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Abstract: The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations 

perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the 

tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is 

lost during a part of the oscillation period, so that the sample starts to “jump”. It is shown that the macroscopic 

coefficient of friction is a function of only two dimensionless parameters—a dimensionless sliding velocity and 

dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the 

present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we 

consider “stiff systems”, where the contact stiffness is small compared with the stiffness of the system. The role 

of the system stiffness will be studied in more detail in a separate paper. 
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1  Introduction 

The influence of vibration on friction is of profound 

practical importance [1]. This phenomenon is used in 

wire drawing [2, 3], press forming [4] and many other 

technological applications. Experimental studies of the 

influence of ultrasonic oscillations on friction started 

in the late 1950s [5]. In the subsequent years several 

illuminating works were performed using various 

techniques, e.g., measurement of electrical conducti-

vity of the contact [6, 7]. Reduced friction has been 

observed both with oscillations in the contact plane 

(in-plane) [8] and perpendicular to it (out-of-plane) [9]. 

In the 2000s, interest in the interaction of friction 

and oscillations was promoted by applications such 

as traveling wave motors [10, 11] and the rapidly 

developing field of nanotribology [12, 13]. In recent 

years, detailed studies of the influence of ultrasonic 

oscillations and comparisons with various theoretical  

models have been performed by Chowdhury et al. [14] 

and Popov et al. for in-plane oscillations [15], and 

by Teidelt et al. for out-of-plane oscillations [16]. The 

latter paper also includes a comprehensive overview 

of previous works in the field up to 2012. 

The above works provided an empirical basis  

for a qualitative understanding of the influence of 

oscillations on friction. However, good quantitative 

correspondence between experimental results and 

theoretical models could never be achieved (see, e.g., 

a detailed discussion in Ref. [17]), so it is not clear 

whether we adequately understand the physics of this 

phenomenon. Even the question of which oscillation 

properties determine the reduction of friction force 

is still under discussion: While in the case of static 

friction it seems to be the amplitude of displacement 

oscillation [15], for sliding friction it is believed to 

be the amplitude of velocity oscillation [11]. In the 

following, we will show that, in general, friction under 

oscillation is determined by both of these parameters.  

The main novelty of the present paper compared to  
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earlier work on the influence of oscillation on friction 

is explicit consideration of the contact stiffness. The 

influence of the contact stiffness is closely related to a 

fundamental and still unresolved question about the 

physical nature of the characteristic length determining 

the crossover from static friction to sliding. In earlier 

works on this topic, it was assumed that this charac-

teristic length is an intrinsic property of a frictional 

couple and that its physical nature is rooted in 

microscopic interactions between the surfaces [15]. 

However, later investigations suggested another inter-

pretation. Studies of friction in stick-slip microdrives 

[17, 18] have shown that the static and dynamic 

behavior of drives can be completely understood and 

precisely described without any fitting parameters just 

by assuming that the characteristic length responsible 

for the “pre-slip” during tangential (in-plane) loading 

of a contact is equivalent to partial slip in a tangential 

contact of bodies with curved surfaces. This contact- 

mechanical approach was substantiated in Ref. [19] 

by a theoretical study of the influence of in-plane 

oscillations on the static force of friction. It was shown 

that the characteristic length is simply the indentation 

depth multiplied by the coefficient of friction. Later, 

it was found that this is valid independently of the 

shape of the contact and also holds true for rough 

surfaces [20]. This hypothesis of the purely contact 

mechanical nature of the pre-slip and of the charac-

teristic amplitude was verified experimentally for a 

wide range of radii of curvature and applied forces in 

Refs. [21, 22]. It was thus confirmed that describing 

friction under oscillation, including pre-slip, is basi-

cally a matter of correct contact mechanics and that 

the main governing parameter for both normal and 

tangential oscillation is the indentation depth. This 

realization also led to new generalizations in the 

physics of friction [23, 24], which, however, still need 

experimental verification. 

