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Abstract This paper develops a wheel profile fine-tuning

system (WPFTS) that comprehensively considers the

influence of wheel profile on wheel damage, vehicle sta-

bility, vehicle safety, and passenger comfort. WPFTS can

recommend one or more optimized wheel profiles accord-

ing to train operators’ needs, e.g., reducing wheel wear,

mitigating the development of wheel out-of-roundness

(OOR), improving the shape stability of the wheel profile.

Specifically, WPFTS includes four modules: (I) a wheel

profile generation module based on the rotary-scaling fine-

tuning (RSFT) method; (II) a multi-objective generation

module consisting of a rigid multi-body dynamics simu-

lation (MBS) model, an analytical model, and a rigid–

flexible MBS model, for generating 11 objectives related to

wheel damage, vehicle stability, vehicle safety, and pas-

senger comfort; (III) a weight assignment module con-

sisting of an adaptive weight assignment strategy and a

manual weight assignment strategy; and (IV) an opti-

mization module based on radial basis function (RBF) and

particle swarm optimization (PSO). Finally, three cases are

introduced to show how WPTFS recommends a wheel

profile according to train operators’ needs. Among them, a

wheel profile with high shape stability, a wheel profile for

mitigating the development of wheel OOR, and a wheel

profile considering hunting stability and derailment safety

are developed, respectively.

Keywords Wheel profile fine-tuning system �
Optimization � Recommendation � Wear � Contact
concentration index � Multi-body dynamics simulation

(MBS) � Railway wheel

1 Introduction

A reasonable railway wheel profile contributes to improv-

ing vehicle-track dynamic performance, prolonging the

service life of wheelsets, or reducing maintenance costs.

Optimizing the wheel profile, therefore, has been a topic of

concern to train operators and interested scholars since the

dawn of railway vehicles [1]. The wheel profile optimiza-

tion methods proposed in the past two decades have been

briefly reviewed in Ref. [1]. In summary, these methods

with different strategies fall into two categories: (I) single-

objective optimization methods and (II) multi-objective

optimization methods.

Classical single-objective optimization methods include

target contact angle method [2], target rolling radius dif-

ference (RRD) method [3, 4], target conicity method [5],

target normal gap method [6], etc. These methods can

maximize or minimize a single specific objective (e.g.,

wear), but cannot comprehensively consider the influence

of wheel profile on different dynamic parameters that affect

running stability, curve-negotiation performance, and

maintenance-related costs, and whose relationships may be

competing. For instance, the running stability is usually

contradictory to the curve-negotiation performance [5].

Multi-objective optimization methods based on multi-body

dynamics simulation (MBS), therefore, have attracted more
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attention in recent years due to their ability to balance

different dynamic performances where competing rela-

tionships exist. In addition to a rigid MBS model, the

multi-objective optimization methods mainly consist of

two submodules: (1) a wheel profile generation method for

producing candidate profiles and (2) an optimization

algorithm for automatically finding an optimal profile.

Regarding the wheel profile generation method, the

most commonly used is the method based on fitting dis-

crete points as presented in Ref. [7]. In this method, the

wheel profile is considered to be composed of an opti-

mization region and a non-optimization region. The points

in the optimization region are vertically movable, while the

points in the non-optimization region are fixed, i.e., cor-

responding to the default profile. Another classical method

is the element combination method [8]. In this method, the

wheel profile is divided into several elements (e.g.,

straights, arcs, and splines), and one or more elements act

as the optimization region, where the geometric parameters

(e.g., length and radius) of the active element are change-

able. These two methods can generate a large number of

candidate profiles but, meanwhile, faces two challenges:

(a) some primary constraints are required to initially ensure

the monotonicity and concavity and convexity of the pro-

file curve. After fitting by methods such as NURBS (non-

uniform rational B-spline) [10], secondary constraints are

further required to ensure the rationality of the final gen-

erated profile. However, even under the control of these

strict primary and secondary constraints, it is still difficult

to ensure that all generated profiles are reasonable, which

brings problems for automatic optimization, and an addi-

tional manual evaluation is often necessary. (b) They are

computationally expensive due to two issues: One is that a

large number of discrete points (design variables) means a

large number of iterative calculations and MBS runs, and

the other is that the strict constraints mentioned in

(a) would cause a long convergence time for wheel profile

generation [6]. Therefore, in this work, we introduce the

RSFT method proposed in Ref. [1] to fine-tune the baseline

wheel profile. Based on the baseline profile, the RSFT

method can efficiently and quickly produce a large number

of candidate profiles with different equivalent conicities

and different flange thicknesses by introducing two design

variables.

Optimization algorithms used in wheel profile opti-

mization mainly consist of bio-inspired optimization

algorithm (e.g., genetic algorithm (GA) [9], particle swarm

optimization (PSO) [10], and covariance matrix adaptation

evolution strategy (CMA-ES) [11]) and response surface

technique (e.g., Kriging surrogate model (KSM) [12]).

Among them, the bio-inspired algorithms require a large

number of iterative calculations, and the response surface

technique has regression capability. How to combine the

two methods to quickly and reliably complete the task of

optimizing wheel profiles remains to be explored.

The contribution of this paper mainly includes:

• A wheel profile fine-tuning system (WPFTS) is devel-

oped, which consists of four modules: (I) a wheel

profile generation module, (II) a multi-objective gen-

eration module, (III) a weight assignment module, and

(IV) an optimization module. This system comprehen-

sively considers the influence of the wheel profile on

wheel damage, vehicle stability, vehicle safety, and

passenger comfort, and can recommend one or more

optimized wheel profiles according to train operators’

needs.

• Based on the Manchester Benchmark passenger vehi-

cle, three cases are introduced to demonstrate how

WPTFS recommends a wheel profile. Among them, a

wheel profile with high shape stability, a wheel profile

for mitigating the development of wheel OOR, and a

wheel profile considering hunting stability and derail-

ment safety are developed, respectively.

