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Abstract Heterogeneous traffic conditions prevail in

developing countries. Vehicles maintain weak lane disci-

pline which increases lateral interactions of vehicles sig-

nificantly. It is necessary to study these interactions in the

form of maintained lateral gaps for modeling this traffic

scenario. This paper aims at determining lateral clearances

maintained by different vehicle types while moving in a

heterogeneous traffic stream during overtaking. These data

were collected using an instrumented vehicle which runs as

a part of the stream. Variation of obtained clearance with

average speed of interacting vehicles is studied and mod-

eled. Different instrumented vehicles of various types are

developed using (1) ultrasonic sensors fixed on both sides

of vehicle, which provide inter-vehicular lateral distance

and relative speed; and (2) GPS device with cameras,

which provides vehicle type and speed of interacting

vehicles. They are driven on different roads in six cities of

India, to measure lateral gaps maintained with different

interacting vehicles at different speeds. Relationships

between lateral gaps and speed are modeled as regression

lines with positive slopes and beta-distributed residuals.

Nature of these graphs (i.e., slopes, intercepts, residuals)

are also evaluated and compared for different interacting

vehicle-type pairs. It is observed that similar vehicle pairs

maintain less lateral clearance than dissimilar vehicle pairs.

If a vehicle interacts with two vehicles (one on each side)

simultaneously, lateral clearance is reduced and safety of

the vehicles is compromised. The obtained relationships

can be used for simulating lateral clearance maintaining

behavior of vehicles in heterogeneous traffic.

Keywords Ultrasonic sensors � Heterogeneous traffic �
Lateral gaps � Lateral vehicular interactions � Weak lane

discipline

1 Introduction

Traffic conditions in developing countries are characterized

by two prominent phenomena—(1) heterogeneous vehicle

types and (2) weak lane discipline. Due to these conditions,

a vehicle’s behavior in such a traffic stream is impacted by

the actions of not only the leading vehicles but also adja-

cent vehicles. Thus, maneuvering a vehicle needs more

attentive control to avoid accidents and involves greater

interactions between vehicles present in close neighbor-

hood of the vehicle—laterally (sidewise) as well as longi-

tudinally. Till recently, majority of works have been

carried out to study the longitudinal interaction (or car-

following behavior) of vehicles in different traffic streams;

however, less research has been devoted to lateral inter-

actions between vehicles. Therefore, a detailed research on

lateral interactions between vehicles needs to be carried out

for better understanding of traffic conditions in developing

countries.

Lateral clearance (LC) is the sidewise safety spacing

maintained by a vehicle with neighboring vehicles when it

travels through a traffic stream. Along with the longitudinal

gap, LC is an important parameter in heterogeneous traffic

streams with weak lane discipline, and is affected by sev-

eral factors including type of vehicle, vehicle speed, driver

behavior and external factors. Heterogeneous traffic results
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in larger variation in individual vehicle’s speed and no

lane-discipline behavior during overtaking or interacting

with other vehicles. Thus, a study is needed which devel-

ops a model of LC for each type of vehicles, or rather,

between pairs of different vehicle types. Previous studies

by Gunay [1] made consideration for loose lane discipline

and function of available width for overtaking vehicles,

whereas Pal and Mallikarjuna [2] and Mallikarjuna et al.

[3] presented a rough estimation of lateral interaction

between vehicles using image processing-based vehicle

detection software. However, these studies lack in large-

scale accurate data collection from aforesaid traffic

streams.

This paper attempts to model the relationship of LC

between a pair of vehiclesmoving in the same direction, with

their speeds. The speed of the test/instrumented vehicle is

calculated using a high-precision global positioning system

(GPS)-based data logger, whereas lateral distances and rel-

ative speed are calculated using ultrasonic sensors. The

scope of this study is limited to uninterrupted mid-block

sections which are not affected by external features.

The rest of this paper is organized as follows. Section 2

presents a literature review on previous studies regarding

lateral interactions. Section 3 elaborates methodology of

data collection and extraction. Section 4 states field sites

used for data collection. Section 5 describes the modeling

of obtained data, vehicle-type-wise behavior, variation of

road width, interaction with multiple vehicles and use of

obtained model. The last section summarizes the main

findings and future scope of this study.

2 Literature review

The work on lateral vehicular interactions can be traced

from May’s experiments [4], which calculated internal

frictions between two vehicles on test track. Based upon

traffic arrival pattern of a multi-lane unidirectional high-

way, Mahalel and Hakkert [5] concluded that arrival pat-

tern of vehicles in one lane is dependent on the arrival

patterns of vehicles in the other lanes. For mixed traffic

condition, there is no restriction of lateral movement, and

hence, vehicles have the freedom to traverse in any gaps

without the need to travel in demarcated paths. Hence,

lateral movement for overtaking is not only in the form of

lane changing (which has large literature), but also smaller

lateral shifts which would be sufficient enough to maintain

a clearance between adjacent vehicles as per the comfort of

drivers. In this regard, clearance gaps between vehicles on

bidirectional roads were first evaluated by Nagaraj et al.

[6] elaborates using video-recording method, but the less

accurate technology used then motivates the need for larger

and versatile data samples.

2.1 Previous work on staggered car-following

Staggered car-following behavior is predominant in

developing countries, where limited attempts have been

made to study the relationship between lateral and longi-

tudinal distance between interacting vehicles. Gunay [7]

defined the term lane-based driving discipline as the ten-

dency to drive within a lane by keeping to the center as

closely as possible (unless in lane changing). Gunay [1]

remarked that when two vehicles travel parallel to each

other, they tend to shy away. A new car-following rela-

tionship which is based on staggered car-following is

developed, where the lateral frictional discomfort between

moving vehicles is taken into account. Maximum escape

speed (MES) or speed with which vehicle can safely

overtake other vehicle, depending upon available road

width, was calculated. It was found that there is a second-

degree relationship between vehicle speed and road width

available for overtaking. Further, a simulation model was

developed [8] based upon observations drawn from field

data collection. Gunay and Erdemir [9] analyzed staggered

time headways between neighboring vehicles and found

that drivers prefer to pass or lag behind the vehicle in the

adjacent lane, rather than driving side by side.

