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Abstract: Wear is an important factor for failures of mechanical components. Current research on wear is mainly 

focused on experiments while the numerical simulation of wear is hardly used owing to the complexities of 

the wear process. Explaining the effect of friction on the wear process is important, as it will lead to a deeper 

understanding of the evolution of wear. This study proposed a numerical method to expound the wear process 

in the contact between an elastic cylinder and a half-space simulating the ring-block tester. There are two difficulties 

during the calculation; one is that the contact shapes vary with time, causing the pressure distribution to change 

simultaneously and the other is the integral equation for calculating the contact pressure under different worn 

shapes. In the present study, the wear rate was computed using Archard’s law and the wear process was 

calculated step by step until the specified total sliding distance was achieved. During each step of the calculation, 

the contact topography was updated. The simulation intuitively reproduced the contact state of change from 

line to surface contact throughout the wear process. Reasonable agreements on the changes of the wear scar, 

achieved from experiments and numerical simulations, were obtained. 
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1  Introduction 

Wear is a continuous process of material loss   

from friction pairs during contact owing to relative 

motion. It has been reported that wear failure encom-

passes roughly 60%−80% of the total failures of 

mechanical pairs and components [1]. Factors such  

as temperature, elastoplastic deformations, surface 

topographies, material properties, and chemistry all 

contribute to the complex contact conditions. An 

experimental approach is necessary because of the 

complexity of the system. Although experimental 

approaches have provided results consistent with 

actual situations, it requires considerable time and 

capital to obtain in situ wear information. Therefore, 

a numerical prediction method is a good complement 

to predict the wear evolution.  

Friction pairs can be divided into the higher and 

lower pair according to the contact state. Usually, a 

pair with surface contact is called as the lower pair 

because of its lower contact pressure. For a lower pair, 

the influence of wear on its life expectancy is not 

significant while for a higher pair that is in the line 

or the point contact, wear is significant owing to  

the higher local contact pressure. Numerical methods 

have been used by many researchers to study wear. 

Ahmer et al. [2], Hegadekatte et al. [3], and Bortoleto 

et al. [4] studied wear evolution during point contact 

based on the pin-on-disc model. Flodin and Andersson 

[5, 6] simulated the wear evolution of spur and helical 

gears under dry friction conditions. Brauer and 

Andersson [7] and Hao and Meng [8] studied the 

wear process in mixed lubrication conditions.  

There are many formulas to simulate material wear 

for different working conditions [9]. The Archard’s 

wear model is well known and widely used because 
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of its relatively simple form and consistency with 

actual situations. Its main idea is that the wear rate is 

proportional to the normal contact pressure and the 

emphasis is on determining the pressure distribution 

between the contact regions. The finite element method 

(FEM), with the advantage of easy implementation of 

numerous physical effects, is one of the most popular 

tools to solve a contact problem [10−12]. The primary 

drawbacks of these models are that they are inefficient 

and time-consuming to improve the accuracy of 

calculation. The Winkler surface model [5, 13] and 

the boundary element method [14] can be applied to 

speed up the wear simulation. Furthermore, Andersson 

et al. [15] has used the discrete convolution and FFT 

method to simulate the wear of a sphere on flat 

contact pair.  

In the present study, the second type of singular 

integral equation [16, 17] was used to compute the 

contact pressure distribution under various contact 

topographies. The plastic deformation of asperity 

was not taken into consideration as this effect was 

considered indirectly through the use of an experi-

mental value of wear (constant k). Two difficult 

problems in calculating a wear process were solved. 

One is the pressure distribution, which influences 

wear. The contact pressure distribution varies with 

time because the shapes of the contact surfaces are 

continuously changed by wearing. The other is the 

singularity when a numerical method was used to 

solve the second type of singular integral equation [16]. 

In this paper, a new calculation model is introduced 

to obtain the numerical solution. The simulation results 

were validated through ring-block tester experiments.  