The remaining of this paper is structured as follows.

Section 2 briefly introduces the architecture of WPFTS.

Section 3 introduces more especially the applied method-

ology for each module included in WPFTS. Three cases

introduced in Sect. 4 show how WPFTS recommends a

wheel profile according to train operators’ needs. This

paper ends with conclusions and discussion.

2 Architecture of WPFTS

The developed WPFTS (see Fig. 1) consists of four

modules:

I. Wheel profile generation module This module is used

for producing candidate profiles for optimization pur-

poses, where the RSFT method proposed in Ref. [1] is

used.

II. Multi-objective generation module This module con-

sists of three submodules that run in parallel:

a. An MBS model for generating tread wear index

wt, flange wear index wf , wheel surface fatigue fsu,

wheel–rail vertical force Q, sum of wheel–rail

lateral forces H, derailment coefficient fde, over-

turning coefficient g, mean comfort index Nmv,

and train critical speed vcr.

b. A geometrical analytical model for producing

contact concentration index (CCI) proposed by

Polach [13].

c. A rigid–flexible coupled MBS model for calcu-

lating wheel radial wear deviation (RD).
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III. Weight assignment module In this module, an adap-

tive weight assignment strategy taking into account

the sensitivity of an optimization objective against

changes of the wheel profile and a manual weight

assignment strategy based on the train operators’

specific requirements are presented.

IV. Optimization module In this module, a response

surface technique (i.e., radial basis function, RBF)

and a bio-inspired optimization algorithm (i.e.,

Fig. 1 Architecture of the proposed WPFTS
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particle swarm optimization, PSO) are combined to

quickly and reliably recommend an optimal wheel

profile according to train operators’ needs.

3 Processing methodology of WPFTS

3.1 Wheel profile generation module

As mentioned in Sect. 1, the commonly used wheel profile

generation methods include the method based on fitting

discrete points [7] and the element combination method

[8], but they face two challenges: they are computationally

expensive, and the generated wheel profiles may be

unreasonable. Therefore, in Ref. [1], a comparably con-

servative RSFT method was proposed, which introduces

two design variables (a1 and a2) and an empirical correc-

tion formula (Ex), to fine-tune the baseline wheel profiles

for optimization purposes. In this method, the original

profile is defined as a function of the lateral position y, i.e.,

z yð Þ, the baseline profile being specified as points in the

y; zð Þ plane. A transformation matrix T1 is introduced to

rotate the curve until the vertex A yh; zmaxð Þ of the curve

coincides with the Ox-axis, as shown in Fig. 2. The point of

coordinates y; zð Þ after being rotated is written as y1; z1ð Þ:
y1
z1

� �
¼ T1

y
z

� �
; andT1 ¼

cos h sin h
� sin h cos h

� �
; ð1Þ

where h ¼ arctanðzmax=yhÞ is the rotation angle, zmax and yh
are the ordinate and abscissa of point A, respectively. The

curve z yð Þ after being rotated is written as z1 yð Þ, and a

correction coefficient a1 is introduced to scale the z-

coordinate of the points on the curve:

y2
z2

� �
¼ y1

a1z1

� �
: ð2Þ

A transformation matrix T2 ¼ TT
1 , which is used to

rotate the curve z2 yð Þ back, is introduced to generate the

curve z3 yð Þ, and the generated points y3; z3ð Þ of z3 yð Þ,
corresponding to y; zð Þ of z yð Þ, is expressed as

y3
z3

� �
¼ T2

y2
z2

� �
: ð3Þ

An empirical correction function Ex is introduced to

modify the curve, and the generated curve is written as

z4 yð Þ. The dotted red line in Fig. 2 shows the obtained

empirical correction function Ex for a1 ¼ 0:95.

y4
z4

� �
¼ T2

y2
z2 � Ex

� �
; ð4Þ

Ex ¼ sin
p
2

y3
yhj j

� �
z3 � zð Þ: ð5Þ

Then, the other correction factor a2 to scale the y-

coordinates of these points y4; z4ð Þ on the curve z4 yð Þ is

introduced to fine-tune the flange thickness, and the final

curve is expressed as

y5
z5

� �
¼ a2y4

z4

� �
: ð6Þ

To ensure that the generated wheel profile satisfies the

requirements (e.g., flange thickness, height, flange slope

quota, maximum contact angle) specified in standards such

as EN 15,313 [14], a1 is set between 0:95� a1 � 1:05, and

a2 is set between 0:98� a2 � 1:08 for freight vehicles and

0:98� a2 � 1:02 for passenger vehicles for the profile

S1002. The detailed theory and MATLAB codes of the

RSFT method were disclosed in Ref. [1].

1

( , )

( , 0)

S1002 (z(x))

z1(y)

Ex for �1=0.95

O

y

x

Fig. 2 Rotation step and empirical correction function Ex for a1 = 0.95 of the RSFT method
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3.2 Multi-objective generation module

3.2.1 Rigid MBS model

3.2.1.1 Vehicle running on a virtual track In the rigid

MBS model shown in Fig. 1, the Manchester Benchmark

passenger vehicle [15] with a constant speed of 200 km/h

running on a 15-km virtual track with the layout data listed

in Table 1 is used to generate eight objectives, including

wt, wf , fsu, Q, H, fde, Nmv, and g, where the track irregu-

larities measured from a high-speed railway line are used,

as shown in Fig. 3. The rail profile is 60E2 [16], the rail

cant is 1/40, the track gauge is 1435 mm, and the gauge

measurement position is 14 mm below the rail crown.