In the present paper we utilize this new understand-

ing of the importance of the precise contact mechanics 

and the key property of contact stiffness when con-

sidering the details of frictional processes. We focus 

our attention on the influence of normal (out-of-plane) 

oscillations on the macroscopic frictional force. We 

begin by looking at a simple system consisting of a 

single spring and a frictional point, then extend our 

analysis to the Hertzian (parabolic) contact using 

the Method of Dimensionality Reduction [25]. For 

simplicity we do not deal with system dynamics, and 

instead impose a forced oscillation of the indentation 

depth. This restricts our analysis to systems where the 

contact stiffness is small compared with the stiffness 

of the system as a whole and the inertia of the contact 

region thus does not play any role. An analysis 

involving system dynamics is published in the second 

part of this two-part paper.  

Another contribution of this paper is the considera-

tion of large oscillation amplitudes, when the indenter 

starts jumping. To our knowledge this case has not 

previously been considered in theoretical models. 

2  Simplified one-spring model  

Let us consider an elastic body that is brought into 

contact with a flat substrate and then subjected to a 

superposition of an oscillation in the direction normal 

to the substrate and movement with a constant velocity 

in the tangential direction. We will assume that 

Coulomb’s law of friction with a constant coefficient 

of friction 0  is valid in the contact. We first consider 

a very simple model consisting of a single spring with 

normal stiffness zk  and tangential stiffness xk . As the 

reference state, the unstressed state in the moment 

of first contact with the substrate is chosen. Let us 

denote the horizontal and vertical displacements  

of the upper point of the spring from the reference 

state by xu  and zu  and the horizontal displacement 

of the lower (contact) point by ,cxu . The upper point 

is forced to move according to 

 ,0 cosz z zu u u t  and x xu v        (1) 

(see Fig. 1). 

 
Fig. 1 The simplest model of a tribological contact with a con-
stant contact stiffness represented as a single spring, which has a 
normal stiffness zk  and a tangential stiffness xk . The upper end 
of the spring is forced to move according to Eq. (1). At the lower 
end (immediate contact spot), Coulomb’s law of friction with a 
constant coefficient of friction 0  is assumed.  
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2.1 Small oscillation amplitudes (no “jumping”) 

Let us start our consideration with the case of suffi-

ciently small oscillation amplitudes,   ,0z zu u , so that 

the indenter remains in contact with the substrate at all 

times. As for the horizontal movement, the lower point 

of the spring can be either in stick or slip states. During 

the slip phase the tangential force xf  ,c( )x x xk u u  is 

equal to the normal force  ,0( cos )z z z zf k u u t  mul-

tiplied with the coefficient of friction:  ,c( )x x xk u u  

 0 ,0( cos )z z zk u u t . Differentiating this equation with 

respect to time gives     
0 ,c 0( ) sinx x z zk v u k u t . For 

the tangential velocity of the lower contact point, it 

follows that     
,c 0 0 ( / ) sinx z x zu v k k u t . This equa-

tion is only valid when 
,c 0xu , and the foot point of 

the spring will transition from the sliding state to the 

sticking state when the condition 
,c 0xu  is fulfilled. 

This occurs at the time 1t  which satisfies the following 

equation: 

     
,c 0 0 1( / ) sin 0x z x zu v k k u t        (2) 

Introducing a dimensionless velocity 

 



0

0

x

z z

k v
v

k u
               (3) 

we can rewrite Eq. (2) in the form 

 1sin t v                   (4) 

For  1v , this equation has no solutions, and the spring 

continues sliding at all times. Since, in this case, the 

tangential force remains proportional to the product 

of the normal force and the macroscopic coefficient 

of friction 0  at all times, there is no reduction of the 

macroscopic force of friction. 

For dimensionless velocities smaller than one,  1v , 

Eq. (4) has solutions and the movement of the contact 

point will consist of a sequence of sliding and sticking 

phases, where the sliding phase ends at time 1t  given 

by Eq. (4). The tangential force at this point is equal 

to   0 ,0 1( cos )x z z zf k u u t  or taking Eq. (4) into 

account: 

  


           

2
2

1 0 ,0 0 ,0( ) x x
x z z z z

v k
f t k u k u     (5) 

During the sticking stage the tangential force increases 

linearly according to 

   (stick)
1 1( ) ( )x x x xf t f t k v t t           (6) 

The next phase of slip starts at time 2t  when the 

tangential force becomes equal to the normal force 

multiplied by the coefficient of friction (see Fig. 2): 

    1 2 1 0 ,0 2( ) ( ) ( cos )x x x z z zf t k v t t k u u t    (7) 

