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Abstract: Over the past twenty years, thin film lubrication (TFL) theory has been used to characterize the 

molecular behaviors in lubrication films thinner than 100 nm, effectively bridging the gap between 

elastohydrodynamic lubrication and boundary lubrication. Unfortunately, to date, the TFL molecular model 

proposed in 1996 has not been directly proven by experimental detection. Herein, a method based on 

surface-enhanced Raman spectroscopy was developed to show both the packing and orienting of liquid 

molecules in the TFL regime. By trapping liquid crystal molecules between a structured silver surface and a glass 

surface, molecular ordering states dominated by shear effect and surface effect were successfully distinguished. 

A nanosandwich structure consisting of an adsorbed layer, an ordered-molecule layer, and a fluid layer was 

demonstrated. Molecule imaging in TFL was achieved. Our results illustrate the molecular behaviors and 

lubrication mechanism in nanoconfined films and facilitate the lubrication design of nanoelectromechanical 

and microelectromechanical systems. 
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1  Introduction 

Molecules confined in a nanogap present special 

properties different from those at the macroscale [1–4]. 

In the case of a confined liquid film, previous reports 

demonstrated that, when the thickness of a film steps 

down to the nanoscale, solid-like structured molecules 

are formed, the friction is reduced, and the viscosity 

is increased [5, 6]. In tribological systems, molecular 

behaviors have attracted much attention owing to their 

significant effect on lubrication performance [7–11]. 

Researchers have already proposed many models to 

understand the behaviors of these molecules.  

In 1922, Hardy and Doubleday proposed that, exactly 

two layers of molecules exist between wetting sliders 

and they are highly oriented when others are squeezed 

out [12, 13]. Subsequently, some models of multi-layer 

molecules were suggested, many of them resulted 

from friction or wear tests [14–16]. However, many 

researchers admitted that very thin films are difficult 

to study [17]. Georges et al. reported an “immobile 

layer” for hexadecane using surface force apparatus 

[18]. Owing to the ultrathin film interferometry, Spikes 

et al. directly observed a sub-nanometer liquid film 

and believed that there is no boundary film for 

hexadecane and both mono- and multi-layered struc-

tures exist for stearic acid within a nanogap without any 

layered orientations [19–22]. This updated technique 

suggested a layer structure by testing the thickness 

of the liquid film. These findings have resulted in  

a series of models built to approximate the realness 

of molecules within the gap; however, neither of the 
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aforementioned models offers a reasonable explanation 

for our observations in the current work.  

As a branch of nanotribology, thin film lubrication 

(TFL) offered an alternative to interpret some anomalies 

that cannot be predicted by classical lubrication 

theory [23–26]. In 1996, the TFL molecular model was 

developed by Luo et al. [23]. It proposed that different 

layers, composed of a fluidic film, ordered film, and 

adsorbed film, will be formed, and the lubricant 

molecules are differently oriented in each layer owing 

to the surface influence and shearing force. The set-up 

of TFL theory and related models outlined a com-

prehensive map for lubrication regimes while offering 

insight into the molecular pattern in a confined liquid 

film [27]. However, to date, it has been difficult    

to observe and further confirm the TFL model via 

traditional techniques, because differentiating interfacial 

molecular information from bulk liquid nanofilms in 

an actual fluidic/lubrication process is difficult [28]. 

Zhang et al., in Part One of this serial work, investigated 

the molecular behavior of additives in TFL in the 

contact region and the orientation of lubricant molecules 

in the fluid layer [29]. They observed that polar 

additive molecules exhibited an enrichment effect in 

the Hertz contact region when added to a nonpolar 

base oil. The enrichment of additive molecules enhanced 

the film-forming ability of the lubricant and led to a 

reduction in the friction coefficient up to 61%. However, 

the orientation of lubricant molecules near the solid 

surface is still unclear. 

In this study, we develop a novel approach by 

combining the conventional Raman spectroscopy 

and surface-enhanced Raman spectroscopy (SERS). We 

observed that a thin Ag nanorod film deposited on  

a lower plano-convex surface could not only serve  

as an efficient SERS substrate to enhance the Raman 

intensity of interfacial molecules in the nanoconfined 

film dramatically but also induce a remarkable effect 

on the alignment of the adsorbed molecules [30]. 