The formula for calculating wear index is

w ¼
Zsend
sstart

Fxcx þ Fycy
� �

ds; ð7Þ

where Fx and Fy are the longitudinal and lateral creep

forces, respectively; cx and cy are the longitudinal and

lateral creepages, respectively; sstart and send are the start

distance and end distance, respectively. Freight trains are

characterized by heavy axle load, and their routes often

contain many small-radius curves. The flange wear is often

severe. Therefore, the wear index is divided into tread wear

index wt and flange wear index wf . The definition of the

tread region and flange region of the S1002/h28/e32.5/

6.7% wheel profile specified in standard EN 13,715 [17] is

shown in Fig. 4:

• Flange region, between H2 and D1, the point D1 being

defined as the start point of flange on the profile;

• Connection zone, between D1 and C1*, the point C1*

being defined on the profile at a lateral position of -

26 mm;

• Tread region, between C1* and B1*, the point B1*

being defined as the connection point of the reverse

slope with the wheel tread;

• Field zone, between B1* and I.

However, in the present work, the connection zone D1–

C1* is allocated to the flange region, while the field zone

B1*–I to the tread region. The newly defined flange region

and tread region are H2–C1* and C1*–I, respectively. This

is due to the fact that the wear index is used to characterize

the wear level, but when the wheel–rail contact occurs in

the flange (H2–D1) and connection zone (D1–C1*), the

contact patch is much smaller than that in the tread (C1*–

B1*) and field zone (B1*–I), resulting in a disproportionate

relationship between material loss and wear index and

more serious material loss in the flange and connection

(a) (b)

(c) (d)

(e)

Lateral, left rail

Lateral, right rail

Vertical, left rail

Vertical, right rail

Fig. 3 Measured irregularities from a high-speed railway line: a left rail (lateral), b right rail (lateral), c left rail (vertical), d right rail (vertical),

and e their power spectrum densities

Table 1 The virtual track used in the rigid MBS model

Radius

(m)

Length of

transition

curve (m)

Length of circular

curved track (m)

Superelevation

(mm)

5000 360 600 120

5500 360 1150 165

7000 360 1200 145

8000 340 1350 120

9000 300 1184 100

12,000 220 1093 80

? – 6600 –
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zone [18]. Considering the sum of the wear index in the

regions H2–C1* and C1*–I as the optimization objective

would underestimate the damage in the region H2–C1*,

this conclusion will be verified in Sect. 4.1.

The formula for calculating the wheel surface fatigue

index is as follows [19, 20]:

fsu ¼
Zsend
sstart

ðl� 2pabk
3Fn

[ 0Þds; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
Fn

; ð8Þ

where l is the traction coefficient; a and b are the semi-

axes of the Hertzian contact, respectively; Fx, Fy, and Fn

are the longitudinal, lateral, and normal forces, respec-

tively; k ¼ 300 MPa is the yield limit in cyclic shear.

Wheel–rail vertical force Q, sum of wheel–rail lateral

forces H, derailment coefficient fde, and overturning coef-

ficient g with the following formula are used to evaluate the

performance of a wheel profile [20, 21]:

Qmax\90 kNð Þ þ Q0 kNð Þ
Hð Þmax¼

P
Y2mð Þmax\10 kNð Þ þ P0

3
kNð Þ

ðfdeÞmax ¼
Y

Q

� �
2m

� �
max

\0:8

gmax ¼
P

bogie Qi;l �
P

bogie Qi;rP
bogie Qi;l þ

P
bogie Qi;r

 !
max

\1

;

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

where Q0 is the static wheel load, �ð Þ2m means sliding mean

over 2 m of track, P0 is the static axle load, Y is the wheel–

rail lateral force, and Qi;l and Qi;r are the vertical wheel–

rail force on the left and right side of the ith wheelset,

respectively.

Mean comfort index Nmv This parameter is used to

evaluate the ride comfort of passenger vehicles. The for-

mula for calculating this parameter specified in EN 12,299

[22] is expressed as

Nmv ¼ 6�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aWd

x;p95

	 
2
þ aWd

y;p95

	 
2
þ aWb

z;p95

	 
2r
; ð10Þ

where a
wj

i;p95 represents the 95th percentile of five-second

weighted RMS values of the acceleration on the floor of the

vehicle calculated over a time period of five minutes; the

subscripts x, y, and z represent the longitudinal, lateral, and

vertical direction, respectively; the superscript Wd and Wb

relate to the weighted frequency values [22] in accordance

with the weighting curve in the longitudinal and lateral

directions, and the vertical direction, respectively.

In this work, the parameters wt, wf , fsu, Q, H, and fde are

calculated for the first wheelset running on the virtual

track, the parameter g for the first bogie, and the parameter

Nmv for the whole vehicle. The pre-processing method of

the data obtained from the simulation is performed

according to standards [21, 22].

3.2.1.2 Vehicle running on a straight track Critical speed

vcr is obtained using the method of decreasing velocity [23]

with an initial speed of 400 km/h and an acceleration of -

0.1 m/s2 [24]. The vehicle runs on a straight track without

considering track irregularities, but a lateral excitation with

an amplitude of 4 mm and a length of 30 m is set on the

track at 50 m away from the starting position to excite

lateral instability of the vehicle.

To obtain the critical speed automatically, the Hilbert

envelope [25] of the lateral wheelset displacement is first

calculated, and then the speed corresponding to the

threshold yWS ¼ 0:5 mm is regarded as the critical speed.

For a systematic study on the deceleration method for

calculating the critical speed, see Ref. [24]. Figure 5 shows

the critical speed of the Manchester benchmark passenger

vehicle with S1002 wheel profiles obtained automatically

using the deceleration method and the Hilbert envelope.

3.2.2 Analytical model: MBS-based contact concentration

index

First, the CCI as proposed by Polach [13] is presented,

which is a theoretical, analytical methodology. In the

 

 

 
In this work, H2-C1

*
 and C1

*
-I are 

defined as flange region and tread region, 

respectively, where the abscissa of C1
* 
is 

-26 mm. 

Fig. 4 Definition of the flange region and tread region [17]
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proposed WPFTS, the methodology is enhanced with

MBSs to take into account more realistic wheelset lateral

displacement.