Or taking Eqs. (5) and (4) into account and using the 

dimensionless variable Eq. (3), 

      2
2 2cos arcsin 1t v t v v         (8) 

The average value of the frictional force during the 

whole oscillation period can be calculated as follows: 

      
2 1

1 2

2π /
(stick) ( )d ( )d

2π

t t

x x x
t t

f f t t f t t     (9) 

Divided by the average normal force, this gives the 

macroscopic coefficient of friction 

 macro x zf f               (10) 

where  ,0z z zf k u  in the non-jumping case, which is 

considered here. The result of numerical evaluation of 

the macroscopic coefficient of friction, normalized by 

the local coefficient of friction 0  is presented in Fig. 3. 

It was found that the numerically obtained depen-

dences of the coefficient of friction on dimensionless 

velocity and amplitude can be approximated very 

accurately with the following equation: 

   


        
2 4macro

0 ,0

3 1
1 1 1

4 4
z

z

u
v v

u
     (11) 

 

Fig. 2 Schematic presentation of the normal force multiplied with 
the coefficient of friction (sinusoidal curve) and tangential force 
(straight line). During the slip phase (before 1t  and after 2t ), the 
tangential force is equal to the normal force times the coefficient of 
friction, thus both curves coincide. During the stick phase (between 

1t  and 2t ), the tangential force is smaller than the normal force 
multiplied by the coefficient of friction. Both forces become equal 
again at time 2t , where the stick phase ends. 



48 Friction 5(1): 45–55 (2017) 

 | https://mc03.manuscriptcentral.com/friction 

 

 
Fig. 3 Dependence of the normalized coefficient of friction on 
the normalized velocity for ,0/ 0,  0.2,  0.4,  0.6,  0.8, 1.0z zu u   
(from top to bottom). Points represent the results of numerical 
evaluation of the Integral (9). Solid lines represent the empirical 
Approximation (11). The inset shows the low-velocity asymptotic 
Solution (12) (solid line) compared to the numerical Solution (9) 
(points). 

A comparison of this approximation with numerical 

results provided by Eqs. (9) and (10) is shown in Fig. 3. 

The low-velocity limit of the coefficient of friction 

can be derived analytically by replacing the time- 

dependence of the normal force with its Taylor series 

around the points   0t  and   3π / 2t  and repeating 

the above calculations including integration of (9), 

which provides the result 




        
 

3 / 2 2macro

0 ,0

4 1
1 1 π π

3 2
z

z

u
v v v

u
   (12) 

This dependence is asymptotically exact in the limit 

of small sliding velocities. Like the empirical Appro-

ximation (11) it contains only two dimensionless 

variables: the dimensionless amplitude of oscillation 

 ,0z zu u  and the dimensionless sliding velocity (3). A 

comparison with the numerical results is shown for the 

case of the critical oscillation amplitude,  ,0 1z zu u , 

in the inset of Fig. 3. 

Equation (11) can be rewritten in a form explicitly 

giving the average tangential force (force of friction): 

   
            

2 4

0 ,0

,0

3 1
1 1 1

4 4
z

x z z

z

u
f k u v v

u
  (13) 

Note that the change of the friction force due to oscilla-

tion, as compared with sliding without oscillation, 

does depend on the amplitude of oscillation, but does 

not depend on the average normal force: 

             
2 4

0

3 1
1 1

4 4
x z zf k u v v      (14) 

As will be shown later, this property implies that 

Eq. (14) is valid for arbitrarily-shaped contacts if the 

oscillation amplitude is small, and xk  and zk  are 

understood as the incremental tangential and normal 

stiffness of the contact. 

Equation (11) provides a compact representation 

of the law of friction. However, it is not always 

convenient for interpretation of experimental results, 

as the dimensionless velocity (3) is normalized by the 

amplitude of velocity oscillation and thus the scaling of 

the velocity depends on the oscillation amplitude. To 

facilitate the physical interpretation of experimental 

results it may be more convenient to normalize the 

velocity using a value that does not depend on the 

oscillation amplitude. Introducing a new normalized 

velocity v̂  according to the definition 

 


0 ,0

ˆ x x

z z

k v
v

k u
             (15) 

we can rewrite Eq. (11) in the form 




    
              

2 4

,0 ,0macro

0 ,0

3 1
ˆ ˆ1 1 1

4 4

z zz

z z z

u uu
v v

u u u
  (16) 

This dependence is presented in Fig. 4. 

