
Friction 6(1): 47–61 (2018) ISSN 2223-7690 
https://doi.org/10.1007/s40544-017-0161-y  CN 10-1237/TH 

RESEARCH ARTICLE  

 
 

Chaotic characteristics and attractor evolution of friction noise 
during friction process 

 
Cong DING1, Hua ZHU1,*, Guodong SUN1, Yuankai ZHOU2,3, Xue ZUO1 
1 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China   
2 School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China  
3 Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and 

Technology, Zhenjiang 212003, China 

Received: 01 December 2016 / Revised: 07 March 2017 / Accepted: 27 March 2017 

© The author(s) 2017. This article is published with open access at Springerlink.com 

 

Abstract: Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during 

the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise 

are obtained by phase-space reconstruction, and its attractor evolution is analyzed. The results indicate that the 

friction noise is chaotic because the largest Lyapunov exponent is positive. The phase trajectory of the friction 

noise follows a “convergence-stability-divergence” pattern during the friction process. The friction noise attractor 

begins forming in the running-in process, and the correlation dimension D increases gradually. In the stable 

process, the attractor remains steady, and D is stable. In the last step of the process, the attractor gradually 

disappears, and D decreases. The friction noise attractor is a chaotic attractor. Knowledge of the dynamic 

evolution of this attractor can help identify wear state changes from the running-in process to the steady and 

increasing friction processes. 
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1  Introduction 

Relative motion between two bodies causes friction 

and contact surface wear, which may exert negative 

effects on the reliability, security and usage of 

equipment [1, 2]. Distinguishing and predicting wear 

states is thus important to extend the life of a 

mechanical system. However, identifying the wear 

states of complicated nonlinear dynamic processes is 

difficult.  

In recent years, many domestic and foreign 

researchers have published studies on the mechanisms 

and factors affecting friction noise [3]. Chen et al. [4], 

for example, performed measurements of the noise 

induced by friction, and used the waveform and 

power spectrum to analyze the friction noise sound 

pressure level. The results of this indicated that 

friction-induced noise was generated by relative sliding 

friction and vibration motion. Chen and Zhou [5] 

applied the concept of friction coefficient and 

observations of scar topography to analyze the 

mechanism of friction noise. The results of this work 

showed that fluctuations in friction force were the 

main mechanism of this noise. Lars and Staffan [6] 

studied a spiral-shaped modification of the surface 

topography of a brake disk to reduce noise; results 

suggested that a spiral pattern could strongly reduce 

squealing. A basic study of friction noise caused by 

fretting was conducted by Jibiki et al. [7], and the 

results of this research indicated that friction noise 

was generated by certain cycles of fretting. The sound 

pressure level increased with increasing fretting 

stroke and frequency, which is related to the average 

sliding velocity and the wear loss. Chen et al. [8] studied 
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the relationship between friction noise and friction 

surface characteristics under reciprocating sliding. The 

group found that the worn morphology with high 

intensity level noise presented obvious flake fractures, 

and that these fractures were important causes of 

friction noise. Le Bot et al. [9] carried out an 

experiment on friction noise during dry contact 

under light pressure, and results demonstrated that 

friction noise increased with sliding speed and 

roughness increasing. Disk surfaces with different 

groove structures were investigated on a pad-disk 

tester by Wang et al. [10, 11], who demonstrated that 

a disk surface with 45 degree grooves could strongly 

reduce friction noise.  

The main purpose of studying friction signals is to 

identify wear states in the friction process. However, 

the friction process is extremely complex, and accurately 

identifying and predicting wear conditions from 

previous studies on friction noise is difficult. Therefore, 

several researchers have sought to determine the 

nonlinear dynamics of friction signals to recognize 

wear states. Zhu et al. [12] extracted the friction force 

and vibration signals from a pin-disk experiment   

to realize the chaotic characteristics of a tribological 

system, and utilized the spectrum and fractal dimension 

methods to study these signals quantitatively. The 

results of this research showed that friction signals 

presented chaotic natures, and that the tribological 

system was a chaotic system. Zhou et al. [13] studied 

the chaotic characteristics of friction temperature in 

the friction process and found that the temperature 

signal featured chaotic characteristics that could be 

utilized to recognize changes in wear states. Sun et al. 