3.2.2.1 Contact concentration index (CCI) High wheel–

rail contact conformity can make the wear distribution of

the wheel more uniform, and the profile shape remains

more stable, thereby extending the service life of wheel-

sets. Based on this concept, Polach and Nicklisch [13]

proposed the CCI to assess the contact conformity. In Ref.

[13], a long-time measurement campaign on German ICE 2

wheel profiles and a comparison between five different new

wheel profiles (including two wear-adapted profiles and

three non-wear-adapted profiles) have shown the relation-

ship between the CCI and the contact conformity, a small

CCI meaning a high contact conformality. Based on Refs.

[5, 13, 26], the calculation steps of CCI, as shown in

Fig. 6a, are summarized as follows.

Step 1: Contact point movement dyC yWSð Þ.
The relationship between the lateral wheelset displace-

ment yWS and the contact point movement dyC is estab-

lished, where dyC represents the derivation of the function

of the contact point location on the wheel profile

yC ¼ f yWSð Þ, it is calculated as

dyC yWSð Þ ¼ DyC yWSð Þ
DyWS

����
���� ¼ yC yWS þ DyWSð Þ � yC yWSð Þ

DyWS

����
����:

ð11Þ

The parameters DyWS and DyC yWSð Þ are shown in

Fig. 6a and represent the change of lateral wheelset

displacement and the shift of the contact point position,

respectively. In this work, the trace line method proposed

by Wang [27] is used to calculate the contact point

movement dyC yWSð Þ, and the wheel–rail contact lines

calculated by Wang’s method is shown in Fig. 6b.

Step 2: Normal distribution hypothesis ur yWSð Þ.
The following two assumptions are introduced for

vehicles running on straight tracks:

• Stochastic track irregularities are distributed.

• The lateral wheelset displacement conforms to Gaus-

sian normal distribution.

Therefore, the occurrence probability of the wheelset

displacement is expressed as

ur yWSð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � yWS � lð Þ2

2r2

 !
; ð12Þ

where l ¼ 0 is the mean of the normal distribution; r is the

standard variance, a large value means that the distribution

range of the wheelset lateral displacement is wide and vice

versa. As in Ref. [13], r is set to 2.5 (the blue line shown in

Fig. 6c).

Step 3: Contact concentration CC yWSð Þ.
It is assumed that the local wear of wheels and rails is

related to the local frequency of contact point occurrence

because wear is higher in the area with a more frequent

contact occurrence [13]. Moreover, a wide spread (i.e., low

concentration) of the contact points between wheel and rail

is usually correlated with conformal contact and thus larger

contact patch size, lower contact stress, and consequently

lower wear and vice versa, supporting the assumption that

wear is proportional to the concentration of the contact

WS = 0.5 mm

cr = 275.4

Fig. 5 Automatic acquisition of critical speeds using the Hilbert envelope method

80 Y. Ye et al.
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point occurrence. Based on this concept, the parameter

contact concentration CC yWSð Þ is defined as

CC yWSð Þ ¼ ur yWSð Þ
dyC yWSð Þ : ð13Þ

Step 4: Contact concentration index CCI.

To characterize the average contact concentration of

different wheel–rail matching forms, CCI is calculated by

averaging the contact concentration CC yWSð Þ over the

normal distribution between -3r and 3r of lateral wheelset

displacement [26] as

Fig. 6 Technique diagram of CCI calculation
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CCI ¼ 1

6r

Z3r

�3r

CC yWSð ÞdyWS: ð14Þ

This parameter represents the concentration of contacts

and thus the concentration of wear for different wheel–rail

matching forms can be evaluated. A large CCI means a

poorer contact concentration and vice versa.

3.2.2.2 MBS-based CCI In this work, Step 2 of CCI is

enhanced as follows:

• In Refs. [5, 13, 26], it is assumed that the lateral

wheelset displacement conforms to Gaussian normal

distribution. This approach is efficient, but it may

deviate from reality. Therefore, we replace the Gaus-

sian distribution with the distribution obtained by

dynamic simulations.

• In the calculation of CCI, the integration interval

(lateral wheelset displacement) depends on the prede-

fined standard variance r, and a reasonable r depends

on the expertise of the researcher. This paper avoids

this problem with the help of the MBS result.

Figure 6c shows the difference between the assumed

Gaussian distribution probability (r ¼ 2:5) used in Ref.

[13] and an MBS-based distribution probability obtained

by performing probability statistics on the wheelset lateral

displacement simulated over the entire virtual track

(15 km). It can be seen that the Gaussian distribution

assumption deviates from the simulated result.

The correctness of CCI also depends on the following

assumption in Step 3: It is assumed that the local wear is

related to the local frequency of contact point occurrence.

The basis of this assumption is that there is a nearly linear

relationship between the wheel material loss and the local

frequency of contact point occurrence. However, this

assumption is usually not reliable when the wheel–rail

contact occurs in the flange region, because of the fol-

lowing reasons: (1) the wheel material loss is dispropor-

tionate to the contact point occurrence due to large

creepage and pressure occurring in the flange region [18];

(2) it may involve multi-point contact that does not follow

the contact distribution probability obtained in Step 2.

Therefore, as mentioned in Ref. [13], CCI is only appli-

cable to wheels traveling on lines with predominantly

straight tracks. Considering the above issues, this paper

only calculates the CCI when the wheel–rail contact point

locates in the tread region where the lateral position on the

wheel profile is greater than -26 mm as shown in Fig. 4.

Finally, the equation for calculating the MBS-based CCI is

rewritten as

CCI ¼ 1

2yb

Zyb
�yb

CC yWSð ÞdyWS; ð15Þ

where yb corresponds to the lateral displacement of the

wheelset when the contact happens at a lateral position on

the wheel profile of -26 mm, corresponding to the bound-

ary between the tread and the flange region, as shown in

Step 4 of Fig. 6.