 

Fig. 4 Dependence of the normalized coefficient of friction  
on the dimensionless velocity (15): The horizontal line at the 
constant value 1 corresponds to sliding friction without oscillation. 
When the oscillation amplitude increases, the static force of 
friction (at zero velocity) decreases until it vanishes (bold line). 
This trend is shown in the upper part of the plot for amplitudes 

,0/ 0.2,  0.4,  0.6,  0.8, 1.0z zu u   (from top to bottom). Further 
increase of the oscillation amplitude leads to loss of contact 
during a part of the oscillation period. In this range of oscillation 
amplitudes, the static friction force remains zero, and the slope of the 
dependency decreases with increasing oscillation amplitude. This 
is shown in the lower part of the plot for amplitudes ,0/z zu u  
1.2,  1.4,  1.6,  1.8, 2.0  (from top to bottom). 
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2.2 Large oscillation amplitudes (“jumping”) 

If the amplitude of normal oscillations exceeds the 

average indentation depth, the indenter starts to 

“jump”: In this case it will be in contact with the sub-

strate only during part of the oscillation period and 

in the no-contact-state for the rest of the time. For  

a jumping contact, analytical considerations become 

too cumbersome, and we will only present the results 

of numerical modeling of the behavior of the system. 

In our model, the movement of the contact point is 

determined by local stick and slip conditions: As 

long as the tangential spring force is smaller than the 

normal force multiplied by the coefficient of friction, 

the contact point is considered to be stuck to the 

substrate. If in any particular time step the tangential 

force exceeds the maximum friction force, it is brought 

into equilibrium by appropriately changing the contact 

coordinate. Overall, the system undergoes alternating 

contact and non-contact phases, while each contact 

phase may be divided into stick and slip phases. The 

average force during one complete period of oscillation, 

divided by the average normal force, results in the 

macroscopic coefficient of friction, macro . It can be 

shown that, as in the non-jumping case, the dimen-

sionless coefficient of friction  macro 0/  is a function 

of only the dimensionless velocity v  given by Eq. (3) 

and the dimensionless oscillation amplitude. This pro-

perty was checked by varying (dimensional) system 

parameters while preserving the values of the two 

dimensionless parameters. The numerical results for 

the jumping case are shown in Fig. 5. One can see that 

the dependence of the reduced coefficient of friction 

on the reduced velocity does not change significantly 

after the reduced oscillation amplitude exceeds the 

critical value 1, where static friction first disappears. 

Thus, as a very rough approximation, one can use the 

relation (11) with the critical oscillation amplitude for 

the whole range of jumping contacts: 

   


       
2 4macro

0

3 1
1 1 1

4 4
v v (for the jumping case) 

(17) 

It is interesting to note that the critical value of 

the dimensionless velocity v , after which there is 

continuous sliding and the macroscopic coefficient of  

 

Fig. 5 Dependence of the normalized coefficient of friction  
on the dimensionless velocity v  (3) for the “jumping” case, i.e., 
when the oscillation amplitude exceeds the average indentation 
depth. Curves are shown for 11 oscillation amplitudes from 

,0/ 1z zu u   to ,0/ 2z zu u   with a step of 0.1. The curves for 
higher oscillation amplitudes “pile up” towards a limiting curve. 
The inset shows the dependence of the slope of the low-velocity 
asymptote (21) on ,0/z zu u . One can see that it depends only 
weakly on the oscillation amplitude: Once the sample starts 
jumping the slope drops rapidly by about 20% and then remains 
practically constant with a limiting value of π / 4 . 

friction coincides with the microscopic one, is equal 

to 1 both in the non-jumping and jumping regimes. 

The low-velocity asymptote of the dependence of the 

coefficient of friction can be easily found analytically. 

