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Abstract The hyperbolic function proposed by Abbo–

Sloan was employed not only to approach the Mohr–

Coulomb criterion but also to express the plastic potential

function. A better approximation to the Mohr–Coulomb

yield and potential surfaces was achieved by increasing the

transition angle and proven to be highly efficient in

numerical convergence. When a Gaussian integral point

goes into plastic state, two cases on yield stress adjustments

were introduced. They may avoid solving the second

derivative of the plastic potential function and the inverse

matrix compared with the existing subroutine. Based on the

above approaches, a fully implicit backward Euler integral

regression algorithm was adopted. The two- and three-di-

mensional user subroutines which can consider the asso-

ciated or non-associated flow rule were developed on the

platform of the finite element program—ABAQUS. To

verify the reliability of these two subroutines, firstly, the

numerical simulations of the indoor conventional triaxial

compression and uniaxial tensile tests were performed, and

their results were compared with those of the embedded

Mohr–Coulomb model and the analytical approach. Then

the main influential factors including the associated or non-

associated flow rule, the judgment criteria of slope failure,

and the tensile strength of soil were analyzed, and the

application of the two-dimensional subroutine in the sta-

bility analysis of a typical soil slope was discussed in detail

through comparisons with the embedded model and the

limit analysis method, which shows that this subroutine is

more applicable and reliable than the latter two.

Keywords Hyperbolic yield function � Plastic potential

function � First derivative � Stress adjustment � Slope

stability analysis

1 Introduction

In 1773, Coulomb proposed a soil pressure theory of soil or

rock failure, which is expressed by

s ¼ c� r tan/; ð1Þ

where s and r are respectively the shear strength and the

normal stress (tensile stress is positive) in the shearing

surface; c and / are the cohesion and the angle of internal

friction of soil or rock, respectively.

Later, Mohr developed the Coulomb failure condition

into the law of shear failure, namely the Mohr–Coulomb

(M–C for short hereinafter) yield criterion, that could be

described in terms of the principal stresses (r1 C r2 C r3)

as

F ¼ r1 � r3ð Þ þ r1 þ r3ð Þ sin/� 2c cos/ ¼ 0: ð2Þ

A large number of experiments have shown that the M–

C yield criterion is able to reasonably depict the yield or

failure behavior of soil and rock. In addition to Eq. (2), the

M–C criterion can be expressed in many other forms, for

example the following one in terms of stress invariants [1]:

F ¼ rm sin/þ �r cos h� 1
ffiffiffi

3
p sin/ sin h

� �

� c cos/ ¼ 0;

ð3Þ
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where rm is the average value of the three principal

stresses; �r ¼
ffiffiffiffiffi

J2

p
, which is the equivalent stress; J2 is the

second deviatoric stress invariant; and h is the Lode angle

ranging from -30� to 30�.
It is well known that the M–C yield criterion expresses a

hexagonal pyramid surface in principal stress space, which

has a flaw in numerical computation, i.e., the gradient

discontinuities which occur at both the edges and the tip of

the hexagonal pyramid surface. For that, researchers have

ever presented the following three kinds of methods to

overcome the flaw. Firstly, Drucker–Prager proposed the

smooth circular conical surfaces, including the circum-

scribed, inscribed, and middle ones [2, 3], such that the

ideal elasto-plastic constitutive model based on the

Drucker–Prager criterion was one of the earliest models

used for soil and rock and was embedded in some of the

earliest commercial finite element programs, such as SAP,

ADINA, ANSYS. Although the above circular conical

surfaces overcome the numerical singularity of the original

M–C model, they are significantly different in geometrical

shape from the hexagonal pyramid of the M–C model,

resulting in the advent of more or less errors [3] even if the

equal area cone [4, 5] is employed while the above-men-

tioned programs are used. Secondly, the original M–C

surface is viewed as six separate planar yield surfaces and

the constitutive law is implemented as a multi-surface yield

function using the formulation of Koiter [6] and Clausen

et al. [7]. The third kind of methods, which is employed in

this paper, is smoothing the vertices and approaching the

M–C yield surface.

In order to sufficiently approach the original M–C yield

surface, Abbo–Sloan [8] proposed a simple hyperbolic

yield surface to eliminate the singularity of the M–C yield

surface and presented two efficient FORTRAN 77 sub-

routines to illustrate how this yield surface is implemented

in practice. However, they did not build an entire numerical

constitutive model. Based on Abbo–Sloan function, a user-

defined material subroutine (UMAT) was developed on the

platform of ABAQUS by Jia et al. [9] using FORTRAN

language.