[14, 15] applied chaos theory to study the friction 

vibration signals extracted from a pin-disk test, and 

results revealed that these signals demonstrated chaotic 

characteristics. Wear states can be identified by the 

evolution of friction vibration attractors. Liu et al. [16] 

conducted spherical-on-disk running-in tests, and 

chaotic attractors were used to analyze cross correlations 

between tangential and normal vibrations. The results 

of this work demonstrated that the chaotic attractors 

of vibration signals converged as running-in continued 

and could be utilized to describe changes in wear 

states. Oberst and Lai [17] utilized a recurrence plot to 

reveal the chaotic characteristics of brake squeal noise. 

Friction noise contains information reflecting wear 

states, and friction noise signals can be collected    

in real time without affecting the normal friction 

process. Therefore, nonlinear dynamics theory may be 

utilized to prove that friction noise presents chaotic 

characteristics and that chaotic attractors undergo 

dynamic evolution. Friction noise thus presents a new 

route through which wear states can be monitored 

on-line, identified and predicted. 

Based on the rotational movement of a ring-disk 

under oil lubrication, the aim of this paper is to 

illustrate the complex chaotic characteristics and 

attractor evolution of friction noise signals, knowledge 

of which is instructive in revealing wear states. In 

Section 2, the experimental apparatus and specimens 

are introduced, the tests are conducted, and the 

original time series of the friction noise signals are 

obtained. In Section 3, the processed time series of 

the friction noise signals are obtained by means of 

reducing sampling and de-nosing. In Section 4, the 

evolution of the phase trajectories of friction signals 

is presented by reconstructing the phase space. In 

Section 5, the correlation dimension D and largest 

Lyapunov exponent are calculated. Finally, in Section 6, 

a discussion and analysis are provided, and the main 

conclusions of this work are given. 

2 Experiments 

2.1 Tribometer description 

The friction experiments were carried out on a rotating 

tribometer. Friction noise signals can be extracted   

in real-time via the ring-disk rotating process. The 

experimental device is composed of a power system, a 

loading system, a clamp system, and a data acquisition 

and an analysis system. The equipment is shown in 

Fig. 1. The upper sample ring was installed on a ring 

holder by a locking pin and a locking bolt, while the 

lower sample disk was mounted on a disk holder by 

a locating pin illustrated in Fig. 2. The friction torque 

was measured by a torque sensor, which was also 

attached to the disk holder. Friction noise signals 

were measured by a microphone PCB fixed 35 mm 

from the center of the friction pairs. The sensitivity of 

the microphone PCB was 45 mV/Pa, and its dynamic 

range was 15-122 dB. Signals were extracted and 

stored by a CoCo80 analyzer. 
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2.2 Test samples and test conditions 

The test samples included ring and disk specimens. 

The upper sample was a ring made of GCr15 bearing 

steel and with a Rockwell hardness of 61 HRC after 

quenching treatment. Its outside diameter was 34 mm, 

and its inner diameter was 24 mm. The surface of this 

ring was first processed by turning, and then ground 

and polished using sandpapers of 800#, 1200#, 1500#, 

and 2000# in sequence. The roughness Ra of this 

specimen was measured, and the mean of three 

measurements was considered the final Ra of the 

specimen. The ring specimens showed a roughness 

of Ra=0.040−0.043 μm. The lower sample was a disk 

made of AISI 1045; its Rockwell hardness was 44 HRC 

without heat treatment and its diameter was 46 mm. 

The disk had an initial roughness of Ra=5.520− 

6.000 μm after turning. The equivalent radius of the 

friction pair was 14.5 mm, and the nominal contact 

area was 455.53 mm2. Table 1 shows the experimental 

conditions of five tests. 

The tests were conducted under atmospheric 

conditions (at 16−22 °C; relative humidity, 48%−58%). 

