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Abstract: The energy transition and dissipation of atomic-scale friction are investigated using the one-dimensional 

Prandtl–Tomlinson model. A systematic study of the factors influencing the energy dissipation is conducted, 

indicating that the energy that accumulated during the stick stage does not always dissipate completely during 

stick-slip motion. We adopt the energy-dissipation ratio (EDR) to describe the relationship between the energy 

dissipated permanently in the system and the conservative reversible energy that can be reintroduced to the 

driving system after the slip process. The EDR can change continuously from 100% to 0, covering the stick-slip, 

intermediate, and smooth-sliding regimes, depending on various factors such as the stiffness, potential-energy 

corrugation, damping coefficient, sliding velocity, and the temperature of the system. Among these, the 

parameter η, which depends on both the surface potential and the lateral stiffness, is proven in this paper to 

have the most significant impact on the EDR. According to η–T phase diagrams of the EDR, the smooth-sliding 

superlubricity and thermolubricity are found to be unified with regard to the energy dissipation and transition. 

An analytical formulation for the EDR that can be used to quantitatively predict the amount of energy 

dissipation is derived from a lateral-force curve. 
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1  Introduction 

Friction is mechanical kinetic-energy loss or the 

transformation of sliding motion into heat and other 

excitations [1–3]. Although atomic-scale frictional 

behavior and its influencing factors have been studied 

extensively, the process and amount of energy transfer 

and dissipation during stick-slip friction—which are 

essential for an in-depth understanding of atomic-scale 

friction—are rarely quantified. The elastic energy that 

accumulates during the stick stage can be dissipated 

irreversibly by heat generation during the slip stage 

[4–6]. Berman and Israelachvili  postulated that in  

the cobblestone model, upon each molecular collision 

during sliding, only part of the kinetic energy is 

dissipated, and the rest is reflected back to the system 

[7]. There have been experimental studies wherein a 

transition from a highly dissipative stick-slip motion 

to continuous sliding was observed with a gradual 

decrease in the friction [8], indirectly supporting this 

hypothesis, suggesting that there exist some inter-

mediate states rather than an abrupt transition between 

the stick-slip and frictionless sliding. In theoretical 

studies, Rozman et al. attempted to divide the frictional 

force into the potential and dissipative components, 

where the friction can be viewed as a reversible, adia-

batic process with a vanishing dissipative contribution 

in a quasi-static state [9]. However, the quantitative 

estimation of the amount of energy dissipation remains 

a challenge. The fraction of energy that dissipates 

during sliding is dependent on both the intrinsic 

system properties and influencing factors such as the 

sliding velocity and the temperature, which is the 
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most intricate parameter and the most important to 

determine [7]. 

In this paper, the energy transition and dissipation 

under stick-slip friction are quantitatively examined 

using the Prandtl–Tomlinson (PT) model [10–12]. 

Factors influencing the energy dissipation, such as 

the stiffness, potential-energy corrugation, damping 

coefficient, sliding velocity, and temperature of the 

system, are systematically investigated. We find that 

the stiffness not only affects the energy entering the 

system but also, more importantly, affects the energy 

that can flow back to the driven system after a slip. 

Two mechanisms of superlubricity [13–15]—smooth 

sliding and thermolubricity—are discussed in the con-

text of the energy dissipation. The formulation of the 

energy-dissipation ratio (EDR) is derived analytically 

to characterize the ratio between the dissipative energy 

and the total energy that accumulates during sticking. 

2 Simulation methodology 

All the simulations are based on the one-dimensional 

(1D) Prandtl–Tomlinson model with the assumption of 

an oscillator having a mass of m (10–12 kg) sliding over 

a sinusoidal potential with amplitude U (0.01 eV <   

U < 1 eV) and periodicity a (3 Å). The oscillator is 

connected to a driving support with a constant speed 

vRD by a harmonic spring with stiffness k (1 N/m < k < 

100 N/m), as shown in Fig. 1. The PT model is a classical 

model for describing phenomena ranging from macro 

rigid mechanics to atomic-scale friction. There have 

been several important advances in the extension of 

the PT model. The Frenkel–Kontorova (FK) model 

[16, 17] employs a 1D chain of atoms connected by 

springs, instead of a single oscillator. The Frenkel− 

Kontorova−Tomlinson (FKT) model [18] considers 

the size of contact. In the composite-oscillator model 

[19], to better describe the thermal lattice vibration,  

a macroscopic oscillator having a low frequency is 

coupled with micro oscillators having a high frequency. 