Generally speaking, the M–C model can be reliably

applied to stability analysis in geotechnical problems such

as earth pressure [10, 11], slope stability [12, 13], and

bearing capacity of foundation soil [14, 15]. ABAQUS is a

well-known nonlinear finite element software, in which

actually an embedded M–C model is included. And in the

embedded M–C model the true M–C yield surface is used

but the plastic potential function proposed by Menétrey–

William [16] is employed, which presents a hyperbola in

meridional plane and a closed smooth curve combined by

three elliptic arcs in deviatoric plane, and it is the very

inconsistency between the yield and potential functions so

that the plastic flow rule of the model is always non-as-

sociated. Furthermore, this inconsistency is also a theo-

retical flaw of the embedded M–C model in ABAQUS.

Jia’s UMAT model [9] has overcome this drawback, but it

involves the second derivative of the plastic potential

function, and the matrix inversion, resulting in not only the

complexity of programming, but also the increases of the

amount of calculation and the difficulty in numerical

convergence, particularly when smoothed transition points

are too close to the edges of the hexagonal pyramid sur-

face. For that, a simplified method and the programming of

new user-defined material subroutines will be introduced in

this paper, and note that in the following text, UMAT only

refers to the new subroutines. And in order to test and

verify the UMAT, firstly, the indoor conventional triaxial

compression and uniaxial tensile tests were numerically

replicated with the UMAT and compared with the results

of the embedded M–C model and analytical or Mohr circle-

drawing approaches. Then a typical two-dimensional

homogeneous soil slope [17] was simulated with the

UMAT and compared in detail with the results of the

embedded M–C model.

2 Brief introduction of Abbo–Sloan yield function

The hyperbolic yield function F proposed by Abbo–Sloan

[8] is smooth in both meridional and deviatoric planes and

can be expressed as

F ¼ rm sin/þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2K2 hð Þ þ a2c2 cos2 /
p

� c cos/ ¼ 0;

ð4Þ

where

K hð Þ ¼
A� B sin 3h hj j[ hT

cos h� 1
ffiffiffi

3
p sin/ sin h hj j � hT

8

<

:

; ð5Þ

where

A ¼ 1

3
cos hT½3 þ tan hT tan 3hT þ

1
ffiffiffi

3
p � sign hð Þ tan 3hT � 3 tan hTð Þ sin/�; ð6Þ

B ¼ 1

3 cos 3hT

sign hð Þ sin hT þ 1
ffiffiffi

3
p cos hT sin/

� �

; ð7Þ

where

sign hð Þ ¼
þ1 h� 0�

�1 h\0�

(

; ð8Þ
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in above relevant expressions, K(h) is used to control the

shape of the yield surface in deviatoric plane; hT is the

transition angle ranging from 0� to 30�, and the greater the

value of hT, the better fitting the M–C cross section in

deviatoric plane, but hT should not be too close to 30� in

order to avoid ill-conditioning of the approximation. A

typical value of hT is 25� as suggested by Abbo–Sloan [8]

and Jia et al. [9]. In Ref. [8], the negative branch of the

hyperbola has been chosen, which takes into account the

tensile strength of soil through parameter a. In fact,

parameter a is somewhat similar to the meridional eccen-

tricity e included in the potential function of the embedded

M–C model [18], and the Abbo–Sloan yield function

(Eq. 4) can closely model the M–C yield function (Eq. 3)

by changing the magnitude of a and will theoretically be

degraded as the latter if a is zero. The M–C yield surface

and some sections of various smooth hyperbolic surfaces in

a deviatoric plane are plotted in Fig. 1. Evidently, with the

decrease of parameter a, the Abbo–Sloan yield surface

gradually approaches the M–C yield surface. However, to

avoid the ill-conditioning of numerical calculation, a is not

allowed to be zero just as there is a limitation of the

allowable minimum of 0.1 for the meridional eccentricity e
in the embedded M–C model [18]. Several meridional

sections of the hyperbolic yield surfaces with different

a values as well as h = 0� and / = 30� are plotted in

Fig. 2 [8]. One can infer that the hyperboloid is an

approximation to the M–C yield surface in the meridional

plane. Obviously, a value has a significant influence on the

shape of the hyperbolic surface. When a = 0.05 and

hT = 25�, the hyperbolic surface almost approaches the

M–C yield surface with the maximum difference of less

than 0.15% [8].

From Fig. 2, it is shown that for a specific value of a,

error always becomes less and less with the increase of the

minor principle stress toward the direction of compression

stress. Meanwhile, if assuming hT = 29�, as suggested by

Owen and Hinton [19], the closer results to smooth the

edges of the M–C hexagonal yield surface pyramid will be

obtained. And the examples in this paper will show that

fast convergence can still be achieved and the higher pre-

cisions than those of Abbo–Sloan [8] and Jia et al. [9] can

be obtained as well.