Furthermore, we successfully distinguished the molecular 

information from the adsorbed layer and fluidic layer 

of the TFL. Our results demonstrate the likely influence 

of the surface energy and shearing force on the 

lubrication film. This work extends the applicability 

of the TFL model and initiates research on lubrication 

at the molecular level.   

2 Experimental details 

We employed a convex-on-disk friction test platform 

equipped with a Raman spectrometer as our basic 

experimental apparatus, 6CB (p-n-hexyl-p’-cyanobiphenyl, 

 
Fig. 1 (a) Schematic of the experimental apparatus and 6CB in the nanoconfinement, (b) illustration of an LC cell; θ is the angle 
between the direction of the polarized laser and the alignment direction of 6CB, (c) Raman spectra of 6CB recorded with a laser 
polarized at different angles, where θ is marked for each line. 
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C6H13(C6H6)2CN) was chosen as the testing lubricant. 

As a kind of rod-like uniaxial nematic liquid crystal 

(LC), 6CB represents a unique combination of ordering 

and fluidity at both macro- and nanoscale [31–35]. 

Owing to the essential nature of nematic LC, either 

planar or homeotropic structures could be tailored 

and detected easily [36–38]. Figure 1(a) shows the 

schematic of the experimental apparatus, where a 

rolling point contact condition was set up between the 

upper SiO2 plate (diameter: 100 mm; thickness: 4 mm) 

and the lower lens.  

For the application of SERS, a Ag nanorod film was 

deposited through oblique angle deposition (OAD). 

A K9 plano-convex lens (purchased from Daheng 

Optics, China, φ = 25.4 mm, R = 90.44 mm, T = 4 mm), 

shown in extended Fig. 2(a), was used as the lower 

substrate. The fabrication of the Ag SERS substrate is 

shown in Fig. 2(b). To improve the binding capacity 

between the Ag nanorods and the K9 substrate, a 

50-nm-thick flat Ti film was prepared on the substrate 

in advance through electron beam evaporation (GLAD, 

Thermionics, Inc.) [39, 40]. Subsequently, slanted Ag 

nanorods were deposited via the OAD technique in 

an electron-beam system. Here, the incident angle of 

the vapor flux α was set at ~83° off the surface normal 

of the substrates, with a deposition rate of 0.75 nm/s. 

The thickness of the Ag film is 500 nm. A detailed 

procedure has been presented in previous reports 

[30]. Owing to the convex structure, the deposited Ag 

nanorods could only partially cover the substrate. As  

 

Fig. 2 (a) Illustration of a K9 plano-convex lens, (b) schematic 
of the OAD technique, (c) SEM image of the K9 plano-convex 
covered with Ti and Ag films, (d) SEM image of Ag nanorods. 

shown in Fig. 2(c), a boundary line between the Ti 

film (dark) and Ag film (bright) could be observed. 

According to the principles of the OAD technique, the 

growth direction of the Ag nanorods is perpendicular 

to the boundary line. A scanning electron microscopy 

(SEM) image of the Ag nanorods is displayed in   

Fig. 2(d). 

To ensure that the contact area is located in the 

Ag-coated region, the plano-convex lens was supported 

by a wedge-shaped lens carriage. By applying a load 

on the lens against the SiO2 plate, a nanoscale 6CB 

absorption film was formed between the lens and 

SiO2 plate. The thickness of the absorption film was 

measured via a previously developed technique of 

relative optical interference intensity [41]. According 

to the Hamrock-Dowson formula, the thickness of 

the 6CB film in the contact center is proportional to 

the shearing rate [42]. 