Nevertheless, presently, the 1D PT model is widely 

employed to examine the friction on both the macros-

copic and microscopic scales. This reduced-order, 

atomic-scale friction model is particularly suitable to 

describe the atomic force microscopy (AFM) tip-sample 

interaction [20], which simplifies the single-asperity  

 

Fig. 1 Schematic of the 1D PT model. The upper surface is 
represented as an oscillator, and the lower surface is represented 
as a potential field with corrugation U and period a. 

friction into one point-mass (oscillator) pulled along 

the periodic lattice (potential energy profile) by an 

elastic cantilever (spring). 

The dynamics of the system are solved using the 

Langevin equation [21, 22], which is shown in Eq. (1), 

with the fourth-order Runge−Kutta algorithm and a 

time step of t  = 100 ns to achieve a high precision. 

 
   


  ( , )

( )
P x t

mx m x t
x

          (1) 

Here, x is the coordinate of the oscillator along the 

sliding direction, P is the potential energy in the system 

(including both the elastic and surface potential), 

and  ( )t  refers to the stochastic thermal-activation 

force. A system temperature of 0 K is used throughout 

this paper, except for Section 3.4.   denotes the 

damping coefficient, which is calculated using Eq. (2), 

where c (0.6 < c < 2.0) is a dimensionless parameter, 

and  
c

2 k m  is the critical resonance frequency of 

the system [23]. 

    
c

2
k

c c
m

              (2) 

The driving support moves with a constant velocity 

of 
DR

v  = 1  /m s ; thus, at every instant, the elongation 

of the spring is  ( ( ))
DR

v t x t , where ( )x t  is the 

displacement of the oscillator at the moment t. 

During an entire stick-slip period, the system energy 

can be divided into four forms: the surface potential 

(Ps), elastic potential of the spring (Pe), kinetic energy 

of the oscillator (K), and dissipation energy (D). The 

surface potential is modeled in the sinusoidal form 

for simplicity. The spring connecting the oscillator and 

the driving support is harmonic, following Hooke’s 

law. Thus, the elastic potential and surface potential 

are calculated using the following formulas: 
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where the system potential energy consists of two parts: 

the elastic potential energy (Pe) and surface potential 

energy (Ps). 

 
e s

( ) ( ) ( )P t P t P t                  (5) 

The total system energy 
total

( )E , including the 

dissipation energy, is then calculated as follows: 

  
total

( ) ( ) ( ) ( )E t P t K t D t             (6) 

Both the kinetic energy K(t) and dissipation energy 

D(t) are related to the velocity of the oscillator, ( )x t . 
Here, the dissipation energy is calculated by summing 

the work done by the viscous damping forces, i.e., by 

performing a time integration of the damping force, 

as shown in Eq. (8). The damping coefficient is a com-

prehensive, system-dependent quantity that is affected 

by several factors. Phononic damping, electronic 

damping, and viscous damping can all contribute to 

the damping coefficient [3]. However, in the present 

paper, the damping force is calculated as 
D

f m x , 

which is a widely accepted approximation [23–25]. 

Distinguishing the exact channel of the frictional- 

energy dissipation remains a challenge and is required 

for a more accurate description of the damping 

coefficient. This issue is worth studying further in 

future works. 

   21
( )

2
K t m x                 (7) 

 
( )

D0
( ) d

x t

D t f x                (8) 

The source of the energy, which is the work done 

by the external driving support (W), is calculated as 

follows: 

  DR0
( ) d

t

W t F v t                 (9) 

The driving support moves uniformly. Thus, the 

lateral force F should be always equal to the spring 

force, as indicated by Eq. (10): 

  
DR

[ ( )]F k v t x t             (10) 

3 Results and discussions 

3.1 Energy transitions and reversibility 

The energy transitions during a complete stick-slip 

period are shown in Fig. 2. Most of the energy dissipa-

tion occurs during the slipping. Therefore, in this paper, 

we focus particularly on the slip stage. To clearly 

illustrate the energy transitions, a complete stick-slip 

 