Prior to testing, the specimens were cleaned with 

ethanol (97% pure) using an ultrasonic cleaner. A 

volume of 0.2 ml of 15W-40 lubricating oil was dropped 

onto the working surface of the lower sample, and 

good contact of the specimen surfaces was ensured  

Table 1 Experimental conditions. 

Test 
run

Normal load
(N) 

Normal 
pressure 
(MPa) 

Rotation 
speed 
(rpm) 

Sliding 
speed 
(m/s) 

1 

2 

3 

4 

5 

98 

98 

117.6 

117.6 

137.2 

0.215 

0.215 

0.258 

0.258 

0.301 

550 

600 

550 

600 

600 

0.835 

0.911 

0.835 

0.911 

0.911 
 

 

Fig. 1 Experimental apparatus. 

 
Fig. 2 Installation of ring and disk. 
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during installation. The sampling frequencies of the 

sound level sensor and the friction torque were 

12.8 kHz and 300 Hz, respectively, and the background 

noise was measured before the tests. To ensure the 

repeatability of the test results, five tests were carried 

out at least three times to account for the randomness 

of the friction noise.  

2.3 Test results 

Figure 3 shows the original time series of friction noise 

signals from five tests. Here, the noise signals are 

presented as voltage values. The values consistently 

reflect minimal changes over time but increase sharply 

in the last process of each test. 

3 Experimental signal processing 

The voltage signals in the experiments were converted 

to sound pressure levels in decibels using the equation 


sty

U
P , 0

0 sty

U
P                  (1) 

 

Fig. 3 Friction noise signals in the friction process. 
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where, U is the voltage of the test data, U0 is the voltage 

of the background noise, P is the sound pressure 

level of the test data after conversion, P0 is the sound 

pressure level of the background noise after con-

version, and sty is the sensitivity of the microphone. 

Here, sty=45 mV/Pa. 

  
      

10

c

Lp 20 log abs
P

P
, 

  
      

0
0 10

c

Lp 20 log abs
P

P
  (2) 

where Pc is the reference value of sound pressure,  

Pc = 2 × 10−5 Pa, Lp is the sound pressure level of the 

test data, and Lp0 is the sound pressure level of the 

background noise. The equation used to calculate the 

sound pressure level after removal of the background 

noise is 

  00.1Lp 0.1Lp
1 10Lp 10 log (abs(10 10 ))         (3) 

where Lp1 is the sound pressure level of the friction 

noise without the background noise.  

Generally speaking, the friction noise of the friction 

system includes other insignificant noise that may 

influence the dynamic characteristics of the former. 

Therefore, filtering and denoising of the friction  

noise signals was conducted by empirical mode 

decomposition (EMD). 

EMD was put forward by Huang et al. [18] to filter 

nonlinear and unstable time series. Using EMD, time 

series can be decomposed into a set of finite and 

intrinsic mode functions (imf) with different com-

ponents. Then, specific imf components selected from 

the original components are reset to a new time series 

to analyze and calculate the data during follow-up 

work [19, 20]. Details of the EMD algorithm are as 

provided as follows.  

The maximum and minimum values of a time series 

x(t) are determined, and the upper envelope curve 

xmax(t) and lower envelope curve xmin(t) of the original 

time series are calculated by the cubic spline functions. 

The mean of the upper and lower envelope curves is 

denoted as m(t). The original time series x(t) minus 

the mean m(t) yields a new series h(t) without low- 

frequency components. The relevant functions are 

shown in Eqs. (4) and (5). 

max min
( ) ( )

( )
2

x t x t
m t


              (4) 

( ) ( ) ( )h t x t m t                 (5) 

In general, the first h(t) is not necessarily a stationary 

data series. Therefore, it should be calculated using 

Eqs. (4) and (5) repeatedly until it meets the criteria 

of Eq. (6) with a standard value of SD=0.2−0.3. imf1 = 

h(t), where imf1 is the first component of imf. 