3.2.3 Rigid–flexible MBS model

This model is mainly used for mitigating the wheel OOR,

which is an inevitable problem in the operation of railway

vehicles. For a comprehensive literature review concerning

OOR of railway wheels, see Refs. [28, 29]. The theoretical

basis of this submodule is mainly based on the following

findings. Kalousek and Johnson [30] investigated the rail

and wheel corrugation problems encountered by the Van-

couver mass-transit system. Their findings indicated that a

tight conformity of wheel/rail profiles could trigger the

growth of corrugations due to the generation of ‘roll-slip’

oscillation of the wheel–rail system. Morys [31] estab-

lished an iterative long-term wear model to analyze the

enlargement of wheel polygonization phenomena of an

ICE1 carriage. Simulation results showed that the bending

oscillation of the wheelset axle caused the wheel lateral

slip and lateral material loss to exhibit periodic uneven-

ness. Tao et al. [32] pointed out that the lateral slip between

the wheels and rails caused by the elastic vibration of the

wheelset played a key role in the formation of high-order

polygonal wear.

The above findings show that the development of wheel

OOR is affected by wheel–rail contact behavior (creepage).

On the other hand, an optimized wheel profile can improve

contact behavior, which has also been observed in many

simulations run for the present study. Based on this con-

sideration, this model is used to mitigate the development

of wheel OOR from the perspective of designing the wheel

profile. The evaluation index used in this module is the

maximum deviation of the wheel’s circumferential wear

(wheel OOR curve in Fig. 7), i.e., the maximum radial

deviation RD.

In the evolution of wheel OOR, the wheelset’s elastic

deformation plays a key role. In addition, much literature

reports that some elements (e.g., sleeper, fastener) in the

track system and the flexibility of the rail also have an

important influence [33–35]. Therefore, a modal analysis

on the wheelset and the track in FEM software has been

performed, and the normal modes of the wheelset below

1280 Hz and the normal modes of the track below 600 Hz

are considered in the model implementation in SIMPACK

to establish a rigid–flexible coupling dynamics model (see
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Fig. 7), in which four flexible wheelsets are used. Because

of the time-intensive simulation process, the vehicle model

in this paper only runs on a straight track with a length of

10 wheel revolutions. The randomness of track irregulari-

ties in such a short distance is not strong, and it may

erroneously cause a specific wavelength of the wheel OOR

curve. Therefore, track irregularities are not considered in

the rigid–flexible MBS model. The initial wheel radial

difference curve was measured from an actual wheel. For

the wheel circumferential wear calculation method, as well

as more related information including the flexible bodies,

see Ref. [36].

3.3 Weight assignment module

For a multi-objective optimization problem, it is usually

necessary to assign a weight to each objective to transform

it into a single-objective optimization problem. Most of the

current weight assignment methods are based on expertise

and are manually realized. This section introduces an

adaptive ? manual weight assignment method, in which

the adaptive weight assignment strategy takes into account

the degree of influence of wheel profile changes on each

optimization objective, and the manual weight assignment

strategy can establish an objective function according to

train operators’ needs.

3.3.1 Adaptive weight assignment strategy

The change of wheel profile may have a very large influ-

ence on some objectives, while the influence on other

objectives may not be obvious. For instance, Fig. 8 shows

the derailment coefficient and critical speed values corre-

sponding to 79 different wheel profiles; it shows that the

change of the wheel profile has a very large influence on

the derailment coefficient and the maximum difference can

reach 208%, while that for the critical speed is only about

62.33%. To take into account the degree of influence of

wheel profile changes on each optimization objective, an

adaptive weight adjustment factor wa is introduced:

wa;i ¼
max Oið Þ �min Oið Þ

mean Oið Þ ; ð16Þ
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Fig. 7 Technique diagram of wheel OOR calculation. The USFD wear function is the wheel material loss function developed by University of

Sheffield (USFD)
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where Oi represents the ith objective vector composed of

n ¼ 79 samples. max Oið Þ, min Oið Þ, and mean Oið Þ are the

maximum, minimum, and mean values in the vector Oi,

respectively. In other words, the adaptive weight adjust-

ment factor wa takes into account the sensitivity of an

optimization objective against changes of the wheel profile.

A larger value means that the objective is more sensitive to

changes in wheel profile, and should be considered more in

wheel profile optimization.

Then, the min–max normalization is used to the ith

objective vector Oi as

O#
i ¼ Oi �min Oið Þ

max Oið Þ �min Oið Þ ; ð17Þ

where O#
i is the ith objective vector after being

normalized.

3.3.2 Manual weight assignment strategy

A manual weight wm is introduced to establish a weighted

objective according to operators’ needs. Finally, the final

objective o is expressed as

o ¼
Pk
i¼1

wa;iwm;iO
#
i ; ð18Þ

where O#
i represents the value of the ith objective, and k

represents the number of objectives.

3.4 Optimization module

The function of this module is to recommend wheel pro-

files that meet train operators’ needs. This module consists

of two parts: a response surface technique and an automatic

optimization algorithm.

3.4.1 RBF-based response surface technique

For discrete datasets, parameter optimization is based on a

large number of samples. Specifically, for optimization

problems that rely on numerical simulations, a lot of

repeated simulation runs are required [37, 38]. In the

presented work, a single simulation takes nearly 3 h

(Computing facilities: software: SIMPACK 2020X and

MATLAB R2019a; hardware: Intel Core i7-4790 K,

4.00 GHz.), which is on the premise that the simulation can

run smoothly. The calculation amount is so large that it is

unrealistic to perform a large number of simulation runs,

and an efficient and reliable method is of interest [39, 40].

In this paper, based on a small number of simulated sam-

ples, the RBF network is used as a regression tool to

establish the relationship between the design variables

(a1; a2) described in Sect. 3.1 and the weighted objective

(o) described in Sect. 3.3.