An in situ Raman spectrometer equipped with an 

optical microscope was employed for studying the 

alignment behavior of 6CB. The Raman signal of  

6CB was collected in backscattering geometry (180° 

scattering angle) using a He-Ne laser (λ = 514 nm 

emission wavelength) as the excitation source. The 

orientation of the 6CB molecules was measured using 

a polarized laser. Based on the results reported by 

Zhang et al., a single 6CB molecule could be regarded 

as having a uniaxial and rod-like structure [43]. As 

the major component of the 1,606 cm−1 mode in the 

Raman spectrum is parallel to the molecular axis, the 

intensity of 1,600 cm−1 changes with the angle of the 

polarized laser when the 6CB molecules are aligned 

in a specific direction. A LC cell was employed to 

detect the relationship between the intensity of  

1,600 cm−1 and the direction of the polarized laser, as 

shown in Fig. 1(b). The angle between the polarized 

light and the direction of the alignment layer was 

defined as θ. 6CB was added into the cell, and its 

molecules were oriented along the blue arrow marked 

in Fig. 1(b). The Raman spectra of 6CB recorded with 

a laser polarized at different angles are displayed in 

Fig. 1(c). They show that, when the polarization of the 

laser is perpendicular to the molecular axis (θ = 90°), 

the intensity of the peak at 1,606 cm−1 is at a minimum, 

whereas when the polarization of the laser is parallel 

to the molecular axis (θ = 0°/180°), the intensity is at 

a maximum. Thus, the orientation of 6CB could be 
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obtained by calculating the polarization anisotropy of 

the C–C aromatic vibration mode of 6CB at 1,606 cm−1. 

Moreover, the ratio of the maximum intensity and 

minimum intensity at a given wavenumber, which 

indicates the degree of order of the molecules, can be 

defined as S (index of degree of order). Theoretically, 

the value of S ranges from 1 to infinity. When S is 1, 

the molecules are completely disordered, without any 

specified orientation. The larger the value of S, the 

more ordered the molecules are. However, practically, 

limited by the noise baseline of the instrument, even 

for well-ordered molecules like the molecules in a LC 

cell, the value of S is only 4.56.  

In a typical experimental process, the applied 

normal load is 0.2 N, resulting in a nanocell diameter 

of 150 μm. Raman spectra were recorded with a 

spectral resolution of 2 cm−1 for values of the angle θ 

(formed by the direction of light polarization and the 

direction of rotating speed) varying from 0° up to 360° 

in steps of 15°. The integral time for each spectrum 

was 10 s, and the laser power was 150 mW. For contrast, 

the same lenses without any deposited film but covered 

with a 500-nm-thick flat Ag film were also employed 

as substrates. The integral time for each spectrum was 

60 s for the transparent K9 lens and 10 s for the Ag 

substrate, and the laser power was 150 mW. In addition, 

various shearing speeds, such as 50 mm/s, 10 mm/s, 

and 200 mm/s were used, leading to different influences 

on the alignment performance of 6CB.  

3 Results and discussion 

3.1 Orientation of molecules adsorbed on Ag 

nanorods during lubrication 

Our new approach induced both the Ag nanorod 

surface and the shear-flow field to direct the alignment 

of the 6CB molecules. As shown in Fig. 3(a-1), mea-

surement was performed in the X-Y plane, which is 

parallel to the surface of the tribopairs. The directions 

of shearing and the Ag nanorods are both depicted; 

the Y-axis was defined as 0°, whereas the projection 

of the deposited Ag nanorods in the X-Y plane was 

along the X-axis direction. Figure 3(a-2) displays the 

microscopic image of a point contact confined between 

the Ag nanorod film and SiO2 plate in the initial stage, 

with a laser focused on the red dot to collect the signal.  

Figures 3(b-1) to 3(b-3) show the relative Raman 

intensity of the adsorbed 6CB molecules at 1,606 cm−1 

during the shearing process. The Raman results show 

that, in the static state, the maximum Raman intensity 

is obtained when the laser polarization is perpendicular 

to the growth direction of the Ag nanorods, whereas 

the minimum Raman intensity is obtained when the 

laser polarization is along the direction of the nanorods. 

It is observed that the orientation of 6CB on the Ag 

nanorods was along the 0° direction when the value 

of S was 1.42. In the subsequent step, a shear-flow 

field was applied along the Y-axis by rotating the 

SiO2 plate at a speed of 100 mm/s. After shearing for 

30 s, the Ag film on the lens surface was slightly worn. 

Figure 3(b-2) shows the relative Raman intensity at this 

moment, with the radar graph showing that the 6CB 

molecules were now randomly oriented, when S is 

approximately 1. After rotating the plate at 100 mm/s 

for approximately 400 s, the Ag film on it entered into 

a steady state. Interestingly, in this case, the orientation 

of the measured 6CB molecules on the Ag nanorod 

film was along the 90° direction, when the value of S 

was 2.23, as shown in Fig. 3(b-3), rather than in the 

flow direction. It is concluded that the ordering state 

of the 6CB molecules may be greatly affected by the 

morphology of the Ag nanorods.  