2

1

2

1

( ) ( )
SD

( )

T k k

t
k

h t h t

h t





 
 
 
 

              (6) 

1 1
( ) imfr x t                   (7) 

Assuming r1 is the new x(t), imf1, imf2, …, and imfn 

are calculated successively until the last time series  

rn remains undecomposed. Thus, the original time 

series can be presented in terms of imf and a residual 

component r, as shown in Eq. (8). 

1
( ) imf

n

i ni
x t r


                (8) 

where rn is the residual component representing the 

trend or mean of the original time series x(t). 

The imf component is an oscillating function with 

different amplitudes and frequencies. Each imf com-

ponent presents two characteristics [21]. In the data 

domain of each imf component, the numbers of the 

maximum values must be equal to the number of the 

zero crossings or present a difference of one at most. 

The average value of the envelope curves must always 

be equal to zero. 

Taking the friction noise signal in test 4 as an example, 

the original signal is decomposed into 11 different 

imf components and a single r. Figure 4 shows the 

time- and frequency-domains of the original signal, 

imf1, imf2, imf5, r, and the reconstructed signal. Several 

peaks in the power spectra of the original signal  

and imf1 and imf2 components may be observed. By 

contrast, the power spectrum of imf5 is relatively 

smooth. Therefore, the new signal is reconstructed  

by components from imf5 to imf11 and r. The power 

spectrum of the reconstructed signal is smoother than 

that of the original signal. 

Figure 5 displays the time series of friction noise 

obtained by EMD. Although, some differences may 

be observed in the test data of different experiments, 

the data follow a similar variation. The friction noise  
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Fig. 4 imf components in time-domain and frequency-domain. 

Fig. 5 Friction force and friction noise signals in the rotating friction process. 
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increases in the running-in process, remains relatively 

stable in the steady-state process, and then increases 

sharply in the increasing friction process. At this 

point, the specimens were damaged and the tests were 

ended. 

4 Evolution of phase-space trajectories 

and attractor 

4.1 Phase-space reconstruction 

The phase space is a geometric space that reveals the 

states of a system. In general, a nonlinear dynamic 

system presents a very high phase-space dimension. 

However, in practice, data from the tests are considered 

to present a single-variable time series obtained from 

the interaction of different parameters in the system. 

Thus, the test data should be reconstructed into     

a high-dimensional space to gain more dynamic 

information. Takens [22] presented a method wherein 

a 1D chaotic time series is extended into a 3D or 

higher-dimensional phase space by phase space 

reconstruction. The aim of this method is to expose 

more information on the system hidden in the time 

series. 

Time difference method is usually utilized to 

reconstruct the phase space for 1D time series of x1, x2, 

x3, …, xn. A number selected from the original time 

series is as one of the components of the vector every 

τ times to construct a group of vectors, i.e, 

2 ( 1)
[ , , , , ]

i i i i i m
x x x x      X , 

               i = 1, 2, … , N ( N = n−(m − 1)τ ) 

i.e, 

1 1 1 2 1 ( 1)1

2 2 2 2 2 ( 1)2
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, , , ,
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N N N N N m
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X

, 

i = 1, 2, … , N   (9) 

where m is the embedding dimension (the dimension 

of the reconstructed phase space), Xi is the vector of 

the reconstructed phase space, τ is the delay time, n 

is the length of the original time series, and N is the 

number of vectors in the reconstructed phase space.  

Selecting an appropriate τ and m is very important 

for reconstructing the phase space. When τ is too 

small, x(t) and x(t+τ) cannot be independent of each 

other because their values are close to each other. 

