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Abstract: We propose a model based on extreme value statistics (EVS) and combine it with different models for 

single-asperity contact, including adhesive and elasto-plastic contacts, to derive a relation between the applied 

load and the friction force on a rough interface. We determine that, when the summit distribution is Gumbel 

and the contact model is Hertzian, we obtain the closest conformity with Amonton’s law. The range over which 

Gumbel distribution mimics Amonton’s law is wider than that of the Greenwood–Williamson (GW) model. 

However, exact conformity with Amonton’s law is not observed for any of the well-known EVS distributions. 

Plastic deformations in the contact area reduce the relative change in pressure slightly with Gumbel distribution. 

Interestingly, when elasto-plastic contact is assumed for the asperities, together with Gumbel distribution for 

summits, the best conformity with Amonton’s law is achieved. Other extreme value statistics are also studied, and 

the results are presented. We combine Gumbel distribution with the GW–McCool model, which is an improved 

version of the GW model, and the new model considers a bandwidth for wavelengths α. Comparisons of this 

model with the original GW–McCool model and other simplified versions of the Bush–Gibson–Thomas theory 

reveal that Gumbel distribution has a better conformity with Amonton’s law for all values of α. When the 

adhesive contact model is used, the main observation is that there is some friction for zero or even negative 

applied load. Asperities with a height even less than the separation between the two surfaces are in contact. 

For a small value of the adhesion parameter, a better conformity with Amonton’s law is observed. The relative 

pressure increases for stronger adhesion, which indicates that adhesion-controlled friction is dominated by 

load-controlled friction. We also observe that adhesion increases on a surface with a lower value of roughness. 
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1  Introduction 

Friction between solid bodies is an extremely complex 

physical phenomenon, acting on many scales [1–5]. 

Amonton claimed that frictional force is proportional 

to the normal load and is independent of the apparent 

contact surface, relative velocity, and temperature. In 

other words, there is a linear dependence between 

normal load and friction force for a wide range of 

loads and friction coefficient is merely dependent on 

the material of the two surfaces in contact [6]. Various 

settings [7–9] were used to test these claims. Amonton’s 

law does not hold completely true in all cases. However, 

for the first order of approximation, the friction law 

is formulated very simply as 

f F                   (1) 

where μ is the friction coefficient and F is the normal 

load. This first-order approximation serves many 

engineering applications. However, its physical basis 

remains a mystery. It is known that many qualifications 

to this simple relation hold. Coulomb discovered that 

the static frictional force between two surfaces increases 

with the contact time [10, 11]. The creep process is a 

possible mechanism that leads to this phenomenon. 

Owing to creep processes, the real contact area grows 

with time and this growth is faster at higher tem-

peratures [12]. Hence, the static frictional force has a 
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logarithmic dependence on time, because an increase 

in the contact area reduces the speed of the creep 

process [13]. The linear dependence of the basic 

frictional force is not valid for all force domains. 

Although the linearity holds for several orders of 

magnitude of the normal load for metallic materials 

[14], it breaks down for materials such as polymers 

and elastomers or soft metals [15]. The frictional force 

is not independent of roughness. It shows a negligible 

dependence on it. The friction coefficient for extremely 

smooth metal surfaces is larger than that for rough 

surfaces [8]. In addition, further deviations from the 

simple Amonton’s law have been observed in rubber, 

which exhibits unusual asymmetry in the friction 

direction [9]. With regard to sliding friction, in the first 

approximation, the coefficient of friction is independent 

of speed [6], although experiments show that friction 

force has some dependency on the sliding velocity. 

Friction force remains constant for moderate velocities 

whereas it decreases for high velocities. For very small 

velocities, an increase in velocity results in an increase 

in friction force [6]. Various dynamic models were 

suggested to explain the velocity dependence of 

friction [16, 17].  

In addition to all the aforementioned deviations 

from Amonton’s law, extensive theoretical efforts have 

been made to substantiate Amonton’s claim [17, 18]. 