2 Basic equations  

A line contact problem can be simplified as the contact 

between a cylinder and a half-infinite plane. Here, a 

ring-block friction and wear experimental model is 

used to illustrate the wear processes (Fig. 1). The ring 

rotates at a fixed speed under the load L. 

2.1 Wear calculation 

In the relative motion of a friction pair, the wear rate 

is the function of the normal contact pressure p(x) 

according to Archard’s law. It can be written as 

follows [18]: 

d
( )

d
mh

kp x
s
                (1) 

where h is the wear depth; s is the relative sliding 

distance; k is the wear constant, Pa−m; x is the coordinate 

and m is the influence index of pressure. m equals to 

1 in most cases. 

The wear constant can be obtained experimentally 

or numerically. In this study, the influence of tem-

perature is not taken into account, i.e., a linear plot of 

wear volume as a function of time was considered. This 

means that the wear rate is constant during sliding. 

With discretizing the contact region in the time and 

space domain, the total number of nodes is N on the 

contact interface and the total number of time steps is 

M. If a node is denoted as i and the time step as j, the 

corresponding contact pressure is ( , )p i j  and the wear 

depth increment is Δ ( , )h i j . The total wear depth at 

the ith node before the jth time step is ( , )h i j . If the 

increment of the relative sliding distance between two 

time steps is s, the relationships between the wear 

depth ( , )h i j  and the increment of relative sliding 

distance s are given by  




 









,

( , 1) ( , )

( , ) ( )

( , )

h i j kp i j

h i j h i

s

i jj h
        (2) 

The contact pressure distribution should be obtained 

first in the contact region for each time step to obtain 

the wear depth increment within the relative sliding 

distance increment s. 

2.2 Calculation of contact pressure distribution 

Both normal and tangential forces exist over the contact 

interface when two elastic bodies are in contact. 

Figure 2 shows the contact between an elastic cylinder 

 
Fig. 1 Friction and wear experimental model of the ring-block 
tester. 
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Fig. 2 Diagram of a contact between two elastic bodies. 

and a half-infinite plane. L is the normal load per unit 

length, Q is the tangential traction due to friction and 

n is the rotation speed. E1 and E2 and ν1 and ν2 are the 

Young’s moduli and the Poisson’s ratios of contact 

bodies, respectively. The initial contact point is set 

as the origin of the coordinate. a1 and a2 (a1 > 0, a2 > 0) 

are the left and right contact width, respectively. 

According to the theory of elasticity [16], the 

relationship between the contact pressure and surface 

displacement gradient in the interval 
1 2

( )a x a    

can be written as follows:  
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where 
1z

u  and 
2z

u  are the surface displacement 

gradients in the z direction. p and q denote the normal 

and tangential tractions, respectively.  

The normal and tangential tractions on the two 

elastic bodies are equal in magnitude, but opposite in 

direction. The two equations in Eq. (3) are summed. 

Substituting q p   and / [2(1 )]G E    into Eq. (3), 

where   is the coefficient of friction and G is shear 

modulus, a simplified form can be obtained: 
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different elastic constants. 

Further, the contact pressure should satisfy the load 

equilibrium condition, i.e., 




2

1

( )d
a

a
p x x L                (5) 

where L is the normal load per unit length.  

If the surface displacement gradient is given, the 

contact pressure distribution in each time step can be 

solved by using Eqs. (4) and (5). 

2.3 Calculation of surface displacement gradient 

When two elastic bodies are pressed together, the contact 

of the two bodies can be equivalently represented  

as the contact between an elastic half-space with the 

combined elastic modulus, E*, and a rigid cylinder 

with combined radius R. The equivalent radius and 

modulus of elasticity are given by  

 
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1 2
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         (6) 

In Fig. 3, the contact between a cylinder and an 

elastic half-space is shown. The surface displacement 

z
( , )u i j  in the contact region at the ith node on the jth 

time step is approximated as  

2

( , ) ( , )
2

i
z

x
i j d h i j

R
u              (7) 

when 
1 2i

a x a   . 