When τ is too large, the relationship between x(t) and 

x(t+τ) becomes random, and the chaotic attractor 

cannot be accurately determined. In this regard, the 

autocorrelation function method is used to determine 

an optimal τ [23]. For a set of single-variable time 

series {x(i)}, the definition of the autocorrelation 

function method is 

  1

2

1

1
( ) ( )

1
( )

N

i

N

i

x i x x i x
NC

x i x
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











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         
   


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    (10) 

1

1
( )

N

i
x x i

N 
                (11) 

The function constructed from τ and C(τ) is given 

by Eq. (10), where τ is the optimal delay time when 

C(τ) falls to the value of (1–1/e)·C(0). Taking the 

friction noise of test 4 as an example, Fig. 6 illustrates 

the relationship between τ and C(τ). Here, C(τ) falls 

with increasing τ. For example, the coordinates of  

the first point are (22, 0.6184), the τ of the time series 

is 22 s. 

The precondition of choosing the m is m≥2d + 1 (d is 

the dimension of the dynamic system). For an infinite 

time series without noise, m is just larger than the 

smallest integer value of D. In an finite time series  

 

Fig. 6 Autocorrelation function for the time delay from test 4 
(P = 0.258 Pa，v = 0.911 m/s). 
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with noise, however, m should be much larger than  

D. If m is too small, the attractor could undergo 

self-intersection because of folding. Thus, selecting a 

relatively large m is necessary in theory. Unfortunately, 

increases in m also increase the calculation burden 

for geometric invariants (e.g., D and the Lyapunov 

exponent) in practical applications. Moreover, the 

influences of noise and rounding errors significantly 

increase. 

Therefore, an optimal m is selected by the saturated 

correlation dimension method [13]. The advantage 

of this method is that both D and m can be calculated 

at the same time. The dimension is calculated by 

means of the G-P algorithm, which was proposed by 

Grassberger and Procaccia [24]. The formula of the 

G-P algorithm is  

1 1,

1
( ) ( )

( 1)

N N

i ji j j i
C r H r X X

N N   
  

         

(12) 

where H(·) is the Heaviside step function. That is 

0, 0
( )

1, 0

x
H x

x

 
  

             (13)  

when r approaches infinity, D is defined as 

0

ln ( )
lim

lnr

C r
D

r
               (14) 

Reconstructing the phase space of a 1D time series 

is necessary prior to this calculation. The τ can be 

obtained by the autocorrelation function method 

described above, and the lnC(r)−lnr curves are plotted 

in double-logarithmic coordinates for each m. Ideal- 

linear intervals are then selected from the curves and 

fitted by the least-squares method [25], the slopes of 

which reflect D. Then, m is plotted as the horizontal 

coordinate, and D is plotted as the vertical coordinate. 

The slope values are the D corresponding to the m 

plotted in the curved figure. Finally, the optimal m 

and D are obtained when D becomes stable. 

Taking the friction noise in test 4 as an example,  

D and m are calculated by the saturated correlation 

dimension method. Figure 7(a) shows that double- 

logarithmic curves are obtained when the integers of 

m are from 11 to 30. Figure 7(b) displays the relation-

ship between D and m obtained by fitting through 

the least-squares method. When m is less than 25, D 

increases with increasing m. When m is greater than 

or equal to 25, D remains stable over a small range. 

The optimal m and D of the friction noise in test 4 are 

25 and 0.8977, respectively. Table 2 shows τ and the 

optimal m of friction signals from five tests. 

Table 2 Embedding dimensions and delay times of friction noise 
signals. 

Test run Signal τ m 

1 Noise 11 16 

2 Noise 21 30 

3 Noise 13 23 

4 Noise 22 25 

5 Noise 11 22 
 

 

Fig. 7 Solution of embedding dimension of friction noise from test 4 (v = 0.911 m/s, P = 0.301 Pa). 
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4.2 Phase-space trajectory and attractor evolution 

The τ and optimal m of friction noise signals were 

calculated by Takens’ theorem [22] in Section 4.1. 

However, observing the evolution of phase-space 

trajectory visually in 3D space is impossible because 

of the high dimension of the evolution process. 

Therefore, the high-dimensional space is projected 

onto a 3D space by principal component analysis (PCA; 

Appendix A) [17, 26]. Three main vectors selected 

from the reconstructed high-dimensional space are 

drawn in the 3D graph to observe the evolution of the 

phase-space trajectory expediently. The reconstructed 

vector X is given in Eq. (9). 