2.2 Previous work on speed-LC relationship

Some research has been carried out to establish the rela-

tionship between speed and lateral (or transverse) clearance

maintained by interacting vehicles. Pal and Mallikarjuna

[2] collected data and evaluated the average lateral gap

versus percentage area occupancy relationship in hetero-

geneous traffic. In a later study [3], it was found that lateral

gaps maintained by vehicles vary with respect to their

speeds and vehicle types. A commercial software ‘TRA-

ZER’ which automatically collects traffic data based upon

image processing of a recorded traffic stream was used in

this research; however, data extracted from this software

suffers from serious accuracy issues at different levels. A

continuum model by Nair et al. [10] or a pore space model

by Ambarwati et al. [11] has been devised based upon

available minimum spacing between vehicle corners,

referred as pores. These models do not consider vehicle

speeds in developing relationships of distances between

vehicles with other traffic parameters like area occupancy.

Linear relationship between LC and speed was assumed in

many heterogeneous simulation models, such as the

HETEROSIM model developed by Arasan and Koshy [12],

the CASIM model by Maurya and Chakraborty [13] and

the unidirectional model by Metkari et al. [14]. Validation

of these models was limited to macroscopic parameters

only. Potential field model (conceived by Chakraborty

et al. [15]) can also be extended for heterogeneous
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conditions, if different vehicle-type parameters are intro-

duced and lateral parameters are calibrated properly.

Previous car-following models have not considered any

lateral terms in the equations. Recent research work by

Delpiano et al. [16] involves introduction of a term called

collateral anomaly. A study has been made to see the effect

of neighboring leading vehicle’s position on the following

vehicle in a staggered car-following. Attempts have also

been made to incorporate the staggered car-following

behavior using the visual angle concept by Jin et al.

[17, 18], but these approaches do not adequately represent

the lateral discomfort. Recent study by Pal and Mallikar-

juna [19] used effective width of vehicles (which also

included LC maintained by vehicles) to calculate macro-

scopic parameter of area occupancy of traffic. Munigety

et al. [20] have not ventured into modeling speeds with

respect to LC with the change in road and vehicle param-

eters. More recent work by Dimayacyac and Palmiano [21]

focuses on average relationship between LC and speed for

various vehicle pairs, but the deviation of LC at similar

speeds is not studied. The popular commercial vehicle

simulator VISSIM [22] allows for input of average LC

values for particular vehicle type at stopped condition

(0 km/h) and at 50 km/h speeds. However, there is no

highlight on vehicle pairwise variation, or deviation at

similar speed levels.

2.3 Use of instrumented vehicles for traffic data

extraction

There is a need to study the average LC maintained

between vehicles, during the entire overtaking process.

Data collection on LC maintained by the interacting

vehicles in such traffic streams is quite challenging. Static

traffic-recording techniques (for example, video recording)

can provide LC between vehicles, only at a particular

section. The average clearance during the entire overtaking

may not be captured. In order to capture this, there is a

need to develop an instrumented vehicle which will be a

part of the traffic stream and measure clearances of other

vehicles with itself using sensing devices. Optical sensors

were used by Wong and Qidwai [23] for collision avoid-

ance of a car using vehicle electronic control unit. Based on

this approach, an instrumented vehicle was developed

using ultrasonic sensors for data collection in this work.

Such an instrumented vehicle was also developed by

Venter and Knoetze [24] for measuring LCs between bikes

and other vehicles in order to predict the safe width of bike

lanes. Various sensors can also be used for vehicle detec-

tion systems. Literature for video image or vision-based

sensors has been reviewed by Sun et al. [25]. Moving

vehicle detection and classification system is popular, with

video image or vision-based sensors being used on a large

scale.

It can be concluded from the literature review presented in

above subsections that majority of studies are restricted to the

study of lane-changing behavior in traffic stream with lane

discipline. Limited attempts have been made to study the LC

aspects in heterogeneous traffic stream with weak lane disci-

pline. These studies have certain issues such as limitation of

observed data points, accuracy issues, or results being difficult

to reproduce and replicate because of the cumbersome data

extraction process. Thismotivates the authors to collect large-

scale LC data for verity of interacting vehicles’ pairs of

heterogeneous traffic streams with weak lane discipline using

sophisticated equipments. Further attempts also have been

made to model the relationship between speed of interacting

vehicles and LC maintained between them.

3 Methodology for field data collection
and analysis

The methodology for field data collection that includes the

concept of development of an instrumented vehicle con-

sists of sensors and V-box assembly, extracting different

parameters from collected data, and file-handling for get-

ting data in the final form. In order to measure speed and

LC simultaneously, a synchronized setup consisting of a

sensor assembly (to measure distances) and a GPS device

(to measure speeds) with video cameras was used (refer to

Fig. 1). The following subsections describe calculation of

test and interacting vehicles’ speed, LC between them and

vehicle-type determination.

3.1 Speed of test vehicle

Test vehicle speed is calculated using video V-box manu-

factured by ‘Racelogic.’ This is an accelerometer with a

GPS data logger and two traffic-recording cameras. It

updates vehicle position from satellite signals and calcu-

lates speed at every 10 Hz frequency.

3.2 LC between test and interacting vehicles

LC between vehicles, which is denoted by C in the context,

is calculated using a set of six ultrasonic sensors fitted on

both sides of test vehicles as shown in Fig. 1. The ultra-

sonic sensors are operated and controlled by a microcon-

troller board. The microcontroller and sensor setup is

shown in Fig. 1a. The program code is written in an open

project Arduino 1.0.5.

A sensor triggers an ultrasonic pulse at the speed of

sound, which is reflected back after hitting any obstacle.
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When a pulse is triggered, detectors in the sensors search

the reflected echo, whereas the microcontroller board keeps

a track of time lag. Totally six sensors are fixed on vehicles

during data-collection period (three on each side of the test

vehicle) as shown in Fig. 1b. The distance between

neighboring vehicle and sensor is calculated by time-of-

flight, that is, half of the product of the speed of sound and

the time required by waves from emitter to detector. The

distance between two neighboring sensors is measured as

inter-sensor distance. Each sensor emits pulses in a conical

direction. Based on the pre-calibrated cone-angle and the

distance between interacting vehicles, a correction to inter-

sensor distance is made dynamically. For example, in

Fig. 2, the corrected inter-sensor distance between sensors

1 and 2 is AL if the other vehicle is overtaking the test

vehicle, and CN if the test vehicle is overtaking the other

vehicle. The line AR in Fig. 2a represents the path fol-

lowed by the edge of the interacting vehicle. If echo pulse

is not detected, or if the object is beyond the stipulated

range of sensors, then the sensors are programmed to return

a ‘null’ reading. Ultrasonic pulses are set to trigger and

receive pulses at 5 Hz frequency intervals.