The surface displacement gradient is obtained by 

the middle difference method. There is an unknown 

constant d in Eq. (7), but it does not affect the final 

 

Fig. 3 Scheme of the contact between a cylinder and an elastic 
half-space.  
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results because of the use of the surface displacement 

gradient. 

To sum up, the numerical procedure used for wear 

simulation in this study is as follows. First, the surface 

displacement gradient is obtained gradually according 

to the contact topography based on the ring-block 

test. Subsequently, the contact pressure is computed 

using the integral equation, which also determined 

the contact width automatically under the condition 

of nonnegative normal contact pressure over the 

contact region. Finally, once the contact pressure on 

the contact region is determined, Archard’s wear law 

is used to compute the wear depth increment. The 

aforementioned processes are conducted gradually 

until the total sliding distance is achieved. In addition, 

the wear scar and the contact pressure are obtained 

at the end of each step. 

3 Numerical procedure 

In this section, the numerical procedure of wear 

calculation is described. From the previous analysis, 

it is vital to solve for the contact pressure correctly 

during wear simulation. Therefore, the numerical 

method to obtained the normal contact pressure is 

explained separately. 

3.1 Numerical method for solving the contact 

pressure 

The pressure distribution on the contact interface is 

obtained by solving Eqs. (4) and (5) [17]. As we know, 

Eq. (4) is the second type of singular integral equation 

with a Cauchy kernel. Although analytical solutions 

for singular integral equations are presented in Ref. 

[19], there are certain problems in using these equations 

for arbitrary contact shapes, which are hardly described 

by functions. The finite difference method has  

been widely used to solve these types of equations. 

Nevertheless, this method is a local algorithm and 

the results do not convergence. Refining the mesh will 

improve the accuracy at the expense of increasing 

computation time. In this study, the piecewise con-

tinuous function method [20] was used to obtain the 

numerical solution of Eq. (4). 

The contact area should be normalized first, i.e., 

supposing    1 2 1 2(2 ) /( )T t a a a a ,   1 2(2 ) /X x a a  

1 2( )a a , ( ) ( )T p t  , ( ) ( )
z

f X u x . Equations (4) and 

(5) can be rewritten as follows:  
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According to Ref. [17], the solution of Eq. (8) may 

be expressed as the product of a bounded function, 

( )g X , and a fundamental function, ( )w X , i.e., ( )X   

( ) ( )w X g X . The fundamental function is given by 

( ) (1 ) (1 )w X X X              (9) 

Therefore, the second term of first formula in Eq. (8) 

is rewritten as follows:  
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The last integral in Eq. (10) may be solved according 

to the known result [20]: 
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when 1x  , 1 0   , 1 0   , α 0, 1, 2, , 

where ( )x  is a known function. In special cases, 

1    , ( )X  equals to zero. Then the first formula 

of Eq. (8) converts to  

1

*

1 2

1 ( ) ( )
cot(π ) ( ) (

1
) ( ) d

)

π

(

g T g X
g X w X w T T

T X

E
f X

a a

 














   
  

(12) 

According to Eq. (12), if   is chosen such that 

cot(π ) 0    is satisfied, then it is obvious that 

the first equation in Eq. (8) will finally be simplified 

as follows:  
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The Cauchy singularity is removed because ( ( )g T   

( )) / ( )g X T X  equals to the derivative of function 

( )g X  when T = X. The solution of pressure distribution 

finally attributes to the solution of ( )g X  from the 

above analysis. The Gauss-Jacobi quadrature rule is 

an appropriate choice to solve Eq. (13) for the Jacobi 

weight function indicated by Eq. (9). At the collocation 

point 
i

X , Eq. (13) will be discretized as 
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where N is the total number of the integration points, 

j
W  and  ( 1, 2, , 1)jT j N  are the weights and 

abscissas of the standard Gauss–Jacobi quadrature, 

respectively.  