Theoretically, making the potential function similar to

the yield function is reasonable, and only by this way, the

associated flow rule can be achieved possibly. In this paper,

the potential function G was assumed to have the same

form as the hyperbolic yield function F. The only differ-

ence is that the angle of internal friction / was replaced

with the dilation angle w (always w B /). If w = /, the

associated flow rule is adopted, otherwise the non-associ-

ated flow rule is used. Thus, the mathematical expression

of G is

G ¼ rm sinwþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2K2 hð Þ þ a2c2 cos2 w
p

� c cosw ¼ 0:

ð9Þ

Obviously, the geometrical shape of the potential

surface is similar to the yield surface in Fig. 1, but the

inclination angle (dilation angle) in the strain meridional

plane (similar to the stress meridional plane shown in

Fig. 2) is always less than or equal to the angle of internal

friction. Note that for an ideal elasto-plastic model, the

yield surface is fixed but the plastic potential surface may

move outwards with the increase of plastic strain.

3 First derivative used in UMAT

Differentiation of the yield and potential functions with

respect to stress may respectively obtain the flow vectors n

and n0, which are used for the stress adjustment after

Fig. 1 M–C yield surface in 3D principal stress space and Abbo’s

rounded yield surface in deviatoric plane

Fig. 2 Abbo’s hyperbolic approximation to M–C meridional section

[8]
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yielding and are consistent with Refs. [8, 9, 20]; for

example, the flow vector n is defined as

n ¼ oF

or
¼ C1

orm

or
þ C2

o�r
or

þ C3

oJ3

or
; ð10Þ

where

C1 ¼ sin/; C2 ¼ a K � tan 3h
dK

dh

� �

;

C3 ¼ a �
ffiffiffi

3
p

2 cos 3h�r2

dK

dh

� �

;

a ¼ rK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2K2 þ a2c2 cos2 /
p ;

dK

dh
¼

�3B cos 3h hj j[ hT

� sin h� 1
ffiffiffi

3
p sin/ cos h hj j � hT

8

<

:

;

orm

or
¼ 1

3
1 1 1 0 0 0½ �T;

o�r
or

¼ 1

2r
sx sy sz 2sxy 2sxz 2syz½ �T;

oJ3

or
¼

sysz � s2
yz

sxsz � s2
xz

sxsy � s2
xy

2 syzsxz � szsxy
� �

2 sxysyz � sysxz
� �

2 sxzsxy � sxsyz
� �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

þ �r2

3

1

1

1

0

0

0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

:

Since the potential function G has the same form as the

yield function F, its differentiation with respect to stress

(n0) is similar to n, except the angle of internal friction /
must be replaced with the dilation angle w.

As can be seen from the formulas listed above, when

|h| = 30�, C2 and C3 are infinite values, resulting in the

singularity of numerical calculation, and therefore, in the

UMAT they are set to be zero when |h| is greater than the

transition angle hT.

4 Stress adjustment in UMAT

During incremental loading, stresses at some Gaussian

integration points in a model may exceed yield stresses,

accompanied with plastic strains, but the stresses of these

points must be adjusted to the yield surface to meet the

yield criterion and constitutive law. Thus, the backward

Euler integral regression algorithm was adopted in the

paper. The flowchart of the UMAT is shown in Fig. 3.

Yield stress ry varies with different yield criterions, and in

the M–C model it is defined as

ry ¼ r0
y þ H0d�ep ¼ c cos/þ H0d�ep; ð11Þ

where d�ep is the effective plastic strain; H0 is the first

derivative of hardening function H. Since no hardening or

softening is considered in ideal elasto-plastic model,

H = H0 = 0, and ry is constant.

Assuming that the stress vector of a Gaussian point is

rr-1 after the (r - 1)th iteration, there are the following

two cases on the adjustment of yield stress.

4.1 First case

As shown in Fig. 4, point B has already yielded after the

(r - 1)th iteration—that is to say, point B is on the yield

surface F = 0 at this moment. Then at the rth iteration the

elastic trial stress rre ¼ rr�1 þ drre is calculated as segment

OA. In other words, point B moves to point A due to

obtaining the elastic stress increment calculated by drre ¼
Deder (segment BA in Fig. 4) at the rth iteration, in which

De is the elastic matrix. Point A has been beyond the yield

surface, but actually it is a stress point that an ideal elasto-

plastic material cannot reach. Therefore, to meet the yield

criterion and constitutive relationship, point A must be

adjusted to point D0 on the yield surface. Point A cannot

move back to point B because a point can only move on the

yield surface at yield state with the accompanying of

plastic strain.