To verify the assumption described above, the 

morphology of the Ag nanorods was observed at 

different shearing states. Figure 3(c-1) displays the SEM 

graph of the Ag nanorods in the contact area at the 

initial state (Fig. 3(b-1)), Fig. 3(c-2) shows the SEM graph 

of the Ag nanorods when shearing was conducted for 

30 s (Fig. 3(b-2)), during which the Ag nanorods were 

pressed down and randomly arranged. Figure 3(c-3) 

shows the SEM image of the Ag nanorods after 

shearing for 400 s, showing that the surface of the Ag 

nanorods was flat. The SEM images indicate that the 

morphologies of the measuring points in Figs. 3(b-1) 

to 3(b-3) are distinct, which indicates that the surface 

structure of the Ag film, rather than the applied 

flow field, was the primary driving force orienting 

the molecules in the measured 6CB nanofilm. 

3.2 Orientation of molecules on different substrates 

The crucial question that arises now is whether this is 

a phenomenon specific to the Ag nanorod surface. 
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The behavior of 6CB on other substrates has been 

investigated during the shearing process, by applying 

a series of rotating speeds. A K9 plano-convex lens 

and a K9 plano-convex lens covered with a flat Ag 

film were used as bases for contrast, and the results 

are depicted in Fig. 4. Surprisingly, the shapes of the 

Raman radar graphs were different for the three groups. 

For the surface consisting of Ag nanorods aligned along 

the X-axis, the maximum relative Raman intensity was 

still aligned in the 90° direction (Figs. 4(A-1)−4(A-3)); 

for the K9 lens surface, the maximum relative Raman 

intensity was aligned in the 0° direction (Figs. 4(B-1)− 

4(B-3)); whereas for the flat Ag surface, the relative 

Raman intensity was more or less equal at various 

polarized angles (Figs. 4(C-1)−4(C-3)). 

It is generally accepted that a fluid film will be 

formed in the gap between two surfaces when a flow 

field is applied, and LC molecules prefer to align in 

the flow direction under shearing once they serve as 

the nanofilm [44]. However, notably, owing to the 

SERS effect, most of the Raman signal recorded at the 

Ag surface, for both the Ag nanorods and the flat Ag 

film, originates from the 6CB molecules adsorbed  

on or near the Ag surface [45, 46]. This inference is 

drawn from the contrast between the intensities of 

the Raman spectra for the three substrates used, as 

shown in Fig. 5(a). The Raman spectra were collected 

under a shearing speed of 200 mm/s, and the integral 

time for each spectrum was 10 s. We observed that, 

on the ordinary K9 lens, the Raman intensity was 

fairly low, but it could be enhanced up to 30 times or 

103 times when a flat Ag film or Ag nanorod film 

were employed, respectively. This enhancement was 

caused by the SERS effect on the Ag nanostructure, 

and it has been reported that the enhanced range is 

approximately 5 nm near the surface [47]. Therefore,  

 

Fig. 3 (a-1) Schematics of a K9 plano-convex lens substrate covered with a Ag nanorod film under shearing, the X-Y plane was parallel to 
the surface, in-plane shearing was along the Y-axis, and the direction of the Ag nanorods was along the X-axis, here, the Y-axis was 
defined as 0°; (a-2) microscopic image of the contact area under shearing (rotating speed: 100 mm/s) at the initial state; (b) relative 
Raman intensity at different θ values (measuring point was marked as a red point in Fig. 3(a-2)), relative intensity of 1,600 cm−1 in the 
corresponding Raman spectra expressed via a radar graph at the initial state (Fig. 3(b-1)), after shearing for 30 s (Fig. 3(b-2)) and after 
shearing for 400 s (Fig. 3(b-3)); (c) SEM images of the Ag film around the measuring point before and after shearing: Fig. 3(c-1) initial 
static state, Fig. 3(c-2) after shearing for 30 s, and Fig. 3(c-3) after shearing for 400 s. 
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even when a fluid film is formed, the information 

obtained through Raman spectra on the SERS substrate 

originates mostly from the adsorbed molecular layer 

on the surface.  