Generally, the selection of the collocation points 

( 1, 2, , )iX i N  is flexible except any of the inte-

gration points  ( 1, 2, , 1)jT j N . However, for 

ease of implementation, the collocation points in the 

discussion below are specified as the mid-point of two 

successive integration points.  ( 1, 2( ) , , )if X i N , 

on the right-hand side in Eq. (14), is obtained by  

the central difference method, i.e., 
1

( ) [ ( )
i i

f X f T 
    

1
( )] / ( )

i i i
f T T T  . It is referred to Ref. [21] to obtain the 

weights and abscissas of the standard Gauss–Jacobi 

quadrature. ( ) ( 1,2, , )ig X i N  at the collocation point 

( 1, 2, , )iX i N  may be represented by piecewise 

quadratic approximation. The second equation in 

Eq. (8) is written as 
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The values of ( )g T  are obtained by solving the  

Eqs. (14) and (15). The pressure distribution is obtained 

by calculating ( ) ( ) ( )T w T g T  . However, the real 

contact width is unknown at the beginning, i.e., 
1

a  

and 
2

a  are unknown parameters when using Eqs. (14) 

and (15) to compute the contact pressure distribution. 

In this study, the two unknown parameters are initially 

assigned two large enough values to ensure they 

contain a real contact region. Then the redundant 

contact areas are removed when pressure is less  

than zero. Finally, the contact region is determined 

automatically under the condition of non-negative 

pressure at any node in the contact region through 

multiple iterations. 

It is important that this method does not include 

the boundary points. In other words, the pressure at 

these points cannot be obtained directly. It is reported 

that the pressure distribution between two elastic 

bodies, whose profiles are continuous through the 

boundary of the contact area, falls continuously to 

zero at the boundary according to Johnson’s research 

[16]. Thus, the pressure at the boundary points is set 

as zero.  

Figure 4(a) shows a comparison of ( )p x  between 

the Hertz contact and corresponding numerical results 

under different friction coefficients, without wear, 

using the aforementioned numerical method. It is 

shown that the analytical solution agrees with the 

numerical solution when the friction coefficient equals 

to zero. However, the contact region will shift to the 

left with respect to the initial contact point when 0  . 

 

Fig. 4 Comparison of Hertzian problem from analytical solution 
and numerical results under different friction coefficients:     
(a) distribution of contact pressure; (b) numerical (symbol) and 
theoretical (line) results of contact width and ratio of right to left 
contact width. Other parameters, object 1: 1 200 GPaE , 1 0.3  ; 
object 2: rigid body. 300 kN / mL , 24.61 mmR .  
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Figure 4(b) shows the variations of the contact width 

and ratio of the right to left contact width with 

increasing friction coefficients. The theoretical results 

shown by lines in Fig. 4(b) are computed according 

to the method presenting at Ref. [22]. It is shown that 

the numerical results are in good agreement with the 

theoretical results. It is shown that the contact width 

increases monotonically with friction coefficients. The 

greater the friction coefficient is, the more obvious 

the deviation of the contact region becomes. The right 

contact width is only about 69.9% to the left when 

1  , which rarely exceeds 1.0 in engineering fields. 

3.2 Wear calculation 

The simulation model presented in this paper is based 

on the ring-block tester. The wear depth of the ring is 

negligible compared to the block because the latter 

shows uniform wear along the circumference. 

The contact width increases and the contact state is 

transformed from line to surface contact as well, 

owing to wear. However, the abscissa of the standard 

Gauss–Jacobi quadrature is deterministic while the 

wear widths differ from each other. This will lead to 

discrete nodes over the contact region that do not 

coincide with each iteration, as shown in Fig. 5. As  

a result, the wear data ( , )h i j  cannot be used directly 

when we calculate the surface displacement at the 

(j+1)th time step using Eq. (7). To overcome this 

problem, the following method is introduced. First, 

the discrete points on the jth time step are mapped 

onto the (j+1)th time step. Then the wear depth of the 

corresponding discrete points was obtained by spline 

interpolation inside the region while on the outside, 

the wear depth is zero. The surface displacement 

can be computed using Eq. (7) if the wear depth on 

the (j+1)th time step is known. Finally, the pressure 

distribution is obtained from the numerical method 

described in Section 3.1, and wear depth is obtained 

from Eq. (2). 