One of the early explanations of Amonton’s law was 

given by Bowden and Tabor [14]. Actual contact occurs 

only at the summits because of surface roughness. 

They considered complete plastic contact and therefore, 

the actual area of contact is connected to hardness 

indentations. The total area of actual contact A is 

 /A F H , where H is the hardness of the softer material 

and F is the normal load. The frictional force is 


s

/f F H , and the local shear stress is 
s
 . They pro-

posed a coefficient of friction  
s
/H , as the ratio of 

two material properties.  

As real surfaces are rough on the microscopic scale, 

contact occurs at the summits of asperities. The GW 

model proposed an elastic and adhesion-less asperity 

contact with Gaussian distribution for the heights  

of summits. The authors Greenwood and Williamson 

observed an approximately constant pressure during 

Nomenclature 

f = friction force  

F = normal load 

  = friction coefficient  

P  = dimensionless force in MD model   

p = pressure  

A = real contact area 

0
A = nominal area of contact  

A  = dimensionless area in MD model 

H = Hardness of the softer material 


s
= shear stress 

  = contact stress 


adh

= adhesion stress  

0
m = zero moment  

2
m = second moment  

4
m = fourth moment  

  = length scale 

L = length of sample  

ξ = magnification of the surface 

P(σ, ξ) = stress distribution at ξ  

1,2
E  = Young’s moduli 


1,2

 = Poisson’s ratios 

 

d = sepration between two surfaces 

E* = effective Young’s moduli  

N0 = total number of asperities 

  = bandwith of wavelengths 

RG = Greenwood model’s radius 

RA = NT’s model radius    

1,2
R  = asperity raduis  

  = surface roughness 


k
= the zeros of Airy function     

U(a, b, c) = confluent hyper geometric function    

dmax = the highest summit limit 

  = density of asperities  

t = dimensionless distannce 

0

d

m
 

 = interference of two surfaces  


c

= critical interference 

  = plasticity index 

  = surface energy 

z0 = the equilibrium in Lennard – Jones force 

  = adhesion parameter 

 



Friction 7(4): 327–339 (2019) 329 

∣www.Springer.com/journal/40544 | Friction 
 

http://friction.tsinghuajournals.com

loading [19]. Archard simulated a rough surface as  

a series of spheres superimposed hierarchically [20]. 

He proved that the relation between the real contact 

area A and the normal load F is given by a power law, 

~A F , where the exponent α ≈ 1 in the case of a 

complex real surface A is nearly proportional to the 

load, according to Amonton’s law. Bush, Gibson, and 

Thomas (BGT) [21] used a statistical theory of isotropic 

randomly rough surfaces that utilizes a bandwidth 

parameter. They used Longuet-Higgins [22] and Nayak 

[23] probability distribution of summits for the surface 

statistics of an isotropic surface.  
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Power spectral density (p.s.d.) is the Fourier transform 

of height autocorrelation function for a Gaussian and 

isotropic surface, z is the summit height, and 
1 2
,R R  

are summit radii. The zero, second, and fourth moments 

—
0

m , 
2

m , and 
4
,respectivelym —of the surface roug-

hness power spectrum are functions of the breadth  

of the surface roughness and wavelength 0 4

2

2

m m

m
  .  

Longuet-Higgins has shown in a random and isotropic 

surface that 3/2  . The p.s.d. spreads with the 

increase in α. In BGT theory, an isotropic rough 

surface with joint summit and curvature distribution 

has been assumed by Longuet-Higgins and Nayak 

[23]. This surface is considered to be in contact with a 

flat surface. The spheres of the GW model are replaced 

by paraboloids. The contact area A is proportional to 

the normal load [21], provided that the normal applied 

load is very low or A is well below the apparent area 

of contact. 