Fig. 2 Transition among different energy forms in a stick-slip period. In the stick stage (I), the surface potential energy and elastic energy
accumulate, and a sudden drop occurs during the slip (stages II and III). After the slip, part of the potential energy remains, i.e., RPe and 
RPs, which is slowly released to the external system until the end of stage IV. The simulation is conducted under the conditions of U = 
0.25 eV, k = 5 N/m, and c = 0.6. 
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period can be divided into four stages, the first     

of which is the accumulation of potential energy 

(hereinafter called stage I). In this stage, the oscillator 

is pulled by the driving support, and potential energy 

accumulates gradually. When the energy accumulates 

to a certain extent, a slip takes place, which com-

prises two stages (II and III). Stage II is the major 

energy dissipation, i.e., the transformation of part of 

the potential energy into non-conservative energy. 

The sudden decreases in Pe and Ps and the increase in 

K and D occur synchronously. Stage III is the 

transformation of the residual energy. The potential 

energy and kinetic energy convert into each other 

during the oscillation. After the slip stage, the 

potential energy is not completely dissipated, and the 

reversible part is released to the external system. As 

shown in the inset of Fig. 2, at the end of stage III, 

0.08 eV of Pe and 0.05 eV of Ps, i.e., RPe and RPs, 

respectively, remain. RPe and RPs constitute the 

reversible potential energy (RP): 

 
e s

RP RP RP                 (11) 

Stage IV involves the release of reversible energy 

and the onset of the next stick-slip. Here, the potential 

energy of the system decreases, but there is no change 

in the dissipation or kinetic energy, indicating that the 

residual energy is gradually transferred to the external 

system. 

Figure 3(a) demonstrates the variation of the total 

system energy 
total

( )E  and external work (W) during 

sliding, as indicated by Eqs. (6) and (9), respectively. 

The overlapping of the external work and total 

energy curves shows that all the external work of the 

driving support is used only to counteract the energy 

dissipation and maintain sliding. As presented in 

Fig. 3(a), the total energy accumulates during the stick 

stage, corresponding to the positive work performed 

by the driving support. Upon a slip, the total energy 

decreases, and negative work is performed by the 

driving support, indicating that not all the energy that 

accumulates during the stick dissipates permanently. 

Rather, the external system can retrieve part of the 

energy. The peak value 
1

W  is the total energy that 

accumulates in the stick stage, and 
2

W  represents 

the reversible energy (or work) transferred back to the 

external system. Thus, 
1 2

W W  represents the energy 

dissipated during one stick-slip period. As shown  

in Fig. 2, the reversible energy 
2

W  comes from the 

potential energy RPe and RPs at the beginning of 

stage IV. Figure 3(b) shows the variation of the system 

potential energy P during the stick-slip motion. Part 

of the potential energy is converted into dissipation 

energy (DP), and the remainder is reversible energy 

(RP). 

To measure the degree of energy dissipation or 

energy reversibility, we present two definitions for 

the EDR: EDRW and EDRP, which are described in 

Eqs. (12) and (13), respectively. Equation 12, derived 

from Fig. 3(a), is used to calculate the fraction of 

dissipated external work (W), i.e., EDRW. Equation 13, 

deduced from Fig. 3(b), is used to calculate the fraction 

of reversible potential energy during the slip stage, 

i.e., EDRP. These two definitions for the EDR are 

equivalent under the assumption that most of the  

 

Fig. 3 Variations of system energy in stick-slip motion. (a) Varia-
tion of external work and total system energy during sliding. The 
peak value W1 is the total energy that accumulates in the stick 
stage, and W2 is the reversible energy (or work) transferred back 
to the external system. Thus, (W1

 − W2) is the energy dissipated 
during one stick-slip period. (b) Variation of the system potential 
energy P during the stick-slip motion. Part of the potential energy 
is converted into dissipation energy (DP), and the remainder is 
reversible energy (RP) that is transferred to the external system. 
The whole stick-slip period is denoted by T. The simulation is 
performed under the conditions indicated in Fig. 2. 
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energy dissipation occurs at the slip stage because of 

the system instability, which applies to most tribological 

systems. However, the two definitions yield different 

EDR results under smooth sliding or similar con-

ditions with a very small energy dissipation, where 

the dissipation due to the slip instability is negligibly 

small compared with the contribution of the viscous 

dissipation, which is proportional to the driving 

speed. In this paper, we investigate the energy 

dissipation caused by the stick-slip instability, which 

is better described by EDRP, i.e., the proportion of the 

irreversible potential energy during slipping to the 

total potential energy that accumulates in the stick 

stage. Therefore, unless otherwise specified, in the 

following calculations and discussions, EDRP is applied 

as the definition of the EDR. 