3.3 Speed of interacting vehicle

The relative speed of the interacting vehicle is calculated

from Eq. (1) based on the test vehicle speed, inter-sensor

distance and sensor time stamps of vehicle detection. Thus,

the speed of interacting vehicle ðvIÞ can be calculated, once

the speed of test vehicle ðvTÞ during this interaction is

known.

vI ¼ vT �
D

Dt
; ð1Þ

where D denotes the corrected inter-sensor distance and

Dt denotes the difference in sensor time stamps of vehicle

detection.

If the interacting vehicle is overtaking the test vehicle,

the relative speed is added to the test vehicle’s speed; else,

it is subtracted from the test vehicle’s speed. V-box and

sensor setup run independently and collect data at similar

frequencies. Hence, initial readings (starting datum) of

both the equipments are synchronized by matching with a

global time.

3.4 Determination of type of interacting vehicles

It is difficult to distinguish whether the echoed ultrasonic

pulses received by the detectors are reflected from other

neighboring vehicles or any other obstacles (like median,

street furniture, etc.) solely on the basis of obtained sensor

readings. To segregate actual interaction readings, observer

needs to manually identify vehicle types with their

approximate times of interactions. For this purpose, the

video recorded by the two attached cameras focused on

either sides helps in identifying vehicle type of interacting

(a) (b)

Fig. 2 Sensor positioning (a) and sample reading obtained in sensor

and V-box data-collection file (b)

Fig. 1 Microcontroller and sensor setup used for data collection (a) and installed sensors on vehicle (b)
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vehicle and its approximate time of interaction for each

side. This time of interaction is already synchronized in

GPS data logger. While identifying, vehicles were classi-

fied into various categories like cars, buses, trucks, light

commercial vehicles (LCV), motorized three-wheelers

(auto) and motorized two-wheelers (bike). The urban traffic

in the study stretch consisted of majority of these vehicle

types, and the clubbing into these categories is on the basis

of similarity in vehicle characteristics (such as size, engine

properties, steering capability).

3.5 File-handling and processing of collected data

Initially, a file (say, File ‘A’) is generated by microcon-

troller. It contains readings of six sensors along with time

stamp. Another file is generated by V-box (File ‘B’) which

contains speed of vehicle with time stamp. These two files

(File A and File B) are merged in a single file (File ‘X’) by

synchronizing with the global time stamp present in each

file. A sample of readings in File ‘X’ is shown in Fig. 2b. It

basically contains instantaneous speeds at every 5 Hz and

corresponding obtained distances for all three sensors at

those instances. A separate file (File ‘Y’) contains the

manually identified vehicle types of interacting vehicles,

time stamps of their interactions and indicators—(?1 or

-1) for overtaking the test vehicle or getting overtaken by

the test vehicle, respectively. There is a minor variation

(\10%) in the LC obtained between instantaneous sensor

readings over one particular interaction. The authors are

interested in studying the average maintained value of LC

during the entire overtaking period and not instantaneous

values. Hence, data from Files ‘X’ and ‘Y’ are merged by

averaging sensor readings from all the three sensors (of one

side of the test vehicle), each averaged over time stamps

corresponding to the particular interaction. Similarly, speed

of the test vehicle for that interaction is calculated by

averaging all instantaneous speeds during one interaction.

The entire process of file-handling is shown in Fig. 3.

Thus, the final output master-file contains information

mainly about vehicle types of test and interacting vehicles,

average LC and speeds of both interacting vehicles.

For calculating relative speed, the test vehicle should

completely overtake or get overtaken by the interacting

vehicle. Previous studies show that vehicles usually do not

prefer to move side by side, but generally shy away from

each other to stay in a staggered manner while traveling in

the neighboring lanes. So in this study, LCs are measured

only during overtaking or shying away process of these

interacting vehicle pairs. Data obtained with this process

are analyzed, and results are presented in the next two

sections of this paper.

4 Field data collection

Test vehicle travels on predefined routes comprising roads

with different widths within the city of Delhi, Guwahati,

Kolkata, Bengaluru, Pune and Mumbai in India. Data

corresponding to mid-block sections (in uninterrupted

traffic condition) of roads were segregated for this analysis

based on the video recorded by V-box cameras. The road

stretches covered under different routes of the cities are

mentioned in Table 1.

Data from sensors and V-box readings corresponding to

mid-block sections of predefined routes of different cities

are separated for the further analysis under this work.

Master files for all cities are generated based on the pro-

cedure suggested in Fig. 3. During data collection, it was

observed that vehicles rarely interact beyond LC of 2.5 m.

Therefore, vehicle pairs with a LC more than 2.5 m were

not considered for further study. It is hypothesized that

interacting vehicles equally contribute to the maintaining

of LC. This will give rise to two fundamental claims: (1) if

x and y are two different vehicle types, C(x–y) (LC between

vehicles x and y) is the same as C(y–x); and (2) the average

speed of interacting vehicles over the interaction time

affects the LC, rather than individual speeds. A total of

6016 vehicle pair interactions were extracted and consid-

ered for analysis. Results obtained from data analysis are

presented in subsequent sections.

5 Analysis and results

Results of the data analysis like LC versus speed rela-

tionship, LC variation with interacting vehicle pairs, cities

or road width and multiple vehicle interaction are presented

in this section.

Instrumented vehicle

Sensor setup GPS device with camera

Lateral 
clearance data

File ‘A’

Speed data
File ‘B’

Video data 
(vehicle type)

File ‘Y’

Synchronized file ‘X’
Program to merge data to 

get speed, LC, vehicle 
type, etc.

Masterfile used for modeling

Fig. 3 Schematic diagram of file-processing for data extraction about

interacting vehicles
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5.1 Relationship between lateral gap and average

speed of interacting vehicle pairs

The interacting vehicle pairs which have been considered

in this study are cars with other cars, autos, two-wheelers,

LCVs and heavy vehicles (combined data of buses and

trucks); autos with other autos, cars, bikes and heavy

vehicles; and bikes with other bikes, autos and cars. Fig-

ure 4 presents the LC C (in cm) versus average speed v (in

km/h) data points for all combination of interacting vehi-

cles mentioned above. It is clear that LC increases with the

average speed of interacting vehicles. Further, different

interacting vehicle pairs maintain a range of LC at a par-

ticular average speed. This C-v relationship can be repre-

sented by a statistical linear model. A linear model is

chosen since increasing the degree of equation does not

improve the fitting of regression curve.