Persson [24] linked the apparent contact area A to a 

length scale  . The length   is the projection of the 

contact area when the original surface considered is 

smooth on all length scales below  . The ratio /L    

is the magnification of the surface, where L is the 

length of the sample. Persson assumed that ( , )P   , 

the stress distribution at the magnification  , satisfies 

a diffusion-like equation. He also observed a linear 

relationship between the normal load and the real area 

of contact, provided that the normal applied load is 

small.   

In this paper, we propose a model for friction based 

on extreme value statistics (EVS) [25]. The rough 

contact friction force is given by two considerations: 

the model for asperity contact and the summit dis-

tribution. The simplest choice for single-asperity contact 

is an elastic contact model or Hertzian asperity [26]. 

The others are adhesive and elastic-plastic contacts 

models; the Maugis–Dugdale (MD) [27] model is a 

general adhesive theory and Johnson–Kendall–Roberts 

(JKR) and Derjaguin–Muller–Toporov (DMT) are its 

limiting cases. Another option is the Chang–Etsion– 

Bogy (CEB) [28] or elastic-plastic model based on 

volume conservation of an asperity during plastic 

deformation. We use EVS for independent and 

identically distributed (IID) variables and the maximum 

height 
m

h (1+1) Kardar–Parisi–Zhang (KPZ) model. 

We follow the GW model assumptions (see below) 

and combine the various possibilities of asperity contact 

and EVS distributions and solve numerically to obtain 

a relationship between the contact area, friction force, 

and applied load for various distributions and contacts. 

As there is no direct evidence for which EVS dis-

tribution is to be used, we test various universal EVS 

distributions to determine the one that produces better 

conformity with Amonton’s law. In addition, we use 

EVS for summit distribution in some simplified version 

of BGT models, which consider a wavelength for the 

radius of the summit. The Gumbel distribution with 

an elasto-plastic contact is considered to be the most 

suitable distribution. Notably, surface correlations are 

ignored in this kind of analysis, with the exception of 

the KPZ surface.    

This paper is organized as follows. In Section 2, we 

describe the Greenwood–Williamson (GW) Model, 

which sets the basis for our analysis. In Section 3,  

we provide a brief introduction to EVS. In Section 4, 

we combine EVS with single-asperity models and 

numerically calculate the contact pressure for numerous 

universal EVS and different asperity models. In 

Section 5, we attempt to question the assumptions of 
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the GW model. We conclude this paper with some 

concluding remarks.  

2 Greenwood–Williamson model 

Greenwood and Williamson [19] developed a theory 

based on Hertz contact theory, assuming a flat rigid 

plane in contact with a rough surface where the 

distance between the flat rigid planes from the mean 

height of the rough surface is d. All asperities have the 

same radius R. The height of the peaks is stochastically 

distributed around an average value (Fig. 1). If ( )z  

is the summit distribution and there are 
0 0

N A  

asperities within a nominal area of 
0

A , the total real 

area of contact is 

*

0
π )(d ()

d
zA N z R z d


           (3) 

Further, the total load is the summation of loads of 

every single-asperity in contact. 

* * 3/ 2

0

4
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F N E z z R z d


         (4) 
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R R R
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Assume a Gaussian distribution for the summits of 

asperities [19].  

 
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          (7) 

It is better to use the natural length scale of the 

problem, namely the roughness   (RMS of the height 

of asperities), as a dimensional quantity. Moreover,   

 

Fig. 1 The schematic drawing of GW model. 

the real area of contact becomes 

0
π d ( )d

z d
A N R z z



 
 

  
  

 
         (8) 

The total load after scaling with the roughness 

obtained is 

3/2

* 3/2 1/ 2

0

4
d ( )

3
d

z d
F N E R z z



 
 

  
  

 
      (9) 

Further, *( ) ( )z z   . The load divided by the  

actual area of contact 
F

A
 versus the surface separation  

is plotted where ( )z  is a Gaussian distribution (Fig. 2). 

If we assume that the actual area of contact is pro-

portional to the friction force, this plot should provide 

us the friction coefficient. 