 

Fig. 5 Diagram of wear width mapping. 

4 Experiment 

In this study, the ring and block specimens were used 

as friction pairs. The materials used in the experiment 

are AISI 1045 steel and 0Cr18Ni9, which correspond 

to the block and ring, respectively. The ring surface 

and one of the block end surfaces composed the sliding 

line contact. The line-contact tests were performed on 

a standard friction tester (MRH-3, Yihua Tribology 

Testing Technology, China). The width and outer 

diameters of the ring were 13.06 and 49.22 mm, 

respectively. The length and width of the block were 

19.05 and 12.32 mm, respectively. The experimental 

conditions are presented in Table 1. To omit the 

influence of temperature on the wear constant and 

friction coefficient, the sliding velocity should be small.  

The variation of the friction coefficient with time  

is shown in Fig. 6. The friction coefficient was at a 

constant value of about 0.13 after running-in. This 

friction coefficient value will be used in the wear 

simulation process. 

The worn scars of the block were measured using a 

three-dimensional surface profilometer (Talysurf CLI 

1000, Taylor Hobson, UK). The wear constant k in 

Archard’s law was experimentally determined. The 

wear constant k, 9 11.245 10 MPak    , was computed 

according to the experiment. 

Table 1 Experimental condition. 

Speed (rpm) 100 

Load (N) 246 

Temperature (°C) 25 ± 1 

Young’s modulus (GPa) 209, 204 

Poisson’s ratio 0.269, 0.285 

Sliding distance (m) 75, 150, 225, 300 

 

Fig. 6 Variations of the friction coefficients with time.  
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5 Results and discussion 

5.1 Evolution of contact variables 

The aforementioned approach was used under the 

loading conditions given in Table 1. The coefficient of 

friction and the wear constant were given in Section 4 

based on experiments and these values were employed 

in the wear simulations. Archard’s wear law was applied 

at each sliding step Δs , 500 μm in the simulation 

procedure, to obtain the wear depth increment Δh .  

The contact pressure distribution evolves con-

comitantly with the changes in contact width. Figure 7 

shows the numerically predicted evolution of the 

contact pressure distribution with increasing sliding 

distance. The peak pressure continuously decreases 

and finally moves toward uniformity. More details 

marked by a circle in Fig. 7 indicate that the contact 

pressure sharply increases at the edge of the contact 

region. This phenomenon is consistent with the results 

obtained from the finite element method [8, 23]. 

However, the acting area of the spike pressure is very 

small. In this study, to simplify the contact problem 

and improve the efficiency of wear simulation, the 

pressure spikes at the edges of the contact region are 

neglected and the pressure is evenly distributed along 

the contact width when the wear width is 2.5 times 

the initial contact width.  

The variation in the contact width and peak pressure 

with an increasing sliding distance is demonstrated 

in Fig. 8. There is a dramatic reduction in peak pressure 

during the first 20 m, followed by a much more 

gradual reduction over the subsequent 380 m. After 

sliding 400 m, the peak pressures reduced to less 

 

Fig. 7 Predicted evolution of contact pressure with increasing 
sliding distance s. 

 

Fig. 8 Evolutions of contact width and peak pressure with 
increasing sliding distance.  

than 10% of their initial value. This phenomenon is 

mainly caused by the change of contact state from line 

to surface contact. The predicted width also obviously 

changed as wear continued. There was a rapid increase 

in the contact width over the first 20 m, followed by  

a gradual reduction in the rate of the increase. For 

subsequent sliding, the contact width continued to 

increase but at a slower rate. 

5.2 Predicted wear profiles 

The numerically predicted worn surface profiles of 

the block specimens with regard to increasing sliding 

distances are shown in Fig. 9(a). It is found that as  

 

Fig. 9 Predicted wear profiles for block under different sliding 
distance. 
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wear progresses, a worn scar develops on the flat 

surface. The contact moves towards conformity, with 

a similar radius to the ring. The evolution of the contact 

pressure in the simulation is shown in Fig. 9(b). It 

indicates that the maximum contact pressure decreases 

gradually along with an increasing the sliding distance. 