Therefore, the model proposed for C-v relationship

comprises a deterministic part (regression line) and a

stochastic part (residual distribution). General equation of

this model is represented as Eq. (2),

C ¼ Svþ I þ u; ð2Þ

where u is residual terms about the mean, S is slope, and I

is intercept. Several common distributions (normal,

lognormal, beta, log-logistic, etc.) are fitted against the

residual distribution, and it is observed that the distribution

of residual terms about the regression line is observed to

follow a distribution statistically similar (p = 0.063) to

beta distribution. The comparison of various distributions

with the residuals from field data along with their p values

is provided in Fig. 5. General form of beta distribution is

given in Eq. (3):

f xð Þ ¼ 1

B a1; a2ð Þ
x� að Þa1�1

b� xð Þa2�1

b� að Þa1þa2�1
; ð3Þ

where B a1; a2ð Þ ¼
R1

0

ta1�1 1� tð Þa2�1
dt a1; a2 [ 0ð Þ:

Here, f(x) represents the frequency distribution function of

beta distribution. The general form of beta distribution is

determined by four parameters namely a; b; a1; and a2. The
coefficients a and b determine the range of residual spread,

and a1 and a2 are the shape parameters. B(a1, a2) is the beta
function expressed as a function of shape parameters. Beta

distribution is a close-ended distribution with maximum and

minimum thresholds on maintenance of LC. Upper and

lower values of these thresholds can be calculated by adding

values of coefficients a and b of beta distribution, respec-

tively, to the obtained LC by regression line. The

0

50

100

150

200

250

300

0 20 40 60 80 100

LC
 (c

m
)

Average speed (km/h)

Fig. 4 Scatter plot of average speed (v) versus LC (C) between all

interacting pairs of vehicles, combined data for all cities in this study

Table 1 Details of road stretches and test vehicles used in field data collection in different cities

Serial

no.

City Road stretches Test vehicles driven

Hatch-

back

car

Sedan

car

SUV

car

Van Auto Bike Bus

1 Delhi Outer ring road, Inner ring road, Nelson Mandela road, Africa Ave,

GT road, Mehrauli-Badarpur road, Mehrauli-Gurgaon road,

Charan Singh Road, and DND flyway

4 4 4 4 4

2 Guwahati Guwahati bypass, and GS road 4 4 4 4 4 4 4

3 Kolkata EM bypass, VIP road, CIT road, Gariahat road, DPS road

(Tollygunge), Manicktala Vivekananda Road, Chittaranjan Ave,

and Rash Behari Ave

4 4 4 4 4

4 Bengaluru Mysore Road, Bellary Road, CV Raman road, West chord road,

Outer Ring Road, Hosur Road, NICE road, TCM Royan road

(Majestic), and Racecourse road

4 4 4 4 4

5 Pune Bibwewadi Road, Sinhagad Road, Ambedkar-Wellesley road, Old

Bombay-Poona Highway, Pune bypass, Ganeshkhind road, Tilak

road, and Karwe road

4 4 4 4 4

6 Mumbai Link road, Western Express Highway, Eastern express highway,

Eastern freeway, Pedder Road, Marine Drive, Bandra Worli Sea

Link, and Jogeshwari-Vikhroli link road

4 4 4 4 4
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phenomenon is also observed in real traffic, since vehicles

would not venture below or above a certain threshold for

safe maneuvering. Since driver behavior is a natural phe-

nomenon, distribution of residuals is close to normal dis-

tribution (p = 0.03 for all combined data of all vehicle

types). Residuals also need to be checked for

heteroscedasticity and autocorrelation. Results of Goldfeld–

Quandt (GQ) test for heteroscedasticity (F test of FGQ)

derive FGQ for lower 3/8th data and middle 1/4th data as

1.113, whereas FGQ for middle 1/4th and higher 3/8th data

as 1.003. These values are less than the critical F value of

3/8th and 1/4th data (i.e., 1503 and 2256, respectively),

denoted as Fc, at significance level of 0.01 (Fc = 1.115).

The value of DurbinWatson statistic (autocorrelation test) is

1.86. Since the value is close to 2, it means very less auto-

correlation between consecutive residual terms. Thus,

residuals are found to be homoscedastic with very less

autocorrelation. It indicates that the spread of data about the

regression line remains consistent with speed. This is

because the available road width for overtaking does not

change, so drivers traveling at lower speeds also have a wide

range of LCs to choose from.

In the current study, C versus v data are collected from

six different cities and presented in Fig. 4. In order to

validate whether the C versus v varies significantly with

locations (different cities), site-specific data are evaluated

and results are presented in the next subsection.

5.2 Evaluation of city-wise C versus v data

It was observed from Fig. 4 that the LC maintained by

interacting vehicles from different cities show increasing

trends with average speed of interacting vehicles. The

combined deterministic linear relationship between C and v

for all interacting vehicle pairs observed in all locations

together can be represented as LC C ¼ 0:615vþ 120:883.

However, this observed relationship may change from one

city to other due to change in drivers and vehicles’ charac-

teristics. A multiple comparison test, i.e., analysis of

covariance (ANCOVA) is conducted to evaluate the

behavioral change in C-v relationship among the interacting

vehicle pairs of each city and results are presented in Fig. 6.

Figure 6 provides the spread of obtained slopes and

intercepts of best-fit regression lines for each city. It is

0

5

10

15

20

25

-100 -80 -60 -40 -20 0 20 40 60 80 100
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eq
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y 
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)

Residuals

Residual distribution Beta, p=0.064
Error, p=0.041 Log-logistic, p=0.008
Normal, p=0.029

Fig. 5 Comparison of various common distributions with residual

plot of obtained field data

100 110 120 130 140 150

Delhi

Guwahati

Kolkata

Pune

Mumbai

Bangalore

Intercept (cm)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Guwahati

Kolkata

Pune

Mumbai

Bangalore

Slope

(b)

Fig. 6 Comparison of range of estimated slopes and intercepts of LC versus average speed relationships between interacting vehicle pairs

moving in different cities. a Test for variation of intercepts for different cities. b Test for variation of slopes for different cities

80 A. K. Budhkar, A. K. Maurya

123 J. Mod. Transport. (2017) 25(2):74–89



observed from Fig. 6 that slopes of C-v relationship of

vehicles in Pune and Kolkata significantly differ with those

of Mumbai and Delhi. Guwahati city has higher range of

slope and intercept variation, since the predictability of

close relationship between LC and speed is less, a possible

reason being lesser data points of Guwahati city.