The inner product matrix Y of the vector matrix X 

is presented as follows: 

Y X X                  (15) 

The three main eigenvalues λ1, λ2, and λ3 are chosen 

from all of the eigenvalues of matrix Y and then 

calculated and arranged in descending order as λ1, λ2, 

λ3, …, λn (λ1 ≥ λ2 ≥ λ3 ≥ … ≥ λn ≥ 0). Then, a new N × 3 

order vector matrix α is obtained by projecting the 

reconstructed m-dimensional vector matrix X to the 

three matrix directions V1, V2 and V3, which are 

calculated according to λ1, λ2 and λ3, respectively. 

1 2 3
, , , ,        U V W X V V V           (16) 

Each row of matrix α represents the coordinate of  

a point. A total of N points, which are drawn in 3D 

coordinates to present the 3D phase-space trajectory, 

are reconstructed. 

Taking the friction noise signals in test 4 as an 

example, the τ and m of the friction noise are 22 and 

25, respectively. The friction noise signal is divided 

into sections every 20,000 data points, and the points 

are drawn in 3D space by phase-space reconstruction. 

All of the phase trajectories are divided by continuous 

and non-overlapping signals. Because of space 

limitations, only some figures of the trajectories are 

selected in this work to present the evolution law of 

the friction noise signal. The phase trajectories of the 

friction noise are given in Fig. 8. 

During the running-in process of the friction noise 

signal, the trajectory of the friction noise begins to 

converge, and the volume of the phase trajectory is 

very large. The radius of the trajectory is very large  

in the initial friction stage of 0–15 min, as shown in 

Fig. 8(a). In the 60–75 min stage (Fig. 8(b)), the curva-

ture radius of the trajectory gradually converges to a 

central point as the friction process continues. The 

attractor of the friction noise forms in this stage. In 

the 75–315 min stage, the trajectory of the friction 

noise converges to a smaller point, and the trajectory 

circles reciprocally. The curvature radius remains steady 

within a small range, as shown in Figs. 8(c)–8(g), and 

the attractor of the friction noise is stable. In the final 

process, the phase trajectory of the friction noise 

begins to diverge, and the curvature radius increases. 

Thus, the phase trajectory escapes from the space 

presented in Fig. 8(h), and the attractor of the friction 

noise disappears. The evolution of the phase-space 

trajectory of the friction noise can be defined as 

“convergence-stability-divergence”, which corresponds 

to the “forming-keeping-disappearing” pattern of the 

evolution of the friction noise attractor. This pattern 

also corresponds to the complete friction process of 

the system. The friction noise first increases, and then 

declines to a stable value in the 0–75 min stage; this 

stage is considered the running-in process. The friction 

noise remains steady in the 75–315 min stage, which 

is also known as the steady-state process. Finally, the 

friction noise increases rapidly in the final process. 

During the complete friction process, the friction noise 

attractor gradually forms, then remains stable for a 

long period of time, and then finally disappears.  

The evolution of the attractor can be determined 

from the evolution of the phase trajectories. In the 

running-in process, the phase trajectory becomes 

convergent, and the attractor begins to form. During 

the stable-state process, the trajectory is maintained 

in a specific space, corresponding to the stable stage 

of the attractor. Finally, the phase trajectory diverges 

and escapes from the specific space, which corresponds 

to the disappearance of the attractor. Thus, the phase 

trajectory evolution of the friction noise is highly 

consistent with the evolution of the attractor. The 

attractor may be considered a running-in attractor 

because it forms in the running-in process. 
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5 Chaotic parameters 

5.1 Evolution of the correlation dimension 

D is a type of fractal dimension and is sensitive to the 

time behavior of the system. To reflect the characteristics 

of the chaotic dynamic system, D is usually used to 

quantitatively describe the complexities of the chaotic 

signals on a small scale [17]. In the present case, D 

can be utilized to characterize the complexity of friction 

noise signals [17, 27]. 