It is instructive to do this for a better understanding 

of the details of the dependence and of possible 

deviations from the rough estimate (17). At sufficiently 

low velocities, the spring will stick as soon as it comes 

into contact with the substrate. From Eq. (1), we can 

see that the times when contact is lost or regained are 

determined by the equation  

   1,2 0arccos ( / )zt u u , for   0zu u       (18) 

The spring comes into contact in fully relaxed state 

and is then moved with the constant velocity 0v  

during the contact time  contact 22π / 2t t . At low 

velocities the spring will remain in stick for almost 

the entire contact time, so that the average tangential 

force during the contact time can be estimated as 

 0 contactcontact
/2x xF k v t  and the average tangential force 

during the whole oscillation period as 




  
        

2
2

0 contact 0 0π arccos
2 2π π

x x
x

z

k v t k v u
F

u
  (19) 
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The average normal force is given by: 

                 

2

0 0
0

0

1 1
1 arccos 1
π π

z z

u uu
F k u

u u u
 (20) 

with which we finally find the normalized coefficient 

of friction: 




  
     

                 

2

0

macro

2
0

0 0 0

0

1
1 arccos
π

1 1
1 arccos 1
π π

z

z z z

u

u
v

u u uu

u u u u

(21) 

This result illustrates once more that the reduced coeffi-

cient of friction is a function of only the dimensionless 

velocity v  and the dimensionless oscillation amplitude 

 ,0/z zu u . The dependence of the slope of the low- 

velocity asymptote on the dimensionless oscillation 

amplitude  ,0/z zu u  is shown in the inset of Fig. 5. One 

can see that when the sample starts jumping the 

slope drops rapidly by about 20% and then it remains 

nearly constant at the limiting value of π / 4 , thus 

an explicit expression for the low-velocity asymptote 

in the jumping regime can be written (in the original 

dimensional variables) as: 







0
macro

π

4
x

z z

k v

k u
 (low velocity asymptote;   ,0z zu u ) 

(22) 

As mentioned above, for comparison with experi-

ments it may be preferable to use the dimensionless 

velocity v̂  (15), which does not depend on the oscilla-

tion amplitude. In terms of this velocity, the coefficient 

of friction is shown in Fig. 4 for both jumping and 

non-jumping regimes, separated by a bold solid line 

corresponding to the critical amplitude  ,0/ 1z zu u . 

Overall, one can see that an increase of the oscillation 

amplitude first leads to a decrease of the static coeffi-

cient of friction at low sliding velocities. At the critical 

amplitude, the static coefficient of friction vanishes and 

remains zero during further increases of the oscillation 

amplitude, while the overall dependence on velocity 

starts to “tilt” (the slope of the dependence decreases 

with increasing oscillation amplitude). 

3 Reduction of friction in a Hertzian contact 

In Section 2, we considered a simplified model in 

which it was assumed that the contacting bodies have 

a constant contact stiffness that does not depend on 

the indentation depth. This model can be realized 

experimentally by using a flat-ended cylindrical pin 

or a curved body with a flat end (e.g., due to wear). 

However, in the general case the body in contact will 

have curved or rough surfaces so that the contact 

stiffness will depend on the indentation depth. In this 

section we generalize the results obtained in the pre-

vious section for more general contact configurations. 

In our analysis of the contact of a curved body 

with the substrate we will use the so-called Method 

of Dimensionality Reduction (MDR). As shown in 

Ref. [26], the contact of arbitrarily shaped bodies can 

be described (in the usual half-space approximation ) 

by replacing it with a contact of an elastic foundation 

with a properly defined planar shape ( )g x , as shown 

in Fig. 6. The elastic foundation consists of a linear 

arrangement of independent springs with normal 

stiffness  zk  and tangential stiffness  xk  and with 

sufficiently small spacing x . For an exact mapping, 

the stiffness of the springs has to be chosen according 

to Refs. [25, 27]: 

  
    

2 2
* 1 2

*
1 2

1 11
withzk E x

E E E
     (23) 

  
    * 1 2

*
1 2

2 21
with

4 4
xk G x

G G G
      (24) 

where 1E  and 2E  are the moduli of elasticity, 1  and 

 2  the Poisson numbers, and 1G  and 2G  the shear 

moduli of the bodies. The “equivalent shape” ( )g x  

providing the exact mapping can be determined either  

 
Fig. 6 Schematic presentation of the contact of a transformed 
planar profile with an effective elastic foundation as prescribed 
by the rules of the Method of Dimensionality Reduction (MDR). 
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analytically (e.g., for axis-symmetric profiles [25, 27]), 

or by asymptotic [26], numerical [26, 28] or experi-

mental methods. It is important to note that an 

equivalent profile does exist for arbitrary topographies 

of contacting bodies. Once determined, this equivalent 

profile can be used to analyze arbitrary dynamic 

normal and tangential loading histories. If the body 

is moved tangentially, the same law of friction that is 

valid for the three-dimensional bodies is applied for 

each individual spring, using the same coefficient of 

friction 0 . If the above rules are observed, the relations 

between macroscopic properties of the contact (in 

particular the normal and tangential force-displacement- 

relationships) will identically coincide with those of 

the initial three-dimensional problem [26]. 