The RBF network [41, 42] is a feedforward neural

network with a single hidden layer. RBF is the activation

function of hidden neurons, and the output layer is a linear

combination of the outputs of the hidden neurons. Given an

input a ¼ a1; a2½ �, the RBF network produces a weighted

sum output:

o að Þ ¼
Pk
j¼1

wjuj a; cj
� �

þ b; ð19Þ

where wj is the weight, b is the bias, cj is the center of the j

th hidden neuron, and k is the number of centers; uj �ð Þ is
the Gaussian RBF, expressed as

uj a; cj
� �

¼ exp
�jja� c2j jj

2r2j

 !
; ð20Þ

where rj is the width of the j th hidden neuron, and jj�jj is
the Euclidean norm.

3.4.2 PSO for wheel profile recommendation

It should be noted that this step is not necessary, because

after obtaining the RBF-based response colormap, train

operators can manually select the design point a ¼ a1; a2½ �
according to the generated colormap to obtain one or more

optimized wheel profiles. However, in this paper, PSO [43]

is introduced to automatically find the optimal combination

of a1 and a2, in which Eq. (19) is treated as the objective

function of PSO. For a detailed description of the PSO

method, as well as its application to railway wheel profile

optimization, see Refs. [10, 43, 44].

4 Application of WPFTS to wheel profile
recommendation

According to Eq. (18), we can know that the corresponding

wheel profile can be generated only by entering the manual

weight vector (Wm) that meet the train operators’ needs.

Equation (18) can be rewritten as

Fig. 8 The simulated derailment coefficient and critical speed
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o ¼ Wa �WmO
T
new ; ð21Þ

where

Wa¼ wa;wt
;wa;wf

;wa;fsu ;wa;Q;wa;H;wa;fde ;wa;g;wa;vcr ;wa;Nmv
;wa;CCI;wa;RD

� 
Wm¼ wm;wt

;wm;wf
;wm;fsu ;wm;Q;wm;H;wm;fde ;wm;g;wm;vcr ;wm;Nmv

;wm;CCI;wm;RD

� 
Onew¼ w#

t ;w
#
f ; f

#
su ;Q

#;H#; f#de ;g
#; �vcrð Þ#;N#

mv;CCI
#;RD#

h i ;

8><
>:

ð22Þ

where �ð Þ# represents the value of the objective after being

normalized, and �ð ÞT represents matrix transpose.

In WPFTS, based on the Latin hypercube sampling

(LHS) strategy [45], a total of 79 sets of (a1, a2) are

selected in Module I to generate wheel profiles and are

input into Module II to construct a sample dataset con-

taining the 11 objectives listed in Fig. 1. Figure 9 shows

the RBF-based responses (wa;i;O
#
i ) of some objectives.

Figure 10a shows the RBF-based response that compro-

mises all 11 objectives, i.e.,

Wm ¼ 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1½ �: ð23Þ

It should be noted that all wheel profiles derived from

the dark blue region in the colormap can be considered as

candidates. Figure 10b shows the wheel profile

corresponding to the design point (1.010, 1.020).

4.1 Case I: application of WPFTS to produce

a wheel profile with high shape stability

Most of the existing references on wheel profile opti-

mization use only short-term (or short-distance) MBS

results to evaluate the dynamic performance of an opti-

mized profile. However, the fact that the initial profile has

better dynamic performance does not mean that the profile

still has better dynamic performance as the mileage

increases. The fundamental reason is that the shape of the

wheel profile may be drastically destroyed. For example, in

recent years, one topic that the German Centre for Rail

Traffic Research has focused on is that: the 60E2 rail

profile and regular maintenance of the rail profile, in con-

junction with the usual wheel profiles, should result in a

lower equivalent conicity compared with the 60E1 (UIC

60) rail profile [16], as shown in Fig. 11b. This brings good

train running stability when the wheel profile is new.

However, the contact point between the wheel and the rail,

among other things, moves in a very small region, which

favors the formation of hollow wear of railway wheels. As

shown in Fig. 11c, d, when the interval of wheel lateral

displacement is [-5 mm, 5 mm], the contact point move-

ment range between the S1002 wheel and the 60E2 rail is

much smaller than that between the S1002 wheel and the

(a)  

(d)  (c)  

(b)  

α1 
α2 α1 

α2 

α1 
α2 

α1 
α2 

Fig. 9 RBF-based responses (wa;i;O
#
i ) of some objectives: a tread wear, b derailment coefficient, c ride comfort, and d critical speed
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60E1 rail, where the rail cant is 1/40, the wheelset back-to-

back distance is 1360 mm, and the gauge measurement

position is 14 mm below the rail crown. Consequently, a

high equivalent conicity may occur and seriously deterio-

rate the train’s stability. This phenomenon often occurs in

high-speed trains. Therefore, a wheel profile with high

shape stability is worthy of being developed.

On one hand, a wheel profile with high contact con-

formity is desirable because it makes the wear distribution

on the tread region relatively uniform, thereby maintaining

the shape stability. On the other hand, a smaller tread wear

index and a smaller flange wear index contribute to good

shape stability of the wheel profile. In the setting of Wm,

the following principle is followed: a total weight value of

100 is assigned to the weights corresponding to the

objectives being considered, and the weight value of an

objective represents the importance of this objective.

Therefore, a manual weight vector inputted into WPFTS

for producing a wheel profile with high shape stability is

set as

Wm ¼ 25; 25; 0; 0; 0; 0; 0; 0; 0; 50; 0½ �: ð24Þ

Figure 12a shows the RBF-based response mainly

considering CCI, wt, and wf ; the profile S1002-SS shown

in Fig. 12c is the wheel profile recommended by WPFTS.