 1 2

1 1

EDR
W

W W D

W W
           (12) 

 


DP DP
EDR

DP RPP P
           (13) 

What causes the energy reversibility in our system? To 

answer this question, the variation of the lateral force 

and the potential energy during the stick-slip are 

depicted in Fig. 4. In a complete period (denoted as 

“T”), both the potential energy and lateral force vary  

in a periodic manner. The potential energy is slowly 

released after its suddenly decrease at the slip stage 

as the lateral force changes from positive to negative 

when the spring stiffness is 3 N/m, as shown in 

Fig. 4(a). However, when the spring stiffness is 1 N/m, 

the stage of the potential release is absent, and the 

potential increases gradually after the rapid decrease 

in the slip stage. In this case, no negative lateral force 

appears, as shown in Fig. 4(b). We believe that a 

negative lateral force is necessary for part of the 

energy to be reversible, because a negative lateral 

force indicates that part of the internal energy of the 

system can be transferred back to the external driver. 

The emergence of the negative lateral force is essentially 

caused by the over-slipping of the oscillator when the 

oscillator slips over the driving support, i.e., ( )x t  


DR

v t . According to Eq. (9), this results in negative 

work, thereby leading to energy reversibility. 

3.2 Controlling factors of EDR 

According to Lyapunov’s criterion for stability [26, 

27], the dimensionless parameter   shown in Eq. (14) 

is appropriate to describe the system stability: 

 
2

2

2π U

ka
                 (14) 

 

Fig. 4 Lateral-force and potential-energy curves with spring stiffness of (a) k = 3 N/m; (b) k = 1 N/m. Other parameters: U = 0.25 eV, c = 1.
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This parameter is dependent on U, k, and a. If  1 , 

stick-slip occurs, and if   1 , there is continuous 

sliding.   is also a key parameter to differentiate 

stick-slip regimes [8, 28–30]. It has been successfully 

used to predict atomic-scale friction behavior. Could 

it also describe the energy dissipation, specifically the 

EDR? 

As shown in Fig. 5, a complete transition of the 

EDR from 0 to 100% is obtained by varying  , 

indicating that the transition from smooth sliding to 

stick-slip is a gradual process rather than a sudden 

change. For comparison, the curve is divided into 

three zones. In zone I,   is smaller than 1.0, and the 

EDR is 0, which corresponds to a complete energy 

reversion or a perfect smooth-sliding regime. It should 

be mentioned that this does not suggest zero-energy 

dissipation, as the viscous friction due to the continuous 

sliding produces a very small amount of dissipation. 

The intermediate state (zone II), where the EDR value 

varies from 0 to 100%, is the most common state    

in atomic-scale friction. In this regime, the system 

becomes instable, and stick-slip motion occurs. 

However, regarding the energy dissipation, there 

remains reversible energy in this regime. Thus, we 

named it the “intermediate regime” to distinguish it 

from zone III, where the EDR is 100%. Instead of an 

abrupt change, the transition from the frictionless 

sliding to stick-slip is gradual and continuous, as 

shown in Fig. 5. Thus, there are only quantitative— 

rather than qualitative—differences in the energy 

dissipation among the different intermediate states. 

Achieving the precise control of the system parameters  

 

Fig. 5 EDR curve corresponding to various   values. Regions 
I, II, and III indicate the smooth-sliding (EDR = 0), intermediate 
(0 < EDR < 100%), and stick-slip regimes (EDR = 100%), 
respectively.   is varied by changing the spring stiffness k. 

is promising for controlling the states of atomic-scale 

friction. In zone III, where   is sufficiently large, the 

EDR equals 100%; thus, this can be called the stick-slip 

regime. The critical value of   between the smooth- 

sliding and intermediate regimes is estimated to be 1.0, 

and that between the intermediate and stick-slip 

regimes is 4.5, as shown in Fig. 5.  

Notably,   has a crucial impact on the slip style 

(e.g., single or multiple slips) [6, 30], which affects the 

energy dissipation but is not the focus of this paper. 