The numerically predicted worn surface profiles  

of the flat specimens for sliding distances of 75 m, 150 m, 

225 m, and 300 m were compared with experimental 

results and are presented in Fig. 10. It should be noted 

that the worn profiles in Fig. 10 are the mean values 

of the three-dimensional scanning contours at each 

sliding distance. The predicted values of the scar width 

and the maximum wear depth, together with the 

corresponding experimental results, are presented in 

Table 2. For the 75-m case, the scar width is under- 

predicted by 16%, while for the other three cases, the 

predicted and experimental results correlate closely. 

For the 150 and 300-m cases, the maximum wear depths 

are over-predicted by 39.3% and 18.2%, respectively, 

while for the other two cases, the experimental results 

are in agreement with the predicted values. 

 

Fig. 10 Comparison of numerical prediction and experimental 
results for worn surface profiles of the flat specimen after sliding: 
(a) 75 m; (b) 150 m; (c) 225 m; (d) 300 m. 

 
Table 2 Comparison of numerical prediction and experimental 
results for wear scars on the flat specimen. 

Scar width (μm) Maximum wear depth (μm)Sliding 
distance (m) Experimental Predicted Experimental Predicted

75 980 822.97 3.34 3.35 

150 1,090 1,034.78 3.84 5.35 

225 1,230 1,183.72 5.95 7.03 

300 1,370 1,302.41 8.04 8.53 

5.3 Effects of friction coefficient on the wear process 

As shown in Section 3.1, the contact region will shift 

with respect to the initial contact point because of the 

friction coefficient. The degree of deviation depends 

on the  , a measure for the different elastic con-

stants, and friction coefficient  . The influence of the 

friction coefficient on the wear process in Section 5.2 

is indistinguishable as the material parameters of 

friction pairs are very similar. The ring is assumed  

as a rigid body to explain the effects of the friction 

coefficient on the wear process and the rest of the 

simulation parameters are the same as in Section 5.1. 

The evolution of the ratio of right to left contact width 

with increasing sliding distance is shown in Fig. 11. 

The contact region is always symmetrical around the 

initial contact point when the effect of friction force 

on contact pressure distribution is ignored. However, 

although the contact area is asymmetric about the initial 

contact point in the first 100 m, the left and right 

contact widths are approximately equal eventually 

for subsequent sliding when 0.5  .  

 

Fig. 11 Variation of ratio of right to left contact width with 
increasing sliding distance for 0   and 0.5  . The ring is 
assumed as a rigid body and the other simulation parameters are 
the same as in Section 5.1. 
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6 Conclusions 

In this paper, a numerical method was proposed to 

analyze mild wear in the initial line contact with 

elastic deformation. Reasonable agreements for the 

wear scar between the simulation results and the 

experiment results were obtained. In addition, the 

effects of the friction force on the wear procedure 

were numerically investigated. The main results and 

conclusions are as follows: 

1. The exact contact pressure distribution under 

different contact topographies with various coefficients 

of friction was obtained by solving singular integral 

equations of the second type.  

2. The contact region was offset with respect to  

the initial contact point when taking friction into 

consideration. The results showed that the deviation 

in the left and right contact widths depends on  , a 

measure of the different elastic constants, and friction 

coefficient  . Nevertheless, the maximum contact 

pressure and contact width were almost constant for 

  1, which rarely exceeds 1.0 in engineering fields. 

Further research about the relationship between friction 

and wear is necessary for higher friction coefficients. 

3. Line contact was a temporary state during the 

wear process. The contact state rapidly changed to 

surface contact from line contact. The maximum contact 

pressure decreased drastically at the beginning and 

presented a linear decrease a moment later. The contact 

region will finally be symmetrical to the initial contact 

point owing to wear when we take friction into account. 

However, the contact region always maintains sym-

metry about the initial contact point when 0  . 
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