3 Extreme value statistics 

The assumption that the summit distribution is 

Gaussian is too simple in the GW model. Given a 

height distribution, we must consider distribution in 

summits as the asperities are in contact at their summits. 

This distribution is described by EVS. 

EVS is a branch of statistics that strives to determine 

the probability distribution of maxima and minima of 

given distributions. Given a random height distribution, 

we intend to determine the distribution of its maxima. 

This is given by the EVS of ϕ(x). EVS has many 

applications in natural phenomena and engineering 

 

Fig. 2 The pressure of contact as separation of surfaces when 
the Gaussian distribution is summits’ distribution. Clearly, the 
friction coefficient is not independent of the load, though there is 
the almost constant behavior for the range of (2.5ω−5ω). 
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[29–32], and it might be an appropriate choice for the 

summit distribution. Unfortunately, EVS of any given 

height distribution might not be known, but it is known 

for some special cases. We will investigate these special 

cases and estimate for the general cases. Based on the 

mother distribution, there are three types of universal 

limit distributions for IID and for numerous random 

variables. This is known as Gnedenko’s classical law 

of extremes [33]. The probability density function (PDF) 

of the maxima is given by Fisher–Tippett–Gumbel 

distribution [34], when the distribution of IID variables 

has tails decaying faster than power law but are 

unbounded such as ( ) ~ xP x e  with δ > 0. 

1
( )

x
x

e

f ez





 

 ,  0  ,  ( , )x        (10) 

The Gumbel universality class corresponds to expon-

ential, Gaussian, or gamma distribution of variables. 

It describes extreme wind speeds, sea wave heights, 

floods, rainfall, etc. In addition, it has applications in 

size phenomena, such as the size of material flaws 

and surface imperfections, and event magnitudes, 

such as queue length and order lead time [29]. 

For IID random variables, with the parent distribution 

of power law convergence (1 )( ) ~P x x    with 0  , 

the PDF is Fréchet distribution given by 

1

2
( )

xx
f ex




 

 
 

  
 

,  0  ,  0,x    (11) 

The Fréchet domain has distributions with an infinite, 

yet heavier tail than the exponential distributions. 

This corresponds to EVS of Cauchy or Preto dis-

tributions. The Fréchet distribution can be applied to 

extreme events such as annually maximum one-day 

rainfalls and river discharges [33]. The maximum loads 

that can be tolerated by engineering devices are required 

in their service mission [30]. Natural phenomena such 

as floods, snow accumulation, wave forces, earthquakes, 

and wind pressure often cause these loads [29]. The 

intrinsic longer upper tail of Fréchet distribution leads 

to an upward data fit. 

Therefore, the Fréchet distribution is another 

alternative for modeling maximum extreme value 

phenomena in addition to the Gumbel distribution. 

For the parent distributions with bounded tails such 

as    1( ) ( )
x a

P x a x  with 0  , the PDF is the Weibull 

distribution. 


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x
x

f x e ,    0,    [0, )x    (12) 

Distributions in this universality class have lighter tails 

than exponential distribution, which has a finite upper 

bound. There are several papers about the applications 

of Weibull distribution in natural phenomena such as 

wind-speed data analysis [31], earthquake magnitude 

analysis [32], and volcanic occurrence data. 

However, many distributions do not belong to 

the three aforementioned domains of attraction. For 

example, EVS of geometric and Poisson distributions 

cannot be determined by the standard extreme value 

distributions. EVS domains of attraction include most 

applied distributions, such as Pareto-like distributions 

(Cauchy), normal, and Beta distributions [35]. 

A general theory similar to that for IID does not 

exist for strongly correlated random variables. There 

are a few examples, such as maximum heights of    

a fluctuating (1+1) dimensional interface, where the 

EVS of a strongly correlated system was computed 

exactly. Majumdar [36, 37] determined that the PDF of 

maximum height hm (1+1) KPZ model has the scaling 

form for all Lω. 
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  

 
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The scaling function named as Airy distribution 

indicates  


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where   is the surface roughness, L is the length  

of the sample, 32
,

27k k
b   where 

k
  represents the  

absolute values of the zeros of the Airy function, and 

( , , )U a b z  is a confluent hyper geometric function of the 

second kind.   