To eliminate the influence of the slip style, calculations 

are conducted with a spring stiffness ranging from 

0.1 to 100 N/m. This stiffness range ensures a single 

slip and is wide enough to cover both the stick-slip 

and smooth-sliding regimes. The surface potential 

corrugation U and spring stiffness k are equivalent 

for determining the EDR. This equivalency is also 

clearly indicated by Eq. (14). The parameter   is used 

in our discussions, although the simulations presented 

in this section are based on a varying stiffness with  

a constant U value, unless otherwise specified, for 

simplicity. The aforementioned result demonstrates 

that higher spring stiffness can contribute to a lower 

EDR; i.e., a stiffer spring improves the energy reversi-

bility. This dependency is verified by our previous 

molecular-dynamics simulation, where the interlayer 

friction of few-layer graphene is found to be dependent 

on the number of layers. When the number of layers 

is decreased below three, the lateral stiffness of the 

system is sufficiently large, and the stick-slip pheno-

menon disappears, causing the friction to vanish [31]. 

To understand the effects of the spring stiffness, we 

first recall that the EDR indicates the ratio between 

the dissipative energy and the total energy that 

accumulates during sticking (Eq. (13)). Specifically, the 

energy transition can be represented by two important 

points: the slip starting point 
s

x  and the slip ending 

point 
e

x  of the oscillator. The spring stiffness 

determines how much energy is invested in the 

system during the stick stage, as proposed by Krylov 

and Frenken in a recent review paper [32]. Generally, 

less potential is stored in the case of a stiffer spring. 

Moreover, the stiffness k can influence the EDR by 

affecting the slipping distance. In order to explain 

this clearly, three oscillator trajectories are shown in 

Fig. 6, with k = 3, 6, and 9 N/m, respectively. In these  
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three cases, the 
s

x  positions of the oscillator are 

relatively close to each other (labeled as 1, 2, 3), and 

the slipping distance (from 1−1’, 2−2’, and 3−3’, 

respectively) decreases as the spring stiffness increases. 

The slip ending point moves continuously from the 

peak point to the valley point of the surface potential, 

as shown in the inset of Fig. 6, which explains the 

continuous variation of the EDR from 100% to 0. 

Consequently, the 
e

x  positions are given by the 

coordinates of 2.8, 2.3, and 1.9 Å (denoted as 1, 2’, 

and 3’, respectively). These points correspond to 

surface potential energies of 0.011, 0.112, and 0.208 eV, 

as indicated by the Fig. 6 inset and Table 1. According 

to the definition shown in Fig. 3, this potential energy 

is exactly equal to the RPs and is released from point 

1’ (or 2’, 3’) to the re-equilibrium point (E). When the 

stiffness varies from 3 to 9 N/m, the RPs varies by a 

factor greater than 20 and plays an important role in 

determining the amount of reversible energy. Thus, 

the RPs greatly influences the EDR values listed in 

Table 1. Consequently, the friction dissipation depends 

not only on the amount of energy invested in the 

system but also, more importantly, on the amount of 

reversible energy. The stiffness can greatly influence 

the slipping distance and thus the amount of RPs, 

which plays an important role in determining the 

amount of reversible energy. 

Table 1 EDR values under different spring-stiffness conditions. 
The simulation is conducted under the conditions indicated in Fig. 6. 

Spring 
stiffness k 

(N/m) 

Slip ending 
position (Å)

RPs   
(eV) 

RPe  
(eV) 

Energy 
peak value 

(eV) 
EDR

3 2.8 0.011 0.024 0.345 89.97%

6 2.3 0.112 0.058 0.277 38.60%

9 1.9 0.208 0.030 0.258 7.64%

3.3 Influence of damping coefficient 

According to the Langevin equation, damping causes 

energy dissipation. Thus, it is straightforward to 

discuss the influence of the damping coefficient. We 

used a damping constant c ranging from 0.6 to 2.0 to 

ensure a single slip during the sliding, while covering 

all the under-damping, critical-damping, and over- 

damping states. As shown in Fig. 7, the EDR increases 

slightly as the damping coefficient increases. The 

influence of the damping coefficient is less than 10%. 