3.1 Arbitrary surface topography and small  

amplitude of oscillations 

Let us start by deriving the reduction of friction 

force for the case of arbitrary contact geometry and 

small oscillation amplitudes. Consider the MDR- 

representation of the problem in Fig. 6. If the oscilla-

tion amplitude is small, then most springs which came 

into contact with the elastic foundation during the 

initial indentation by ,0zu  will remain in contact at all 

times. Thus, the result (14), which is valid in the non- 

jumping case, is applicable for most of the springs in 

the contact; we only have to replace the normal contact 

stiffness by the stiffness of a single spring: 

              
2 4

0one spring

3 1
1 1

4 4
x z zf k u v v  (25) 

The oscillation amplitude and the expression in the 

brackets are the same for all springs. Summing over 

all springs therefore just means replacing the stiffness 

of one spring by the total stiffness of all springs in 

contact, zk , which leads us back to Eq. (14), which is 

thus generally valid for arbitrary contact shapes. 

3.2 Parabolic surface profile and arbitrary amplitude 

of oscillations 

For a parabolic profile  2/(2 )z r R  the equivalent plane 

profil ( )g x  is given by Ref. [25]:  2( ) /g x x R. In our 

numerical simulations, this profile was first indented 

by ,0zu . Subsequently, the indenter was subjected   

to superimposed normal oscillation and tangential 

movement with constant velocity according to Eq. (1). 

Since the springs of the MDR model are independent, 

the simulation procedure for each spring is exactly as 

described in Section 2: The movement of the contact 

point of each spring of the elastic foundation was 

determined by the stick and slip conditions: as long as 

the tangential spring force remained smaller than the 

normal force multiplied by the coefficient of friction, 

the contact point remained stuck to the substrate. If 

in a particular time step the tangential force exceeded 

the critical value, it was reset to the critical value by 

appropriately changing the contact coordinate. This 

procedure unambiguously determines the normal and 

tangential force in each spring of the elastic foundation 

at each time step. By summing the forces of all springs 

the total normal and tangential force are determined. 

After averaging over one period of oscillation, the 

macroscopic coefficient of friction was found by divid-

ing the mean tangential force by the mean normal 

force. This coefficient of friction, normalized by the 

local coefficient of friction 0 , once again appears to be 

a function of only two parameters: the dimensionless 

velocity (either v  (3), see Fig. 7, or v̂  (15), see Fig. 8) 

and the dimensionless oscillation amplitude  ,0/z zu u . 

For a parabolic profile, the dependences look qualita-

tively very similar to those for a single spring (compare 

with Fig. 3 and Fig. 4). The dependences have two 

characteristic features: (a) the static force of friction— 

the starting point of the curve at zero velocity and (b) 

the critical velocity  1v  after which there is no further 

influence of oscillations on the macroscopic coefficient 

of friction.  

 

Fig. 7 Dependence of the normalized coefficient of friction on 
the normalized velocity v  defined by Eq. (3) for the oscillation 
amplitudes ,0/ 0,  0.2,  0.4,  0.6,  0.8, 1.0z zu u   (top to bottom). 
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Fig. 8 Dependence of the normalized coefficient of friction on 
the normalized velocity v  defined by Eq. (15) for the oscillation 
amplitudes ,0/ 0,  0.2,  0.4,  0.6,  0.8, 1.0z zu u   (the bold line and 
all curves in the upper-left part) and for ,0/ 1.2,  1.4,  1.6,z zu u   
1.8, 2.0 (bottom-right part). 