4 Extreme value statistics model of friction 

Let us now repeat the GW model with EVS distributions 

as ( )z . Furthermore, we will consider various 
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asperity contacts and combine them with EVS. As the 

distribution of the heights is not known, the relevant 

EVS distribution is also not known. Therefore, we 

shall report the results of the three universal EVS 

distributions here. 

At a separation 
max

d d , the two surfaces are no 

longer in contact; hence, the normal load vanishes. As 

all EVS distributions except Fréchet fall quickly, the 

integral of the load and contact area converges, and  

max
d


 is replaced by infinity. We plot the dimensionless 

pressure * 1/24
( / ) * ( / ) * ( ( , )/ ( , ))

3
E R F d R A d R  as a func- 

tion of /d  . A decrease in the normal load and the 

real area of contact with the increase in d suggests 

that the ratio may be approximately constant. However, 

Amonton’s law contradicts this suggestion. The linear 

relationship between the real area of contact and 

applied load is expected in this interval. Fréchet 

distributions with 0 2   have a fat tail; thus, to 

determine the total load and real area of contact, we 

must set an upper limit to the peak height 
max

d . It is 

assumed that the bigger the area of the sample, the 

likelier it is to encounter a higher maximum peak. 

The scaling of this maximum with sample size is 

related to the falls of the distribution at large values.  

Here, we assume that it scales with the nominal area,  

max 0
~d A . Fréchet distribution scales with size as 

1

0
N  ;  

thus,
0

N  is proportional to 
0
.A  We should introduce 

a cut off for the maximum height, and hence, 
max

d  is  

chosen such that 99% of summits included 
1

max 0
~d A .  

We plot the nominal friction force as a function of 

separation for the Fréchet distribution. The resulting 

friction force does not depend on 
max

d  or equivalently 

on the nominal area of contact. The friction does not 

show a monotonous trend in Fig. 3(a). In Fréchet 

distribution with 2  , with the increase in load, the 

number of short summits is not sufficient to reduce 

or balance the pressure in high loads (Fig. 3(b)). 

Figure 4 shows the pressure of contact when the other 

EVS is used as the summit distribution. Gumbel 

distribution has the most uniform pressure in the 

physical contact condition and shows the best con-

formity with Amonton’s law (Fig. 4(a)). The Gumbel 

domain of attraction belongs to mother distributions  

with an exponential decay such as Gaussian. This 

result is consistent with the observations that suggest 

that Gaussian distribution is the height distribution 

of asperities. 

For 1   the Weibull distribution is the exponential 

distribution, which—independent of the particular 

surface model—shows the exact proportionality between 

the load and the area of contact (Fig. 4(b)), although 

it is not a fair approximation of the asperities of the 

surfaces as this indicates uniform distribution of the 

height of asperities [19]. 

Simplified EVS distribution for 1+1 KPZ model 

(Airy distribution, not to be confused with airy function) 

for a surface is [36, 37] 

3
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210
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3 27
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z

z

a z e zz
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      (15) 

 

Fig. 3 The pressure of contact for the Fréchet distribution and Hertzian contact. (a) The pressure of contact does not have a monotonous
trend by increasing load for β < 2. (b) For β ≥ 2, the pressure of contact has a rise in pressure due to a reduction in the number of short 
summits for larger separations. 
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where 
1

a  is the first zero of the Airy function. In Fig. 5, 

Airy distribution is the summit distribution with 

Hertzian contact. Airy distribution is not a good 

candidate for summit distribution as the pressure 

changes are larger than those in other EVS and even 

Gaussian distribution. In Table 1, we can observe the 

range of total load and real area of contact when 

Gumbel distribution is used as the summit distribution 

for two surfaces with 
1 2

17 GPaE E   and 
1 2

    

0.15 . It can be observed that relative pressure change 

in the interval of (ω, 5ω) is 0.02 for Gumbel distribution. 