Nonetheless, it is inappropriate to conclude that the 

damping coefficient has a small effect on the EDR, 

although it is the case under this specific condition 

(
DR

v  = 1 μm/s, T = 0 K). 

Nevertheless, the damping coefficient profoundly 

impacts how the energy dissipates. In Fig. 2, we 

divide the whole stick-slip period into four stages with  

 

Fig. 6 Three trajectories with stiffness values of 3, 6, and 9 N/m, respectively. Points 1, 2, and 3 are the slip-starting points under 
different stiffness values, and points 1', 2', 3' are the corresponding slip-ending points. The simulation is conducted under the following 
conditions: damping constant c = 0.6, T = 0 K, U = 0.25 eV. The inset shows the surface potential in a lattice period, where the slip 
starting and ending points are marked. 
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Fig. 7 EDR curves of various   values with different damping 
constants. The damping coefficient increases from 0.6 to 2.0, which 
covers all the three states: under-damping, critical damping, and 
over-damping. This series of simulations is performed under DRv = 
1 µm/s. 

regard to the energy transitions. Correspondingly, 

from the viewpoint of dynamics, these can be regarded 

as the stick, primary-slip, oscillation, and re-equilibrium 

stages, as shown in Fig. 8. Considering   = 8.8 (thus, 

EDR value is 100%) as an example, different damping 

coefficients lead to completely different results with 

regard to both the dynamics and energy dissipation, 

as shown in Fig. 8. In the case of low damping (c = 0.6), 

a strong and long-lived oscillation stage is observed  

at the end of the primary slip, which accounts for 

~22% of the total dissipation energy (Fig. 8(a)). However, 

in the case of high damping (c = 2.0), there is almost 

no oscillation, and over 99% of the energy dissipation 

occurs in the primary slip stage (Fig. 8(b)). Apart from 

this, the damping coefficient greatly influences the 

speed of energy dissipation. As shown in Fig. 8, the 

slip stage lasts 3 and 11 μs with high and low damping 

coefficients, respectively. Hence, compared with its 

less obvious effect on the EDR, the damping coefficient 

has a remarkable influence on the system dynamics. 

A system with a high damping coefficient can quickly 

achieve its stable state. 

Energy dissipation is a complex process involving 

various pathways. The stick-slip phenomenon is an 

important cause of the energy dissipation in atomic- 

scale friction. The sudden slip and oscillation result 

in lattice vibrations and phononic dissipation, and 

phonons are the quantum representation of the lattice 

vibration energy [33]. The collisions among phonons 

introduce inharmonic acoustic modes, which can be 

rapidly converted to heat. The lattice vibrations can 

also be transformed into acoustic waves or luminous 

flashes rather than coupling with the heat generation. 

 

Fig. 8 Dynamical influence of the damping coefficient. Curves of the oscillator displacement and energy dissipation are plotted for
(a) damping constant c = 0.6; (b) damping constant c = 2.0. Other parameters: U = 0.25 eV, k = 1 N/m (thus,   = 8.8), DRv  = 1 µm/s. 
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Moreover, recent studies indicate that energy can be 

dissipated in the stick stage as well, which is attributed 

to thermoelastic damping [34–36]. Various factors, 

including the humidity, viscosity, and temperature, 

may contribute crucially to the damping coefficient. 

3.4 Influence of temperature 

The thermal effect on atomic-scale friction have been 

reported for years [10, 29, 32, 37, 38]. One of the 

explanations is that random fluctuation provides 

extra energy input and helps the oscillator surpass 

the energy barrier, thus reducing the mean friction 

and even achieving a superlow friction [32]. Here, we 

provide a detailed analysis of the thermal effect on 

atomic-scale stick-slip motion with regard to the 

energy dissipation. 

The Langevin equation for describing the PT model 

comprises both deterministic dynamics and stochastic 

processes. Thermal fluctuation is a common stochastic 

process that is frequently used in dynamic simulations. 

In this paper, the thermal fluctuation is represented 

by a random force  ( )t  that follows the fluctuation- 

dissipation relation, as shown in Eq. (15). In this 

expression, the mean value of the autocorrelation 

function of the thermal force is used to measure the 

randomness of the thermal effect. 
B

k  is the Boltzmann 

constant, and   indicates the Dirac delta function. 