Table 2 compares C versus v relationships for interact-

ing vehicle pairs in different cities, with the relationship

developed for combined data of all cities. Figure 7 pro-

vides linear plots of fitted regression lines for various cities.

Table 2 presents the deviation in slope and intercept values

of C versus v relationship for each city from those of the

estimate of combined data for all cities (the estimate is

mentioned in heading of Table 2). It is observed from

p values of Table 2 that vehicles maintain statistically

similar intercepts of regression lines in all the cities. It

means that at lower speeds there is no statistical difference

in vehicle behavior in different cities. However, vehicles in

Pune and Kolkata maintain significantly lesser slope of LC

with average speed as those of other cities, whereas

Mumbai and Delhi maintain significantly higher slope; as

evident from statistics values marked in bold, in the last

column of Table 2. In other words, vehicles of Mumbai

and Delhi are statistically more sensitive to speed when

maintaining LC, whereas those of Pune and Kolkata are

less sensitive. Since the authors are interested in aggregate

behavior of vehicles across all cities, entire dataset of all

cities is considered for analysis in subsequent discussions.

5.3 Vehicle pairwise models for LC versus average

speed

C and v are also calculated for certain pairs of vehicles

whose data are significantly observed in field. Buses and

trucks are considered in a single category as heavy vehicles

(HV) since in urban sections studied, noticeable difference

in speeds, vehicle sizes and maneuverability were not

observed between these two vehicle types. Different

interacting vehicle pairs which are included in this study

are cars with other cars, bikes, autos, HV and LCVs; autos

with other autos, cars, bikes and HVs; and bikes with other

bikes. Other vehicle pairs are not considered due to less

sample size observed in collected data. Before proceeding

for modeling, it is checked whether there is any significant

difference among the relationships between different pairs

of vehicles keeping one interacting vehicle-type constant.

These test results are presented in Table 3. Italicized

heading for each vehicle type in Table 3 presents the

intercept and slope estimates for overall behavior of that

vehicle type with other interacting vehicles. It can be

observed that bikes maintain lesser gap (with other vehi-

cles) than cars and autos (with other vehicles). Further, it

can be observed that although cars and autos maintains

similar gaps at lower speeds; however, autos (with other

vehicles) maintain larger gaps at higher speeds.

The rows under each vehicle type represent deviation in

intercept and slope estimate for a particular interacting

vehicle pair with respect to the overall behavior of that

vehicle type. The overall behavior is mentioned in itali-

cized text before pairwise interactions. T-value of pairs

maintaining significantly different behavior than overall

behavior is mentioned in bold. It is observed that autos

behave significantly different with cars as compared with

other vehicles. Due to high maneuverability of autos, cars

maintain higher gaps with them even at lower speeds.

Table 2 Statistical comparison of C versus v relationship for vehicles from different cities

City Sample size Intercept (All cities’ estimate: 120.883, SE: 2.232) Slope (All cities’ estimate: 0.615, SE: 0.053)

Deviation SE T Prob[ |T| Deviation SE T Prob[ |T|

Bengaluru 1310 0.123 3.854 0.032 0.975 -0.025 0.099 -0.250 0.803

Mumbai 886 -8.101 4.288 -1.889 0.059 0.256 0.113 2.263 0.024

Pune 918 9.671 4.971 1.945 0.052 -0.351 0.119 -2.959 0.003

Kolkata 1174 -2.565 3.757 -0.683 0.495 -0.188 0.097 -1.933 0.053

Guwahati 565 4.223 8.069 0.523 0.601 0.143 0.183 0.781 0.435

Delhi 1163 -3.351 3.51 -0.955 0.340 0.164 0.077 2.134 0.033

SE indicates standard error. T indicates T-value of the data set under consideration. Values marked in bold indicates rejection of null hypothesis

at 5% significance levels

100

125

150

175

200

0 20 40 60 80 100

LC
 (c

m
)

Average speed (km/h)
Overall Bangalore Mumbai
Pune Kolkata Guwahati
Delhi

Fig. 7 Comparison of obtained regression lines of LC versus average

speed relationship for different cities
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Similar observation can be made in case of car–bike

interactions. These comparison results of regression lines

of C and v are also mentioned in Fig. 8a–c. Cars are

observed to behave significantly different with themselves

as compared to other vehicles.

Linear statistical equations are modeled. Model param-

eters (slope, intercept, coefficients of beta distribution) are

calculated for each pair and mentioned in Table 4.

Obtained parameters from Table 4 can be used for

modeling gap-maintenance behavior of vehicles in

heterogeneous traffic stream. One may also compare esti-

mates of average behavior of different types of vehicle

pairs, through regression slopes and intercepts presented in

Table 4. By this comparison, for a particular average

speed, vehicles maintain lesser LC with vehicles of their

own vehicle types. This is evident from slope and intercept

equations for car–car, bike–bike and auto–auto. Bikes

maintain the least LC among the overall behavior of

vehicle types of cars, autos and bikes. Cars and autos

maintain larger LC with LCVs. However, autos and cars

maintain relatively lesser slope (of LC vs. average speed)

with heavy vehicles than their own types, since it was

observed that heavy vehicles, in spite of their size, were

frequently overtaken by other vehicles even taking signif-

icant risk, due to their weak maneuverability and acceler-

ation capability, which resulted in their reduced average

speeds.

The coefficients a and b of beta distribution represent

the spread of data about the best-fit regression line. Since

vehicles can predict the behavior of their own vehicle types

more accurately than other types, spread of data (indicated

by (a–b) about the best-fit line for car–car, auto–auto and

bike–bike pairs is lesser than other combinations. More-

over, for all the pair combinations, |a|\ |b|, or the extent of

residual spread toward higher threshold is greater than that

of spread toward lesser threshold (due to safety concerns at

lower thresholds). The coefficients a1 and a2 represent

nature of distribution about this spread. If a1[ a2, then the

data are more skewed toward the higher thresholds. Lower

absolute values of a1 and a2 indicate flatter distribution. It

is observed that for all the vehicle pairs, a2[ a1 or in other

words, more number of vehicles tends to maintain a LC

headway closer to the lower threshold. A flatter distribution

is obtained when bikes interact with bikes, cars interact

with heavier vehicles (LCVs, buses, trucks) and autos

interact with autos or heavy vehicles (as inferred from

values of a1 and a2). To calculate the goodness of fit of the

residual distribution to beta distribution, the K-S test was

applied between the best-fit beta distribution and residual

distribution; p value of comparison of these two distribu-

tions is presented in the last column of Table 4. It is

observed that residuals follow beta distribution at good

significance.