These values are consistent with the experimental 

observation by Nuri and Hailing [38]. We observe 

that the typical loads are reasonable when our model 

is in good conformity with Amonton’s law. Therefore, 

Gumbel distribution is best suited and fits Amonton’s 

law. However, elastic contact conserves energy and 

cannot be a good candidate for friction; thus, a plastic 

component to the asperity behavior is necessary. 

 

Fig. 5 Airy distribution has used as summits’ distribution with 
Hertzian contact. In comparison with other EVS distributions and 
even Gaussian distribution, it has the biggest variation in pressure. 

Table 1 The total load and real area of contact for concrete with 
Gumbel summits’ distribution in   and 5 . 

 R

R
  (5 ) ( ) F F  

(kg) 
re 2 re 1

0 0

( ) ( )A d A d

A A


0.0302 8.75 × 10–5 0.0005–80 0.02–0.0001 

0.0374 2.00 × 10–4 0.9–150 0.02–0.0001 

0.0601 1.77 × 10–3 4.5–710 0.03–0.0002 

0.0401 2.48 × 10–4 1.0–177 0.02–0.0001 

 

Here, we use the CEB model [28] of elastic-plastic 

contact based on volume conservation of plastically 

deformed region of the asperity. Figure 6(a) compares 

the pressure of the elastic–plastic model with that of 

the Hertzian model. As the plastic index increases, the 

pressure decreases. Increasing the real area of contact 

owing to plastic deformation makes the pressure more 

uniform. Figure 6(b) shows the relative change of 

pressure for fully elastic and elastic-plastic cases 

with different plastic indices. We observe that plastic 

contact and Gumbel distribution produce the closest 

result to Amonton’s law. 

Maugis [27] introduced two dimensionless para-

meters 
F

π
P

R 



 and 

1/ 3
2

*

3π

4

a

R

E



 
 
 

 for force and 

area, respectively, and an adhesion parameter 
1/ 3

adh *2
,

9
2

16πΔγ

R

E
 

 
  
 

  where 
adh

  is the adhesion 

stress defined as: 

adh

0

Δ

h

                 (16) 

 

Fig. 4 Different Weibull and Gumbel distributions as summits distribution with Hertzian contact. (a) Gumbel distribution gives an almost
flat pressure which indicates the validity of Amontons’ law for the range of (ω, 5ω). (b) The Weibull distributions have different trends for 
various values of beta. β = 1 corresponds to the exponential distribution which shows exact proportionality between the load and the area
of contact independent of the surface model. There is also good correspondence with Amontons Law values of beta near one (Fig. 6(b)).
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where Δ  is the surface energy and 
0

z  is the equili-

brium in Lennard–Jones force, typically approximately 

1 Å [8]. 

0 0
0.97h z               (17) 

If 5  , the JKR analysis becomes appropriate and 

when 0.1  , the DMT model is applicable. In the 

intermediate range 0.1 5  , the MD model should 

be applied. For the adhesive contact problem in DMT 

limit, the pressure value is very close to the pressure  

in the Hertzian model. By increasing the adhesion 

parameter transition from DMT to JKR, a limit occurs 

and the pressure value decreases consequently (Fig. 7). 

Considering adhesion with the MD model in contact, 

the results show that even asperities of heights z d  

can be in contact. Asperities with height z d  are 

compressed and those with height 
c

d z d    are 

stretched. 
c

  is the separation by which two surfaces 

become apart upon stretching them out. The effect  

of this pull-off force is considerable for a high value 

of   (Fig. 8). 

Deviations from Amonton’s law have been observed 

 

Fig. 6 (a) Pressure via separation and Elastic- plastic model as contact asperity. Variation of plasticity index changes the pressure since
the real area of contact increases. (b) Relative change of pressure via separation. A fully elastic model such as Hertz model has the most 
pressure changes compared to elastic-plastic contacts. 