Equation (15) indicates that  ( )t  is a random term 

whose the average amplitude is proportional to T : 

     
B

( ) ( ) 2 ( )t t m k T t t           (15)  

To investigate the thermal effect, the friction and 

system potentials at three temperatures—0, 100, and 

300 K—are compared in Fig. 9. It is immediately 

apparent that a higher temperature yields more 

intense fluctuations. The average lateral force (
av

F ) 

 

Fig. 9 Influence of the temperature on the EDR. (a), (c), and (e) Lateral-force variation at temperatures of 0, 100, and 300 K, respectively. 
(b), (d), and (f) Variations of system potential energy during sliding. Other parameters: k = 2 N/m, U = 0.2 eV, c = 1.0, DRv  = 0.01 µm/s.
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decreases rapidly with the temperature. As shown in 

Figs. 9(a), 9(c), and 9(e), 
av

F  is 0.1485, 0.0521, and nearly 

0 nN. With regard to the energy, a thermally induced 

fluctuation can greatly increase the probability of the 

oscillator jumping across the energy barrier. This 

reduces the potential-energy accumulation during the 

stick stage, which decreases from 0.29 at 0 K to 0.18 eV 

and 0.12 eV at 100 and 300 K, as indicated by the 

lower profiles of the curves shown in Figs. 9(b), 9(d), 

and 9(f), respectively. This is similar to the previously 

proposed thermolubricity mechanism. The proportion 

of the reversible energy (RP) in the slip stage also 

increases with the temperature, as estimated by the 

potential energy curves. With the combined effects of 

decreasing the energy accumulation and increasing 

the energy reversibility, the EDR exhibits a remarkable 

decrease with the temperature (95.8%, 57.3%, and 

nearly 0 at 0, 100, and 300 K, respectively). In an ext-

reme case, superlow friction can be achieved at 300 K, 

as shown in Figs. 9(e) and 9(f). This superlubricity 

regime should be distinguished from the smooth- 

sliding regime as described in Section 3.2, where the 

system is stable with a very low   value. In this case, 

the thermal fluctuation is sufficiently strong to enable 

the “forward jump” and “backward jump” [32] across 

the energy barrier. In this superlubricity regime, the 

stick-slip instability remains, and the major reason 

for the extremely small energy dissipation is the 

reversibility of the mechanical energy that accumulates 

in the stick stage during the slipping. 

To understand the synergetic effects of   and the 

thermal effect on the friction energy dissipation,  −T 

phase diagrams of the EDR are drawn for driving 

velocities of 
DR

v  = 1 μm/s (Fig. 10(a)) and 0.01 μm/s 

(Fig. 10(b)). In both graphs, two white curves indicate 

the boundaries of the regions for EDR = 100% and 0. 

For a fixed temperature, the variation of the EDR 

as   decreases is similar to the curve shown in Fig. 4. 

This phase diagram suggests two possible pathways 

to achieve superlubricity, as indicated by the arrows 

in Fig. 10: by increasing the system stability (one 

example is the structural lubricity with a very low 

potential-energy corrugation) and by increasing the 

temperature to reach a state of thermolubricity. 

However, both mechanisms are actually unified with 

regard to the energy dissipation and can be regarded  

 

Fig. 10 EDR graphs with   (vertical axis) and temperatures 
(horizontal axis) under DRv  of (a) 1 µm/s and (b) 0.01 µm/s. Two 
solid curves mark the limits of EDR = 100% and 0. Two solid arrows 
indicate the two possible pathways to achieve superlubricity: 
decreasing   and increasing the temperature. 

as energy-reversible superlubricity, as the EDR is 

mainly determined by the proportion of the reversible 

energy after slipping. It should be mentioned that  

the sliding velocity also has important effects on the 

friction dissipation. This was systematically reviewed 

by Krylov and Frenken [32] and is not discussed in 

the present paper. 

3.5 Analytical formulation of EDR 

In the previous sections, the EDR is calculated accor-

ding to the energy-transition process, which is difficult 

to measure in real experimental systems. To validate 

our theoretical prediction, an analytical formulation 

of the EDR is derived directly from the lateral-force 

curve shown in Fig. 11(a). Here, we use the definition 

of EDRW shown in Eq. (12) for the comparison with 

the experimental force curves. For simplicity, the lateral 

force is approximated by a perfect sawtooth curve.  