5.4 Shying away behavior during interaction

of heterogeneous vehicle pairs

Authors have attempted to verify a hypothesis that the LC

maintained between two interacting vehicles is the result of

individual contribution of each vehicle. If this hypothesis

may hold true, then for a particular average speed between

two interacting vehicle types x and y, C(x–y) should be the

Table 3 Comparison of C and v for different vehicle pairs with their overall behavior

Pair Intercept (I) Slope (S)

Deviation SE (r) T Prob[ |T| Deviation SE (r) T Prob[ |T|

Autos with other vehicles: I = 129.6 (r = 5.2), S = 0.962 (r = 0.2)

Auto–Car 7.555 6.67 1.133 0.258 -0.516 0.242 -2.128 0.034

Auto–Bike -7.504 7.327 -1.024 0.306 0.205 0.272 0.754 0.451

Auto–Auto -0.872 9.337 -0.093 0.926 0.171 0.372 0.461 0.645

Auto–HV 0.821 11.791 0.07 0.945 0.139 0.457 0.305 0.760

Bikes with other vehicles: I = 119.76 (r = 6.2), S = 0.541 (r = 0.2)

Car–Bike 5.461 6.328 0.863 0.388 0.069 0.207 0.334 0.738

Auto–Bike -3.728 6.668 -0.559 0.576 0.248 0.218 1.14 0.255

Bike–Bike -1.733 12.019 -0.144 0.885 -0.317 0.396 -0.8 0.424

Cars with other vehicles: I = 126.51 (r = 1.9), S = 0.550 (r = 0.05)

Car–Car -9.125 2.392 -3.415 0.001 0.128 0.064 1.994 0.046

Car–Bike -1.297 2.655 -0.488 0.625 0.061 0.076 0.801 0.423

Car–Auto -2.482 3.024 -0.821 0.412 0.096 0.085 1.124 0.261

Car–HV -0.657 3.511 -0.187 0.851 0.144 0.094 1.521 0.128

Car–LCV 13.561 6.209 2.184 0.029 -0.429 0.173 -2.478 0.013

Data in bold highlights the T-value of vehicle pairs maintaining significantly difference behavior than the overall behavior
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Fig. 8 Comparison of vehicle pair behavior with overall behavior of autos (motorized three-wheelers) (a), bikes (motorized two-wheelers)

(b) and cars (c)

Table 4 Model parameter estimation for different vehicle pairs

Vehicle pair Sample size Regression line Coefficients of beta distribution

Slope Intercept a1 a2 a b p value of fit

All combined 6016 0.641 122.3 4.496 5.671 -117 147.94 0.063

Auto–Auto 140 1.037 114.55 1.861 2.338 -89.79 112.73 0.787

Auto–Bike 417 0.739 117.27 3.803 4.222 -120.18 133.77 0.305

Auto–HV 131 0.985 123.86 2.235 2.633 -100.97 118.31 0.892

Bike–Bike 87 0.224 118.02 1.511 1.856 -68.93 84.55 0.782

Car–Auto 897 0.642 124.12 4.263 4.995 -120.59 141.41 0.600

Car–Bike 1372 0.612 125.16 6.522 8.496 -131.13 170.92 0.057

Car–Car 2246 0.681 117.31 3.971 4.891 -106.90 131.94 0.116

Car–HV 538 0.675 126.35 2.264 2.789 -88.39 108.85 0.997

Car–LCV 139 0.132 139.78 1.711 2.213 -74.98 96.64 0.861
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average of C (x–x) and C (y–y). To test this hypothesis, C-v

relationships (regression lines) observed from field data for

homogeneous vehicle pairs (like car–car, bike–bike and

auto–auto) are compared with those of heterogeneous

vehicle pair combinations (like car–bike, car–auto, auto–

bike). Figure 9 presents the results of this comparison

graphically for each vehicle pair. For example, Fig. 9a

presents the observed C-v relationships for auto–auto (AA),

bike–bike (BB) and auto–bike (AB) along with the com-

puted auto–bike (AB) relationship based on the average

value of C(AA) and C(BB). It is observed that values of

regression lines C(AB) are more than the average value of

C(AA) and C(BB). One possible reason for this can be that

the driver of one vehicle type is less confident about the

behavior of other vehicle types, hence maintains more LC

with them than with the same vehicle type. Similar results

were obtained when tested for bike and car pairs (refer

Fig. 9c). In case of AA and car–car (CC) test, similar result

has been observed at lower speeds, but at higher speeds the

averaged value of C(AA) and C(CC) is found higher than the

field value of C(AC).

From Table 4, for car–auto, bike–auto and car–bike

pairs, it can be observed that there is 8.7%, 0.85% and

6.76% increase in intercept; and -25.37%, 14.1% and

35.15% increase in slope of C(x–y) regression line with

speed, respectively, as compared to average of C(x–x) and

C(y–y). Comparisons for heterogeneous pairs (C(x–y)) are

made with average of C(x–x) and C(y–y) in Fig. 9. From this

exercise, it can be concluded that LC between two different

vehicle types cannot be considered as combined contribu-

tion of two similar types of vehicles’ individual behaviors.

There is a general shying away when interaction of dis-

similar vehicle types is considered. The driver of one

vehicle type is more confident of vehicle performance of all

identical vehicle types in the stream and can estimate their

movement with better accuracy than other vehicle types.

Thus, he/she can take a higher risk and maintain lesser gap

between his/her own vehicle and other vehicle of identical

vehicle type.

5.5 Effect of carriageway width on LC

versus average speed relationship

During manual vehicle identification of interacting vehicles

through video camera, widths of carriageways were also

denoted in terms of number of lanes of road (N).
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(b) and car–bike interactions (c)
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Carriageway width varies from 1.5 lanes to 7 lanes.

Vehicles are observed to utilize paved shoulders (of width

1.5 m) as part of main carriageway. Therefore, paved

shoulders are considered as half of lane width. Combined

data for all vehicles are segregated widthwise, and a 3-d

regression plane is fitted on C, v, and road width data.

Figure 10 provides the 3-d regression plane, and Eq. (4)

represents the relationship among average speed, LC and

road width. It is observed that the LC decreases with

decrease in carriageway widths (for similar speed levels)

initially up to carriageways four lanes wide, and thereafter

it increases. Second-degree equation with the number of

lanes is chosen, since it provides a better fit as compared to

linear equation. The aim of this analysis is to find the width

where LC is minimum for a particular speed. Partial dif-

ferentiation of best-fit regression surface with number of

lanes (N) (Eq. (4), second degree with N, first degree with

v) at zero speed obtains N = 4.59 (&4.5 lanes). At average

speeds about 90 km/h, it obtains N = 4 lanes. It means that

on carriageways with 4–4.5 lane width, vehicles achieve

maximum squeezing. The LC obtained can be calculated

from Eq. (4).