 

Fig. 7 (a) Gumbel distribution: pressure versus separation for contacts with different values of the adhesion parameter λ. For adhesive 
contacts, pressure has a lower value. (b) Weibull distribution β = 1.2, pressure versus separation for contacts with different values of the 
adhesion parameter λ. 
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by increasing the adhesion in materials [39]. Table 2 

shows the results of Gumbel distribution for three 

values of the adhesion parameter and a fixed value of 

roughness, where we observe an increase in pressure 

with adhesion. We observe more deviation from 

Amonton’s law for higher adhesion parameters. For a 

10 times smoother surface with λ = 5, the change in 

relative pressure is 0.22, which is 10 times larger than 

that of a rougher surface.  

Amonton-like behavior is dominant for a low 

adhesion parameter. Amonton’s law does not describe 

friction behavior at zero or negative applied load. 

Adhesive control friction occurs for a higher value  

of adhesion parameter or a smoother surface. When  

 

Fig. 8 In adhesive contacts, asperities with heights less than the 
separation of two surfaces are in contact. The pull off force is 
negligible for small adhesion parameters and it is more effective 
in high adhesion parameter.  

Table 2 The pressure change in contact for Gumble distribution 

with different adhesion parameters. 
( )

( )
( )


p d

p d
A d

is the dimesionless 

pressure in separation d, and   is surface roughness. 

  
( ) (5 )

(5 )

 


p p

p
 

0.1 0.013 

1 0.015 

5 0.022 

roughness decreases by 10 times for a fixed adhesion 

parameter, the pressure of contact falls significantly 

(Fig. 9). 

5 Beyond the GW model 

Whilst in GW model, an identical radius for all 

asperities is assumed, some authors have attempted 

to extend this to a more realistic setting by combining 

the BGT model with the GW model. In the BGT model, 

the parameter  , which appears in Longuet-Higgins 

[22] and Nayak [23] probability distribution of summits 

for surface statistics of isotropic surface, is defined  

as 0 4

2

2

m m

m
   where 

0
m , 

2
m , and 

4
m  are the zero,  

second, and fourth moments of the surface roughness 

power spectrum, respectively. The parameter   is an 

indication of the breadth of distribution of the radiuses 

of asperities. 

For instance, Greenwood presented a simplified 

version of the BGT model in 2006 [40]. In this model, 

the summits are spheres with a distribution of the  

mean curvature 
G 1 2

.R R R  In another model pre-

sented in Ref. [41], the mean curvature of a summit is  

considered as 1 2
A

1 2

2
;

R R
R

R R



 we refer to it as the NT  

model. An improved model of the GW model is 

McCool [42], which combines the GW model and 

some results of the NT statistical model. We refer  

the reader to Ref. [43] for a detailed description of 

these models. 

In order to test our proposal, we use Gumbel dis-

tribution as the summit distribution in the GW– 

McCool model. These results shows a better conformity 

with Amonton’s law compared with those of other 

asperity models presented in Ref. [43]. In addition, the 

real area of contact has more realistic values compared 

with the models in Ref. [43] (Fig. 10). In Ref. [43], the 

heights and separation are scaled by the surface height 

variance 
0

m  instead of the height variance of the  

summit. The relationship between 
0

m  and 2  was 

determined by Bush et al. [44] as 

2

0

0.8968
1 m


 

  
 

            (18) 
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The summit variance approaches the surface variance 

as   becomes large. Table 3 shows the real area of  

contact when the separation is (
0 0

5m m ) and  

Table 4 shows the pressure change at this distance. For 

a higher value of ,  Gumbel distribution has the most 

uniform pressure, which indicates the closest similarity 

with Amonton’s law in a realistic area of contact.  