4  Discussion 

Let us summarize and discuss the main findings of 

the present study and provide a comparison with 

experimental results. The structure of the obtained 

dependences of the macroscopic coefficient of friction 

on the velocity in the presence of oscillations is simple 

and contains only two main reference points: the static 

friction force and the critical velocity. The dependence 

of the static friction force is extremely simple: it is 

determined just by the minimum of the normal force 

during the oscillation cycle. The differences of the 

static friction force for indenters of different shape will 

therefore be completely determined by the solution 

of the corresponding normal contact problem. The 

second reference point is the critical velocity, which 

separates the velocity interval where the coefficient of 

friction does depend on the velocity from the interval 

where there is no further dependence. This critical 

point is given by the condition  1v  or explicitly, in 

dimensional variables:  

  
*

0 0* z

E
v u

G
              (26) 

Since Mindlin’s ratio * */E G  is on the order of unity 

and  zu  is the amplitude of velocity oscillation, this 

means that the critical velocity is roughly speaking the 

amplitude of the velocity oscillation multiplied with 

the coefficient of friction. It is astonishing that this 

simple result is absolutely universal and is valid for 

both the non-jumping and jumping regimes and for 

indenters of arbitrary shape.  

Thus, one of the reference points is determined 

solely by the amplitude of displacement oscillation 

and the other solely by the amplitude of the velocity 

oscillation. Between these points, the dependence of the 

coefficient of friction on sliding velocity is accurately 

approximated by Eq. (11), which can be rewritten in a 

universal form that does not depend on the indenter 

shape: 

    
 

             

2 4macro static

0 0

3 1
1 1 1 1

4 4
v v    (27) 

The indenter shapes will only influence the static 

coefficient of friction in the above equation.  

For practical applications one can use an even 

simpler approximation differing from Eq. (27) by 1% 

or less: 

  
 

 
    

 

2.4macro static

0 0

1 1 1 v         (28) 

Substituting the definition of v , we can write this 

dependence in the initial dimensional variables: 

    
 

 
     

2.4*
0

macro 0 0 static *
0

1
z

vG

E u
   (29) 

This equation contains in a condensed form all essential 

results of the present study. Most interestingly, it is 

approximately valid in both non-jumping and jumping 

regimes and for all indenter shapes. As long as the 

amplitude of oscillation is smaller than the average 

indentation (no jumping), the static friction force 

decreases monotonously with increasing oscillation 

amplitude. After reaching the critical oscillation ampli-

tude, the static friction force vanishes and remains 

zero at larger oscillation amplitudes, but Eq. (27) still 

remains valid in a good approximation. From the critical 

amplitude onwards, the force-velocity dependencies 

start to “tilt”.  

The described features can be readily recognized in 

the experimental data shown in Fig. 9. 

Comparison of the experimental results with the 

theoretical predictions in Fig. 4 shows both similari-

ties and differences. For example, we also observe the  
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Fig. 9 Experimentally determined dependences of the coefficient 
of friction on sliding velocity between a steel sphere and a steel disc 
for increasing amplitudes of out-of-plane oscillation obtained by 
Milahin (Source: [29], reproduced with permission of the author). 
The upper-most curve corresponds to sliding in the absence of 
oscillation. The second, third and fourth curves correspond to 
amplitudes of 0.06 mzu   , 0.10 mzu   , 0.16 mzu    and 

0.27  m
z

u   . 

decrease of static friction and subsequent “tilting” of 

the dependences in the experimental data. Similar 

behavior was also observed in Ref. [30]. A difference 

between our theory and experiment is that the static 

coefficient of friction does not vanish entirely even at 

large oscillation amplitudes. This effect is known also 

for other modes of oscillation and is related to the 

microscopic heterogeneity of the frictional system, 

which means that Coulomb’s law of friction is not 

applicable at very small space scales [31]. 

As we noted in the introduction, we considered a 

case of a soft contact and a rigid measuring system. 

In the opposite case of a very stiff contact and soft 

surrounding system, the dependences of the coeffi-

cient of friction on the oscillation amplitude appear 

to be essentially influenced by the inertial properties 

of the system [16]. An analysis carried out by Teidelt 

in Ref. [30] has shown that for the measuring system 

described in Ref. [16] a reasonable agreement between 

experiment and theory can only be achieved if the 

contact stiffness is taken into account. However, under 

other conditions—and in particular depending on 

the frequency of oscillations—the assumption of soft 

contact can fail. For such cases, a more general analysis 

has to be carried out, which is provided in the second 

part of this series [32].  
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