C ¼ 149� 13:79N þ 0:553vþ 1:5N2 þ 0:02vN: ð4Þ

Thus, a variation is observed between LC and width of

road, primarily due to the effect of constraining by road

edges or median. Due to this constraining, vehicles may not

choose to overtake on narrow roads, and thus maintain

larger LC at particular speeds. However, on very wide

roads ([4 lanes), lack of any constrain from road edges

may motivate the drivers to travel at higher speeds taking

higher risks, due to which LC again reduces at particular

average speeds.

5.6 Study of LC in case of multiple vehicle

interactions

Interaction of vehicles are decided based on vehicle’s

detection by the sensors fitted on both sides of the vehicles

(refer to Fig. 2). The necessary condition for multiple

vehicle interactions is that a vehicle should be detected by

at least one sensor on one side of the test vehicle, while at

least one sensor on the other side also detects another

vehicle, at the same time step, as shown in Fig. 11.

There are four possible cases for lateral interactions

observed when a vehicle traverses in a heterogeneous

stream with weak lane discipline

Case 1: Interaction with vehicles is only on one side.

Case 2: Interaction is on both sides, and test vehicle is

overtaking both the vehicles (V1[V2, V1[V3 in

Fig. 11).

Case 3: Interaction is on both sides, and test vehicle is

getting overtaken by other two vehicles. (V1\V2,

V1\V3 in Fig. 11).

Case 4: Interaction is on both sides, and test vehicle is

overtaking one vehicle and getting overtaken by other

vehicle. (V2[V1[V3).

Case 1 is considered as unconstrained lateral interaction

for analysis. Case 2 is considered as constrained lateral

interaction. Cases 3 and 4 are ambiguous and not consid-

ered for comparison, since it is difficult to conclude whe-

ther the test vehicle is in constrained or unconstrained

condition. The situation of test vehicle overtaking both

vehicles by moving in the gap between them is a definite

indicator of constrained lateral interaction. If Case 2 is

observed, then interaction with both the vehicles is

assigned as constrained interaction. Data of different

vehicle pairs from Cases 1 and 2 are compared with each

other. In order to avoid constraining due to median or road

edges, the authors have removed data obtained from car-

riageways with a width of less than three lanes. Data for

both the cases are modeled as per Eq. (2). Comparison of

regression equations (slopes and intercepts) are made for

some vehicle pairs (car–car, car–auto, car–bike and auto–

2
4

6

020406080

50

100

150

200

250

Number of lanesSpeed (km/h)

LC
 (c

m
)

Fig. 10 Best-fitted regression plane of LC versus average speed

relationship for pair of vehicles, varying with number of lanes of the

road they move upon

Interacting 
vehicle-2

Test 
vehicle

Interacting 
vehicle-1

Direction of
traffic flow

Sensors

V2
V1

V3

Fig. 11 Necessary condition of detecting interacting vehicles for

multiple vehicle interactions

Characteristics of lateral vehicular interactions in heterogeneous traffic with weak lane… 85

123J. Mod. Transport. (2017) 25(2):74–89



bike) with significant data for both the conditions. Both the

regression equations are plotted in Fig. 12 for car–car

interaction. The comparisons of slopes and intercepts of

constrained conditions with unconstrained conditions for

various pairs are presented in Table 5. The last column

presents p-statistic of fit of beta distribution with actual

field data.

From Table 5, it is observed that for all the vehicle

pairs, there is a reduction in slopes of data for constrained

conditions (by 18%–80%) when compared with uncon-

strained conditions. The highest reduction is observed for

car–bike and auto–bike pairs. Slopes of data for con-

strained and unconstrained cases are compared with each

other using ANCOVA test, and they are significantly dif-

ferent, except for car–car case at 5% significance levels.

(p = 0.088, 0.046, 0.035 and 0.041 for car–car, auto–car,

car–bike and auto–bike, respectively). However, there is no

significant difference in the intercepts between constrained

and unconstrained relationships for any of the vehicle pairs.

This may happen as at near zero speeds, LC requirement is

quite low and vehicles really do not feel constrained at that

speed with the existing lateral gap. From the residual
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Fig. 12 Comparison of regression equations of LC-average speed

relationship of car–car pair in constrained and unconstrained

conditions

Table 5 LC versus average speed model for different pairs in constrained and unconstrained conditions

Vehicle pair Condition Sample size Regression line Parameters of residuals beta distribution

Slope Intercept a1 a2 a b p-statistic

Car–Car Unconstrained 1000 0.519 120.65 3.016 1.854 -72.05 118.3 0.034

Constrained 197 0.381 125.19 2.154 1.379 -67.96 106.96 0.054

Auto–Car Unconstrained 379 0.311 122.85 7.668 4.634 -118.72 196.68 0.045

Constrained 112 0.256 135.26 2.712 2.085 -96.63 125.80 0.059

Car–Bike Unconstrained 553 0.632 127.35 2.875 2.058 -79.31 112.31 0.051

Constrained 141 0.26 135.68 2.193 1.339 -82.83 58.63 0.055

Auto–Bike Unconstrained 151 0.864 126.46 1.276 1.322 -87.57 86.59 0.075

Constrained 67 0.171 136.60 2.063 1.868 -91.84 103.12 0.071

Table 6 Evaluation of means of field and model data at different speed intervals for different vehicle pairs

Vehicle pair Speed range (km/h)

0–10 10–20 20–30 30–40 40–50 50–60 60–70

All combined 0.294 0.338 0.187 0.052 0.045 0.362 0.874

Auto–Auto N.D. 0.762 0.886 0.178 0.355 N.D. N.D.

Auto–Bike 0.817 0.746 0.647 0.411 0.097 N.D. N.D.

Auto–HV 0.716 0.833 0.445 0.209 0.123 0.566 N.D.

Bike–Bike N.D. 0.710 0.667 0.314 0.789 0.077 N.D.

Car–Auto 0.746 0.716 0.314 0.065 0.187 0.188 N.D.

Car–Bike 0.098 0.184 0.174 0.188 0.031 0.657 0.435

Car–Car 0.186 0.047 0.202 0.287 0.446 0.373 0.131

Car–HV N.D. 0.918 0.718 0.605 0.755 0.385 N.D.