For comparison, the wheel profile S1002 and the wheel

profile (S1002-W in Fig. 12b) corresponding to the

minimum total wear index (w ¼ wf þ wt in Eq. (7)) in

the short-term MBS (a trip on the virtual track listed in

Table 1, i.e., a 15-km distance) are introduced, where

Eq. (22) is updated as

(a) (b)

(1.010, 1.020)
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α 2

Y (mm)

Z
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Fig. 10 The RBF-based response (a), and the optimal wheel profile recommended by WPFTS considering all 11 objectives (b)
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Fig. 11 Rail 60E1 and rail 60E2 (a), equivalent conicities for the 60E1 and 60E2 rail profiles that match the S1002 wheel profile (b), contact
lines between the S1002 wheel and the 60E1 rail (c), and contact lines between the S1002 wheel and the 60E2 rail (d)
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Wa;w¼ wa;w;wa;fsu ;wa;Q;wa;H;wa;fde ;wa;g;wa;vcr ;wa;Nmv
;wa;CCI;wa;RD

� 
Wm;w¼ wm;w;wm;fsu ;wm;Q;wm;H;wm;fde ;wm;g;wm;vcr ;wm;Nmv

;wm;CCI;wm;RD

� 
Onew;w¼ w#;f#su ;Q

#;H#; f#de ;g
#; �vcrð Þ#;N#

mv;CCI
#;RD#

h i ;

8><
>:

ð25Þ

and the manual weight vector Wm;w corresponding to the

wheel profile S1002-W is expressed as

Wm;w ¼ 100; 0; 0; 0; 0; 0; 0; 0; 0; 0½ �: ð26Þ

Figure 13 shows the wheel–rail contact lines and the

equivalent conicities of the wheel profiles plotted in

Fig. 12c that match the 60E2 rail profile; it indicates that

the S1002-SS profile produces a more uniform wheel–rail

contact distribution, while the S1002-W profile produces a

more concentrated wheel–rail contact distribution.

Figure 14 shows the wear distribution of the S1002

profile, the S1002-SS profile, and the S1002-W profile

after the vehicle runs for 150 000 km on the virtual track

described in Table 1; it indicates that after a long-term

operation, the S1002-SS profile produces the smallest wear

depth and a more uniform wear distribution, while the

S1002 profile and the S1002-W profile produce the largest

wear depth in the tread region and in the flange region,

respectively. Therefore, simultaneous consideration of the

short-term tread wear index, short-term flange wear index,

and CCI during the wheel profile design phase contributes

to reducing wheel wear and improving the shape stability

of the wheel profile during long-term operation. Besides,

combined with the result shown in Fig. 12b, it can be

concluded that the S1002-W wheel profile is optimized for

better short-term total wear index but not for long-term

wear performance, and only considering the total wear

index may underestimate the damage to the wheel flange

region.

4.2 Case II: application of WPFTS to produce

a wheel profile for mitigating the development

of wheel OOR

In this case, the purpose is to use WPFTS to generate a

wheel profile that can mitigate the wheel OOR develop-

ment, so we adjust the weights corresponding to and related

to radial deviation.

Figure 15 shows the relationship between the tread wear

index, the radial deviation, and the nominal equivalent

conicity for the 79 sampled profiles that match the 60E2

rail profile. The wear index and the radial deviation shown

in this figure are the cumulative tread wear number and the

S1002-W 
(1.0348, 1.02)S1002-SS

(0.9763, 1.0143)

(a) (b)

(c)

α1

α
2

α1

α 2
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Z
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m
)

Fig. 12 The design point corresponding to the wheel profile with high shape stability (a), the design point corresponding to the wheel profile for

reducing short-term wear index (b), and comparison between S1002, S1002-SS, and S1002-W profiles (c)
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maximum radial deviation after 10 wheel revolutions

described in Sect. 3.2.3, respectively. The nominal equiv-

alent conicity is the equivalent conicity when the wheelset

lateral displacement is 3 mm. This figure illustrates that the

equivalent conicity affects the development of wheel OOR.

Roughly speaking, a wheel profile with a low nominal

equivalent conicity brings a low tread wear index and low

radial deviation. First, the following manual weight vector

Wm considering only RD is introduced:

Wm ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 100½ �: ð27Þ

Figure 16a shows the RBF-based response considering

only RD, and the recommended profile S1002-RD is shown

in Fig. 16c.

As described in Sect. 4.1, shape stability should be also

considered in designing a wheel profile. Furthermore, the

manual weight vector that simultaneously takes into

account RD and CCI is set as

Wm ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0; 50; 50½ �: ð28Þ

Figure 16b shows the RBF-based response that takes

into account RD and CCI, and the recommended profile

S1002-RDSS is shown in Fig. 16c. Figure 17 shows the

equivalent conicities of S1002, S1002-RD, and S1002-

RDSS wheel profiles that match the 60E2 rail profile,

where the rail cant is 1/40, the wheelset back-to-back

distance is 1360 mm, and the gauge measurement position

is 14 mm below the rail crown. We can see that the

equivalent conicity of the S1002-RDSS profile lies between
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Fig. 13 Wheel–rail contact lines of S1002 ? Rail 60E2 (a), S1002-SS ? Rail 60E2 (b), S1002-W ? Rail 60E2 (c), and comparison of

equivalent conicities (d)

Fig. 15 The relationship between the wear index, the radial

deviation, and the nominal equivalent conicity for the 79 sampled

wheel profiles that match the 60E2 rail profile

Y (mm) 

Z 
(m

m
) 

Fig. 14 Comparison of wear distributions (wheel wear calculation

model: Hertzian–FASTSIM–Jendel [46]; updating strategy: wear

depth-based, threshold = 0.1 mm [47]; smoothing strategy: moving

average filter and LOWESS [48])
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that of S1002 and S1002-RD wheel profiles. The

simulation verification is omitted because it involves the

establishment of a complex long-distance flexible track,

which is unrealistic.