In Fig. 3(a), the area enclosed by the positive lateral  
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Fig. 11 Analytical formulation of EDR. (a) Schematic curve of 
lateral force in atomic-scale stick-slip. In a stick-slip period, the 
area enclosed by the positive-force curve and the horizontal axis 
is 1W , which indicates the positive work done by the external 
force to the system. 2W  indicates the work transferred to the 
external system. (b) Comparison of the analytically derived results 
(according to Eq. (16)) and numerically simulated results for the 
EDR. Other parameters: DRv = 1 µm/s, T = 0 K, c = 1.0. 

force 
1

W  indicates positive work done by the external 

system during a stick-slip period. Meanwhile, the area 

enclosed by the negative lateral force 
2

W  indicates 

the energy retrieval from the internal system. 

Considering the geometry of the lateral-force curve, 

Eq. (12) can be rewritten as Eq. (16), where S is the 

slip length of the oscillator (  
e s

S x x ):  




     


2 2

max min max min max min av

2 2

max

1

EDR ( )( ) 4

(π )

F F F F F F F S

UF U a

 

If 


min

min

0

0

F

F


                                  (16) 

 


      


2 2 2 2
max min

2 2

max

1

EDR ( ) ( )
2 (1 / 2)

( )

F F kL kL kS

F kL

 

If 


 
1

1 2


                                    (17) 

In Eq. (16),   and U are intrinsic system parameters, 

while avF  and S are two variables that depend on 

various parameters, such as the damping coefficient, 

temperature, and particularly the   value. Figure 11(b) 

compares the analytical results and numerical simu-

lated results for the EDR. The two curves exhibit 

highly similar tendencies, although there are small 

differences because the lateral-force curve does not 

have a perfect sawtooth shape, as assumed in the 

analytical derivation, but contains some irregularities 

and distortions. For example, sometimes  
max min

F F  

av
2F  because of dynamic effects such as damping. 

Thus, Eq. (16) behaves better under the conditions of 

low damping and a low sliding velocity. Nonetheless, 

Eq. (16) demonstrates the consistency and relationship 

between the lateral force and energy dissipation in 

atomic-scale friction. More importantly, the proposed 

method is applicable for the prediction of atomic- 

scale friction in real AFM or friction force microscopy 

(FFM) experiments [39]. 

The expression of the EDR can be further simplified 

(Eq. (17)) by defining a dimensionless parameter 

  S L , where L is the maximum elongation of the 

spring, and   can be viewed as the degree of recovery 

of the spring elongation during slipping.  1  

indicates the partial or complete recovery of the spring 

deformation.  1 2  indicates the over-recovery of 

the spring deformation or over-slipping of the oscillator, 

which causes energy reversibility. Although   is 

dependent on various system factors such as  , μ, T, 

and
DR

v , this expression provides an intuitive under-

standing of the energy dissipation according to the 

system sliding behaviors (slip distance and maximum 

elongation of spring). 

4 Conclusion 

In this study, atomic-scale friction is examined with 

regard to energy, and the energy dissipation and 

transition during sliding are examined systematically. 

First, a reversible energy exchange between internal 

and external systems is observed under atomic friction, 

and the concept of the EDR is proposed to measure 

the degree of energy reversibility. The spring stiffness 

and surface potential, including the comprehensive 

parameter  , are the main factors influencing the 

EDR. We observe a continuous variation of the EDR 
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from 100% to 0 with   covering the stick-slip, inter-

mediate, and smooth-sliding regimes. For a sufficiently 

small  , smooth-sliding superlubricity is achieved, 

and no energy is dissipated. Furthermore, both the 

damping coefficient and temperature are found to 

impact the amount and dynamics of energy dissipation. 

In particular, the thermal effect tends to decrease the 

potential energy accumulation during sticking and 

increase the proportion of reversible energy during 

slipping, yielding a state of thermolubricity. On the 

basis of  −T phase diagrams of the EDR, we propose 

that the smooth-sliding superlubricity and thermolu-

bricity are actually unified with regard to the energy 

dissipation and transition. Finally, an analytical for-

mulation of the EDR is derived. This not only deepens 

our understanding of the energy dissipation during 

atomic-scale friction but also is applicable for judging 

energy-dissipation properties for real AFM/FFM 

experiments and provides criteria for saving energy in 

the design and fabrication of micro-frictional systems. 
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