Car–LCV N.D. N.D. 0.863 0.164 0.373 0.547 N.D.

N.D. indicates no data available for comparison

Bold values: significance level p\ 5%
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coefficients a and b of constrained and unconstrained cases,

one can conclude that except for auto–bike pair, there is

less spread of data about the regression line (indicated by

difference between a and b) for constrained case as com-

pared with unconstrained case.

This comparative study reveals that vehicles compro-

mise in LC (which also imply the safety of the vehicle) to

a great extent at higher speeds during constrained

overtaking.

5.7 Evaluation of model quality and comparison

with earlier literature

The developed relationship between C and v for different

vehicle pairs can be used in car-following models or traffic

simulators for better representation of vehicular interaction

in heterogeneous traffic streams with weak lane discipline.

Modeling of residuals in Eq. (2) can be incorporated by

assigning a random risk factor to a particular vehicle
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(irrespective of its vehicle type), which is beta-distributed.

This risk factor can be an indicator of driver’s aggres-

siveness based upon his/her driving experience, physical

and mental state and other factors. Beta-distributed random

numbers can be generated equal to a desired number of

vehicles, as residuals into Eq. (2). Values of intercept,

slope of C versus v regression line and the parameters of

beta distribution for particular vehicle pair are substituted

for a particular v, using Table 4.

The model quality needs to be evaluated to check how

close the developed model is to the original field data. For

this purpose, vehicle pairs are generated as per the

description in the above paragraph, and the means of field

data and generated modeled data are compared at various

speed intervals using T test. The comparison is presented in

Table 6. For evaluating spread of data across the mean, p-

statistic was evaluated between residual plots of model and

field, and already mentioned in last column of Table 4. It

can be concluded that null hypothesis (that there is sig-

nificant similarity between model and field data) fails to be

rejected at all speed intervals. There are lower p values for

‘All combined’ data since all combined data represent a

mix of vehicle pairs.

For sample representation of difference between mod-

eled and field relationships, data points from model of car–

car and auto–bike relationships are generated. Further, a

frequency matrix based on the number of data points pre-

sent corresponding to each 10 km/h speed interval and

25 cm LC interval groups is generated for both modeled

and field data. Contour plots of LC versus average speed

for both vehicle pairs (car–car and auto–bike) are generated

based on the corresponding frequency matrix and presented

in Fig. 13a–d. Numbers on the contour lines in the

chart represent the fraction of vehicles maintaining LC

lower than the particular contour line. Fraction values (i.e.,

relative frequencies of LC at a particular speed range) are

used since data for lower and higher speed ranges are

different. These charts compare graphically the modeled

and field data of LC for pairs car–car and auto–bike. For

example, for auto–bike field data (Fig. 13c), at speed

40 km/h, about 0.6 fraction of total vehicles maintain LC

less than 150 cm. The modeled data from Fig. 13d also

reflect similar behavior. LC comparison of other vehicle

pairs can also be made in a similar manner. The model is

able to reflect the spread and variation in LC with average

speed.

Previous researchers have calculated inter-vehicular

gaps using static data-collection techniques (such as video

recording), whereas this paper uses moving observer

method to calculate these gaps. Average value over the

entire overtaking duration is not captured due to limitations

on trap length in video-recording techniques. Table 7

presents the comparison of average LC values for car–car

pair as obtained from this paper with previous researches.

The LC matches with the data from Mallikarjuna et al. [3]

as well as Gunay [8], due to similarity in traffic behavior of

studied traffic in these researches to that studied in this

paper. The values estimated by Dimayacyac and Palmiano

[21] are showing higher sensitivity to speed, since the

traffic studied was more organized and followed lane

discipline.

6 Conclusion

Lateral interactions between vehicles in heterogeneous

traffic with weak lane discipline (generally observed in

developing countries) are studied in this paper. Instru-

mented test vehicles fitted with GPS, camera and sensors

are developed, and LCs maintained by interacting vehicles

with these test vehicles are measured on roads located in

six metro cities of India. Obtained LCs with different

interacting vehicle pairs are modeled as a deterministic part

(regression line) and a stochastic part (residual distribu-

tion). These relationships are studied with changing various

vehicle pairs, road widths and introduction of constraining

in overtaking, and compared with each other. The follow-

ing conclusions can be derived from this study:

Table 7 Comparison of LC values with previous researches for car–car pair

Research Average LC (m) for car–car interaction

0 km/h 50 km/h

This paper 1.173 1.581

Arasan and Koshy [12] 0.600 1.000

Mallikarjuna et al. [3] 0.85a 1.500a,b

Dimayacyac and Palmiano [21] 0.500 1.470

Gunay [8] 0.800a 1.600a

a Estimated value
b Extrapolated value
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• LC (C) versus average speed (v) relationship of

interacting vehicle pairs follows an upward linear trend

with Beta-distributed residual; i.e., LC increase with an

increase in interacting vehicles speed. Similar trend is

observed in data collected from all six cities.

• C versus v relationships are modeled for various vehicle

pairs such as car–car, car–bike and bike–auto. From the

information of regression lines for models of various

pairs, it is observed that motorized two-wheelers

(bikes) maintain the least LC. Cars maintain the highest

LC with light commercial vehicles (LCVs). Vehicles

maintain lesser LC with heavy vehicles than with their

own vehicle types due to their poor acceleration

characteristics and maneuverability. For similar rea-

sons, vehicles maintain higher clearances with autos.

• LC maintained with the same vehicle type is lesser than

that maintained with different vehicle types at similar

speed levels. Thus, the LC between a pair of different

vehicle types cannot be considered as the average of LC

between the pairs of corresponding similar vehicle

types.

• It is observed that vehicles achieve maximum squeez-

ing-in at a carriageway width of four lanes with paved

shoulders.

• When a vehicle interacts with multiple vehicles simul-

taneously, there is a compromise on LC at a particular

average speed. The slope of LC versus average speed

changes from 18% to 85% for different vehicle types in

constrained versus unconstrained condition. However,

intercepts remain consistent, indicating compromise in

safety at higher speed ranges only.

The lateral interactions studied in this paper can be

combined with longitudinal or car-following behavior with

lateral discomfort, in order to model weak lane discipline

traffic. A model with car-following, overtaking decision-

making and LC values (from this paper) together will help

in accurate estimation of behavior and simulation of

heterogeneous traffic with weak lane discipline.
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