 

Fig. 4 (a–c) Illustration of the lower substrate. Relative Raman intensity graphs of 6CB on different substrates under shearing. The 
shear-flow speed is marked at the top of each pair. ((a-1)–(a-3)): performed on Ag nanorod film bases; ((b-1)–(b-3)): performed on K9 
plano-convex lens; ((c-1)–(c-3)): performed on flat Ag film bases. 

 
Fig. 5 (a) Raman spectra collected on the K9 lens, flat Ag film, and Ag nanorod film under shearing at a speed of 200 mm/s. The inset
panel is the spectrum on the K9 lens. The adsorption of 6CB on Ag is depicted in the red rectangle; (b) illustration of 6CB alignment in a 
nanofilm under a shear-flow field.  
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3.3 Model of molecular orientation along the 

thickness of the lubricant film 

As indicated in Fig. 5(a), the peak at 2,230 cm−1 in the 

Raman spectra recorded on the SERS substrates was 

broadened, which shows that the cyano group (C-N) 

was influenced by Ag [48]. According to previous 

studies, 6CB molecules are inclined to be adsorbed 

vertically on the Ag surface via C-N bonds as depicted 

in the inset panel in Fig. 5(a) [49]. Thus, in the initial 

static state, the alignment of the 6CB molecules was 

perpendicular to the projection of the Ag nanorods in 

the X-Y plane, as per our measurements. During the 

shearing procedure, we assumed that the Ag nanorods 

had been pressed down and reoriented in the shearing 

direction, causing the 6CB molecules to be adsorbed 

onto the rubbed Ag nanorods aligned perpendicularly 

to the shearing direction, regardless of how the Ag 

nanorods were tilted initially.  

Based on the above discussions, a layered molecular 

model demonstrating the molecular orientation in a 

nanofilm in the TFL regime was developed, as shown 

in Fig. 5(b). Near the surface, a thin adsorption  

film was formed, which is marked as the first layer I. 

In this case, the 6CB molecules were oriented perpen-

dicularly to the Ag surface owing to the influence of 

surface adsorption, rather than the shearing force. 

The layer marked as III represents the fluid layer in 

the middle of the nanofilm. From the results collected 

on the K9 lens, it could be observed that 6CB in  

the fluid layer aligned along the flow direction. We 

supposed that, between layer I and layer III, an 

ordered-molecule layer (marked as layer II) would 

exist, and the molecules in this layer are oriented via 

an induction force. Thus, it could be summarized that 

the molecules under a flow field confined in a nanocell 

can orient in different ways; for molecules near or on 

surfaces, the ordering behavior is affected significantly 

by the surface adsorption, whereas the alignment of 

molecules in the middle fluidic layer is affected by 

the shearing force. This conclusion is consistent with 

the TFL model proposed by Luo et al. [23]. In this 

work, we have successfully demonstrated the layered 

molecular structure in TFL regime. Different materials 

will perform different lubrication characteristics. In 

the work reported in Ref. [50], a robust liquid super-

lubricity has been achieved in TFL regime, which 

facilitates the industrial applications of TFL theory.  

4 Conclusions 

In conclusion, we developed a method to control and 

to observe the alignment of nematic LC molecules 

confined in a nanogap. A lens-on-plate friction testing 

platform was used to create a nanocell with a Ag 

nanorod film deposited on the lower surface. The 

orientation of the 6CB molecules was determined by 

the growth direction of the Ag nanorods in the static 

state, caused by the vertical adsorption of the 6CB 

molecules on Ag through C-N bonds. Under a shear- 

flow field, a layered molecular structure consisting of 

6CB molecules was obtained. In the layered structure, 

the 6CB molecules aligned vertically near the surfaces 

but horizontally in the fluid layer. It was indicated 

that the Ag nanorods would be reoriented to the flow 

direction by the shearing force, resulting in the 6CB 

molecules adsorbed on it being aligned perpendicularly 

to the shearing direction. Finally, the molecules in the 

TFL regime could be successfully imaged. We believe 

that our findings will be crucial for studies on TFL 

and will facilitate the development of new methods 

for the in situ observation of molecular alignment 

patterns in films. 
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