4.3 Case III: application of WPFTS to produce

a wheel profile considering hunting stability

and derailment safety

This section describes how to use WPFTS to recommend a

wheel profile that simultaneously considers hunting sta-

bility (hunting speed vcr) and derailment safety (fde). Cor-

respondingly, the following manual weight vector is used:

Wm ¼ 0; 0; 0; 0; 0; 50; 0; 50; 0; 0; 0½ �: ð29Þ

Figure 18a shows the RBF-based response considering

vcr and fde. The colormap shows that two optimal regions

(blue areas) are generated, so two corresponding wheel

profiles (S1002-P1 and S1002-P2) are recommended, as

shown in Fig. 18c.

Considering that a wheel profile with good shape sta-

bility can maintain the initial dynamic performances of the

train for longer, we further take CCI into consideration and

the manual weight vector is set as

Wm ¼ 0; 0; 0; 0; 0; 33; 0; 33; 0; 33; 0½ �: ð30Þ

Figure 18b shows the RBF-based response mainly

considering vcr, fde, and CCI, and the profile S1002-P3

shown in Fig. 18c is the wheel profile recommended by

WPFTS. Finally, the equivalent conicity, critical speed,

derailment coefficient, and contact concentration index

corresponding to these four profiles are shown in Fig. 19

and Table 2, where the rail cant is 1/40, the wheelset back-

to-back distance is 1360 mm, and the gauge measurement

position is 14 mm below the rail crown.

(a) (b)

S1002-RD
(1.0237, 1.0091)

S1002-RDSS
(1.0126, 1.0176)

(c)

Y (mm)

Z
( m

m
)

α1

α 2

α1

α 2

Fig. 16 RBF-based response considering RD (a), RBF-based response considering RD and CCI (b), and comparison between S1002, S1002-RD,

and S1002-RDSS wheel profiles (c)

Fig. 17 Equivalent conicities of S1002, S1002-RD, and S1002-RDSS

wheel profiles that match the 60E2 rail profile
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5 Conclusions and discussion

In this paper, we develop a WPFTS that comprehensively

considers the influence of wheel profiles on maintenance-

related wheel wear (transversal and circumferential) and

wheel surface fatigue, vehicle stability, vehicle safety, and

passenger comfort. WPFTS can recommend one or more

optimized wheel profiles according to train operators’

needs, e.g., mitigating the development of wheel OOR,

improving ride comfort, reducing wheel wear, improving

the shape stability of the wheel profile. Specifically,

WPFTS consists of the following four modules:

I. Wheel profile generation module This module is used

for producing candidate profiles using the RSFT

method proposed in Ref. [1].

II. Multi-objective generation module This module is

used to generate the objective database and consists of

three models: (a) A rigid MBS model for generating

tread wear index wt, flange wear index wf , wheel

surface fatigue fsu, wheel–rail vertical force Q, sum of

wheelset lateral forces H, derailment coefficient fde,

overturning coefficient g, mean comfort index Nmv,

and train critical speed vcr. (b) An analytical model for

producing CCI proposed by Polach [13]. It should be

noted that the CCI is enhanced based on the MBS

results. (c) A rigid–flexible coupled MBS model for

generating wheel radial deviation RD.

III. Weight assignment module An adaptive weight

assignment strategy that takes into account the

sensitivity of an optimization objective to changes

in wheel profile and a manual weight assignment

strategy based on the train operators’ specific require-

ments are introduced.

IV. Optimization module A response surface technique

(i.e., RBF) and a bio-inspired optimization algorithm

(i.e., PSO) are combined to quickly and reliably

Fig. 19 Equivalent conicities of S1002, S1002-P1, S1002-P2, and

S1002-P3 wheel profiles that match the 60E2 rail profile

(b)  (a)  
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S1002-P3 
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Fig. 18 RBF-based response considering vcr and fde (a), RBF-based response considering vcr, fde, and CCI (b), and the optimal wheel profile

recommended by WPFTS (c)
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recommend an optimal wheel profile according to

train operators’ needs.

Based on the Manchester Benchmark passenger vehicle,

three cases are introduced to show how WPTFS recom-

mends a wheel profile according to train operators’ needs.

Among them, a wheel profile with high shape stability, a

wheel profile for mitigating the development of wheel

OOR, and a wheel profile considering hunting stability and

derailment safety are developed, respectively. Based on

simulation results, the following notes are listed here:

I With the help of WPFTS, by only entering the manual

weight vector, train operators can automatically obtain

one or more wheel profiles that meet their needs.

II The fact that the initial profile has better dynamic

performance does not mean that the profile still has

better dynamic performance as the mileage increases.

Therefore, in wheel profile design, it is recommended

to consider a wheel profile with high shape stability,

where CCI can be regarded as an evaluation index.

This paper ends with the following notes:

I The WPFTS is developed based on the Manchester

Benchmark passenger vehicle running on a virtual

track. In order to get more realistic results, a more

detailed vehicle model, as well as a representative route

being closer to real-life operations, are required to

update the objective database.

II It should be noted that the superiority of the optimized

wheel profile relies heavily on the baseline wheel

profile because the RSFT method only fine-tunes the

wheel profile. In order to maximize the advantages of

the optimized wheel profile, more baseline wheel

profiles (e.g., the EPS and the 1/40 profiles specified in

standard [17], the LM series and JM series profiles

specified in standard [49]) can be input into the RSFT

method to generate more candidate profiles.

III When optimizing specific objectives, other parameters

related to safety and stability (referred to as objectives

in this paper) should be set as constraints that satisfy

the requirements specified in the standard [21]. In the

case analyzed in this paper, all wheel profiles

generated by the RSFD method (0:95� a1 � 1:05

and 0:98� a2 � 1:02) satisfy the specified criteria, so

the setting of constraints is not mentioned.

IV In the face of strong simplifications of the simulation

model, whether the final optimized wheel profile in

real life still has an advantage needs to be further

verified. Therefore, simulation acceptance according

to standards and field experimental verification, such

as mentioned in Ref. [50], are further required.

V The selection of the weight vector is the key to

determine the recommended wheel profile. More

systematic simulations and field experiments are

needed to determine a reasonable weight vector.
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