Coinciding with the time stages of the phase 

trajectory described in Section 4.2, the time series of 

the friction noise signal is divided into continuous  

and non-overlapping windows every 15 min (including 

20,000 data points). Figure 9 illustrates the evolution 

of D of the friction noise in five tests as calculated by 

the saturated correlation dimension method discussed 

in Section 4.1.  

In the attractor-forming process, D increases from 

a low value. In the attractor-keeping process, D 

remains stable. In the attractor-disappearing process, 

D declines. The evolution curve of D in the friction 

process corresponds to an “inverted bathtub curve”, 

and can be generalized as “increasing-steadying- 

declining” consistent with the “forming-keeping- 

disappearing” formation process of the friction noise  

Fig. 8 Evolution of the phase trajectory of friction noise in test 4. 
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attractor and the “running-in, steady process, increasing 

friction” pattern of the complete wear process. 

5.2 Evolution of the Lyapunov exponent 

The basic characteristic of chaotic motion is that   

the system is extremely sensitive to the initial value. 

The trajectories generated by two initial values that 

are close to each other separate exponentially with 

increasing time. This phenomenon can be quantitatively 

described by the Lyapunov exponent. The Lyapunov 

exponent represents the average exponential rate   

of convergence or divergence between adjacent orbits 

in a phase space. When the Lyapunov exponent of   

a system is less than zero, the phase volume of the 

system is contractive in this direction. When the 

Lyapunov exponent is greater than zero, the phase 

volume is expansive and folding in this direction. 

The long-term behavior of an uncertain system is 

unpredictable. Therefore, the system is chaotic [28]. 

If a system has a chaotic attractor, it presents three 

features: (1) There is at least one positive Lyapunov 

exponent, (2) at least one of the exponents is zero, 

and (3) the sum of the exponential spectrum is negative.  

In practice, the computational burden for all Lyapunov 

exponents is very large when the dimensions of the 

system are very high. Thus, determining chaotic 

characteristics through the largest Lyapunov exponent 

is appropriate [28]. 

The exact Lyapunov exponent of a general time 

series cannot be obtained according to the dynamic 

equation. The wolf reconstruction method [28] is thus 

used to calculate the maximum Lyapunov exponent 

of such a time series. The calculation process of this 

measure is as follows: 

The τ and m are respectively obtained by the 

autocorrelation function and the saturated correlation 

dimension methods. According to Takens’ theorem, 

the new time series Y(ti) = (x(ti), x(ti+τ), … , x(ti+(m–1)τ)), 

(i = 1, 2,…, N) is obtained by reconstructing the phase 

space of the original time series. 

Assuming that Y(t0) is the initial point in the phase 

space, Y0(t0) is the point nearest to Y(t0), and L0 is the 

distance between these two points, the time evolution 

of these two points is tracked from t0 until the distance 

is larger than ε at t1.  

0 1 0 0
( ) ( )L Y t Y t     , ε > 0         (17) 

Fig. 9 Correlation dimensions of friction noise in the wear process. 
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Then, a point Y1(t1) near the point Y(t1) is determined 

to ensure that the distance between the two points 

satisfies the function. 

1 1 1 2
( ) ( )L Y t Y t    , ε > 0               (18) 

To ensure that the angle between L1 and L′1 is as 

small as possible, the process described above is 

repeated until the end time of Y(t). Assuming M is 

the iteration number, the largest Lyapunov exponent 

[29] is given as Eq. (19). 







 1 0
0

1
ln

M k

k
M k

L

t t L
               (19) 

Coinciding with the time stages of the phase 

trajectory in Section 4.2, the time series of the friction 

noise signal is divided into continuous and non- 

overlapping windows every 15 min (including 20,000 

data points). The largest Lyapunov exponent of every 

stage is calculated by Eq. (19). Figure 10 illustrates 

changes in λ1 of the friction noise over five tests. 

Because the λ1 of each test is greater than zero, the 

friction noise signals are chaotic and the attractors of 

the friction noise signals can be considered chaotic 

attractors. 

