overall correlation coefficient  

 

Fig. 18  Mean square error of multi hidden layer ANN archi-
tectures (Network Nos. 42−73). 

 
Fig. 19  Performance plot of optimized multi hidden layer ANN 
architecture (Network No. 64). 

 

Fig. 20  Regression plot of optimized multi hidden layer ANN 
architecture (Network No. 64). 

was 0.99, which indicates good agreement between 

the test results and the MHL-ANN model prediction 

results. The best linear fit was indicated by a dashed 

line with high goodness of fit. 

The best predicted single and multi hidden layer 

networks are provided in Table 20. The results 

emphasize that the generalization ability is the main 

quality indicator of a neural network, to predict the 

output of unseen test data accurately. This concludes 

ANN modeling delivers useful information from 

relatively small experimental databases, leading to 

savings in material, cost, and time. Cascade forward 

back propagation network was found to provide better 

estimate of results for single hidden layer, whereas feed 

forward back propagation network was found to 

provide better estimate of results for multi hidden 

layer. Purelin transfer function with trainlm training 

function predicted best results in both single and 

multi hidden layers. The results depicted in Table 18 

were within the acceptable range and hence can be 

used for predicting the results of unknown data of 

unidirectional short castor oil fiber reinforced epoxy 

composites. The confirmation results provided in 

Section 3.7 shows the reliability of ANN prediction 

models. 
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3.7  Confirmation tests 

The results obtained from the best single and multi 

hidden layers ANN models are compared with the 

linear regression results and experimental results. 

From Tables 21−23, it is obvious that ANN model  

predicted the results with less error than the regression 

model. Therefore, ANN models were found to be 

more precise than the linear regression models. Within 

the ANN models, SHL-ANN model was found to 

Table 20  Best predicted network for SHL-ANN and MHL-ANN architectures. 

Wear Temp CoF 
Network type Training 

function 
Hidden 
layers 

No. of 
neurons

Transfer 
function Avg error% SD Avg error% SD Avg error% SD

Cascade forward back prop Trainlm 1 9 Purelin –0.40 5.04 0.11 0.57 1.16 2.58

Feed forward back prop Trainlm 3 9, 13, 9 Purelin 0.15 4.49 0.23 0.6 1.08 2.09

Table 21  Confirmatory tests for the amount of wear. 

Prediction 

Regression SHL-ANN MHL-ANN FL Load SD Experimental 
results 

Predicted 
results Error% Pred Error% Pred Error% 

5 25 2,500 3.45 3.733 8.20 3.637 5.42 3.605 4.49 

5 40 2,700 5.18 5.124 –1.08 5.172 –0.15 5.207 0.52 

10 35 2,500 4.90 4.915 0.31 4.861 –0.80 4.88 –0.41 

15 25 1,500 3.74 3.802 1.66 3.782 1.12 3.786 1.23 

20 40 2,800 5.86 6.188 5.60 6.067 3.53 6.050 3.24 

Table 22  Confirmatory tests for temperature. 

Prediction 

Regression SHL-ANN MHL-ANN FL Load SD Experimental 
results 

Predicted 
results Error% Pred Error% Pred Error% 

5 25 2,500 26 26.132 0.51 26.104 0.40 26.085 0.33 

5 40 2,700 27 27.366 1.35 27.308 1.14 27.298 1.10 

10 35 2,500 27 27.441 1.63 27.397 1.47 27.39 1.44 

15 25 1,500 27 26.783 –0.80 26.805 –0.72 26.835 –0.61 

20 40 2,800 29 29.043 0.15 29.017 0.06 29.034 0.12 

Table 23  Confirmatory tests for CoF. 

Prediction 

Regression SHL-ANN MHL-ANN FL Load SD Experimental 
results 

Predicted 
results Error% Pred Error% Pred Error% 

5 25 2,500 0.318 0.308 –3.14 0.309 –2.83 0.31 –2.52 

5 40 2,700 0.378 0.381 0.79 0.380 0.53 0.38 0.53 

10 35 2,500 0.369 0.376 1.90 0.375 1.63 0.376 1.90 

15 25 1,500 0.345 0.332 –3.77 0.333 –3.48 0.335 –2.90 

20 40 2,800 0.455 0.448 –1.54 0.448 –1.54 0.449 –1.32 
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predict the results with less error than the MHL-ANN 

model. ANN models thus demonstrated as a feasible, 

reliable, and an effective way for predicting the 

tribological behavior of unidirectional short castor oil 

fiber reinforced epoxy resin composite. 

4  Conclusions 

The extraction of castor oil fiber from plant stalk and 

fabrication of epoxy composites with short castor oil 

fiber of 40% volume fraction with different fiber 

lengths was successful. Experimental investigations and 

predictions of tribological performance of developed 

epoxy composites are summarized. The chopped 

fiber length of 5 mm has produced good tribological 

results than those of 10, 15, and 20 mm when sliding 

against stainless steel under dry sliding conditions. 

Hence, 5 mm fiber length can be considered as the 

best fiber length among 5–20 mm fiber lengths for  

the best tribological performance. The lowest wear of 

2.05 mg and the lowest CoF of 0.239 were observed 

for 5 mm fiber length. The fiber length of the composite 

is proportionate to the amount of wear, CoF, and 

interfacial temperature. ANOVA results indicated 

that load is the highly influential parameter affecting 

the amount of wear, CoF, and interfacial temperature 

followed by fiber length and sliding distance. 

Addition of 40 vol% unidirectional short 5 mm-fiber 

length castor oil fibers improved the wear of epoxy 

by 65% to 70%, CoF by 31% to 40%, and interfacial 

temperature by 19% to 24%. The morphology of 

worn surfaces of the composites was also studied. 

The SEM image of 5 mm fiber length composite 

showed good fiber and matrix interface. Thus, the 

results emphasize that short castor oil fiber reinforced 

epoxy composites with 5 mm fiber length produce 

better tribological performance, can better suit for 

tribological material replacement of conventional 

materials in automotive and structural industries. 

The wear behavior of the composites was predicted 

using regression, ANN-single hidden layer, and ANN- 

multi hidden layer models. Regression equations 

were developed with good fit and several attempts 

were made to obtain the best ANN architecture with 

single and multihidden layers. Regression models 

predicted the results with ±8%. Cascade forward back 

propagation network with architecture - -  1
3 9 3 , 

Trainlm and Purelin as training and transfer functions, 

respectively, provided the best prediction results in 

single hidden layer model with ±5%. Feed forward 

back propagation network with architecture - -  1
3 9  

- -      2 3
13 9 3 , Trainlm and Purelin as training and 

transfer functions, respectively, provided the best 

prediction results in multi hidden layer model with 

±4.5%. ANN with multi hidden layer architecture 

was found to predict the tribological performance 

quite well followed by ANN with single hidden layer 

architecture and regression models. The developed 

prediction models have higher efficiency and reliability 

to analyze the tribological performance of unknown 

data for the fabricated composites. 
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