Table 3 The real area of contact to the nominal area when the 

distance between two surfaces is 0 0( 5 ).m m  

α Greenwood 
2006 NT GW-McCool EVS 

2 10–7–0.061 2×10–8–0.010 3×10–8–0.062 0.0001–0.085

10 10–7–0.059 1×10–7–0.051 1×10–7–0.051 0.0004–0.087

100 10–7–0.101 9×10–8–0.087 9×10–8–0.079 0.0010–0.167

Table 4 The pressure change in the distance 0 0( 5 )m m  for 

different models. More realistic surfaces have a high value of α. We 
have the closest result to Amontons’ law with Gumbel distribution 
in GW-McCool distribution. 

 α = 2 α = 10 α = 100 

Greenwood 2006 0.129 0.373 0.537 

NT 0.198 0.419 0.544 

GW-McCool 1.124 0.722 0.630 

EVS 0.164 0.047 0.026 

6 Conclusions 

Amonton’s law states that there is a linear relationship 

between the applied load and friction force. It is 

acceptable to consider a linear relationship between 

 

Fig. 9 Surface roughness decreases the adhesion effects in contact. (a) The pressure of contact for λ = 5 in a fixed roughness. (b) The
roughness of the surface decreased by 10 with λ = 5 and resulted in considerable reduction in the pressure.  

 

Fig. 10 When we use Gumbel distribution in GW- McCool model the value of pressure is more uniform than other models. 
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the friction force and the real area of contact. Therefore, 

the pressure of contact should remain constant.  

In this work, we combined various models of single- 

asperity contact, including Hertzian, elastic-plastic, 

and adhesive contact models with EVS, to determine 

the summit distributions to verify Amonton’s law. 

In EVS theory, there are three kinds of universal 

distributions for IID variables, namely Fréchet, Gumbel, 

and Weibull distributions. The height of asperities in 

a real surface is strongly correlated. Here, we consider 

them as IID variables and use Fréchet, Gumbel, and 

Weibull distributions as the height of the summit. 

Surface roughness is a strongly correlated system and 

very little is known about EVS of correlated heights. 

For (1+1)-dimensional KPZ surface, the exact EVS 

distribution is Airy distribution. We extend Airy dis-

tribution to the two-dimensional surface and use it as 

the summit distribution. The resulting pressure varies 

considerably with the applied load. 

Among EVS distributions, Gumbel distribution 

shows the best conformity with Amonton’s law for 

Hertzian contact. One way to determine the relevance 

of the Gumbel distribution is to measure the height 

profile and determine the statistics of the height dis-

tribution. The pressure is almost constant for a relatively 

large interval of the applied load. Although Weibull 

distribution with 1   is an exponential distribution 

and has a constant pressure with the applied load, it 

is not considered an appropriate candidate for summit 

distribution as the height distribution is uniform for 

1  . Fréchet distributions with 2   are fat-tailed. 

They decay very slowly. For 2  , the number of short 

summits is not sufficient to reduce or balance the 

pressure at high loads and therefore, the pressure 

increases. We also combine Gumbel distribution with 

the GW–McCool model, which is an improved case of 

the GW model. Here, a bandwidth for wavelengths  

α is assumed. Comparison of this model with the 

original GW–McCool model and other simplified 

versions of BGT reveals that Gumbel distribution has 

a better conformity with Amonton’s law for all values 

of .  

The other point of interest is the best model for an 

asperity. Plastic deformations occur during contact. 

The changes in pressure are minimum with a com-

bination of plastic and elastic deformations. When 

adhesion exists in contact, the main observation is that 

there is some friction force at zero or even negative 

applied load. Asperities with heights even less than the 

separation between the two surfaces are in contact. For 

a small value of adhesion parameter, Amonton-like 

behavior is dominant. The adhesion-controlled friction 

overcomes the load-controlled friction for a strong 

adhesion parameter. We also observed that adhesion 

increases for a surface with a lower value of roughness. 

We should extend this analysis to a more realistic 

case with the correlated height of asperity and use EVS 

of correlated variables and also consider the deformity 

of the asperities under pressure and changes in their 

geometry when the radius of curvature changes. 
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