6 Conclusions 

Experiments with different rotating speeds and loads 

were performed on a ring-on-disk tribometer, and 

friction noise signals produced during the friction 

process were extracted by a microphone PCB. The 

phase trajectories were projected onto a 3D space by 

PCA, and D and the largest Lyapunov exponents 

were calculated based on phase-space reconstruction. 

The following conclusions were confirmed. 

(1) The chaotic attractor is a set of infinite points  

in phase space. The system state of chaotic motion 

always converges to a certain attractor in that phase 

space. Thus, the evolution of the phase trajectory can 

reflect the evolution of the chaotic attractor. The 

processes of convergence, stabilization and divergence 

characterize the evolution of the phase trajectories of 

friction noise signals, and the evolution of these phase 

trajectories corresponds to the evolution of the attractors 

via a pattern called “forming-keeping-disappearing”. 

The formation process of the attractor can characterize 

the chaotic behavior of the friction system. 

(2) D increases during the running-in process, 

remains relatively steady during the stable process, 

and then decreases during the friction increasing 

Fig. 10 Largest Lyapunov exponent of friction noise in the friction process. 
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process. The change process of D conforms to the 

pattern of an “inverted bathtub curve”. Changes in D 

are consistent with the evolution processes of chaotic 

attractors and the phase trajectories. 

(3) The attractors of friction noise signals are also 

called running-in attractors because they form during 

the running-in process. In addition, the attractors   

are chaotic at the points where the positive largest 

Lyapunov exponents are obtained during the friction 

process.  

(4) Friction noise includes information that can   

be utilized to characterize the dynamic behavior of  

a friction system. Therefore, the largest Lyaponov 

exponent can describe the chaotic characteristics of 

the friction process, and the phase trajectory and D of 

the friction noise can describe the friction process 

and evolution of attractors. The results of this study 

help reveal changes in wear states. As the evolutionary 

consistency of the chaotic characteristics of friction 

force and friction noise was not examined in this work, 

future research on the friction process will include 

this topic.  
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Appendix A Proof of concept of principal 

component analysis (PCA) 

PCA is a statistical process that utilizes an orthogonal 

transformation to transform a set of observations of 

possibly correlated variables into a set of values of 

linearly uncorrelated variables. It is one of the simplest 

methods based on true eigenvector multivariate 

analyses and can reveal the inner structure of data. 

For a multivariate data set in a high-dimensional space, 

PCA can provide a lower-dimensional picture or a 

projection of this object when observed from its most 

informative viewpoint by applying only the first few 

principal components so that the dimension of the 

transformed data is decreased. 

Mathematically, the definition of this transformation 

is a set of p-dimensional vectors of w(k) = (w1, ... , wp)(k) 

that map each row vector x(i) of X to a new vector of 

principal component scores t(i) = (t1, ... , tm)(i), shown by 

 ( ) ( ) ( )k i i kt x w ,  i = 1, ... , n,  k = 1, ... , m   (A.1) 

where t is the maximum possible variance of x and 

w is a vector. 

The full principal component decomposition of X 

can be given as 

T XW                (A2) 

where W is a p-by-p matrix with columns representing 

the eigenvectors of XTX. 

Principal component transformation can be performed 

in accordance with the singular value decomposition 

(SVD) of X 

TX U W              (A3) 

where Σ represents the singular values of X, U represents 

the left singular vectors of X, and W represents the 

right singular vectors of X. 

In terms of this factorization, the matrix XTX is 

2T T T T X X W U U W W W        (A4) 

T  T XW U W W U          (A5) 

Similar to the eigen decomposition, a truncated n × 

L score matrix TL can be gained by the first L largest 

singular values and their singular vectors: 

L L L L
 T U XW             (A6) 

Truncation of a matrix M or T by SVD produces a 

truncated matrix that is the nearest possible matrix of 

rank L. 

Therefore, PCA can concentrate most of the signals 

into the first few principal components, which can  

be obtained by dimension reduction; later principal 

components may be affected by noise and disposed 

of without great loss of information. 
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