According to the vector diagram in Fig. 4, the stress

calculation formula after adjustment is

rr ¼ rr�1 þ drre � dDedk; ð12Þ

where dk is the differential increment of the plastic

multiplier k, which can be expressed as

Fig. 3 Flowchart of the UMAT

Numerical implementation of a modified Mohr–Coulomb model and its application in slope… 43

123J. Mod. Transport. (2017) 25(1):40–51



dk ¼ 1

H þ nTdDe

nTDede; ð13Þ

where dDe = Den
0.

By Eq. (13), point A can only be adjusted to point D (see

Fig. 4) that may still deviate from point D0. In order to

move to point D0, one may have

OD0 ¼ k � OD; ð14Þ

where the adjustment coefficient k is given by

k ¼
r0
y þ H0�erp

�rr
; ð15Þ

where �erp is the effective plastic strain after the rth iteration;

�rr is the effective stress given by

�rr ¼ rm sin/þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2K2 hð Þ þ a2c2 sin2 /
q

: ð16Þ

4.2 Second case

As shown in Fig. 5, a Gaussian point, for example point C,

does not yield after the (r - 1)th iteration but it does at the

rth iteration. At the (r - 1)th iteration, point C is inside the

yield surface and in elastic state, but the elastic trial stress

at the rth iteration makes it move to point A, and CA

intersects with the yield surface at point B. The elastic

stress increment calculated by rre ¼ Deder (segment CA) at

the rth iteration involves two segments, i.e., CB and BA, of

which CB is still inside the yield surface but BA outside.

Therefore, only segment BA needs to be adjusted. That is to

say, point A must be adjusted back to D0. From Fig. 5, one

can see the stress value that needs to be adjusted is Rdrre, in

which the adjustment factor R is

R ¼ BA

CA
¼ �rre � ry

�rre � �rr�1
e

; ð17Þ

where ry = r0 = c � cos/.

Equation (12) may still be used in stress adjustment.

Similarly, point A can merely be adjusted to point D. In

order to move to point D0, Eqs. (14) and (15) may still be

used.

To sum up, in the process of finite element computation,

stress adjustments are only conducted for yield Gaussian

points in above two cases. Meanwhile, as is generally

known, for those yield points, plastic strains accompanied

with them can be calculated by the following orthogonal

flow rule:

dep ¼ dk
oG

or
: ð18Þ

Obviously, from Eq. (18), one can see that the flow

direction of plastic strains is associated with the plastic

potential function G. If the same dilation angle is

considered, comparisons of the plastic potential surfaces

determined by Eq. (9) in this paper and the potential

surface proposed by Menétrey–William [16] and employed

in the embedded M–C model in ABAQUS are shown in

Fig. 6. One can see that for any of the same strain Lode

angle he except he = ±30�, the flow directions of plastic

strains are different due to the difference of geometrical

shapes of the two kinds of potential surfaces. Therefore,

even if under the same loading condition after yielding, the

total amount of plastic strains for both surfaces might be

equal, each plastic strain component is not equal yet, such

Fig. 5 Schematic of stress adjustment in the second case [19]

Fig. 4 Schematic of stress adjustment in the first case [19]
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that the plastic shear and volumetric strains are different as

well. Apparently, the potential surface used in this paper is

a better approximation to the M–C yield surface in shape,

meaning that it is more reasonable than the one employed

by the embedded M–C model.

Based on the above theories, the UMAT subroutines

were developed and their reliability will be validated in the

following section by comparing with the embedded M–C

model in ABAQUS (hereafter refer to as ABAQUS) and

the analytical solutions of the M–C criterion.

5 UMAT verification and application

5.1 Laboratory simulation tests

A standard 3D model of a cylindrical soil specimen with a

diameter of 39.1 mm and a height of 80 mm was built to

numerically simulate the indoor conventional triaxial

compression and uniaxial tensile tests. The model and its

discretization are shown in Fig. 7. The cylindrical coordi-

nates and C3D20R element type were adopted. The bottom

in Z-axial direction and the side in R-axial direction were

constrained, and the top was free. Self-weight stress was

not considered in this modeling. The mechanical parame-

ters of the clay were cited from Ref. [21], including the

elastic modulus E = 2,300 kPa, the Poisson ratio v = 0.4,

the cohesion of the soil c = 21.43 kPa, the angle of

internal friction / = 17.13�, and the unit weight

c = 17.8 kN/m3.

In the triaxial compression simulation, the model was

loaded with a confining pressure of 63 kPa, and a down-

ward displacement of 16 mm was applied on its top while

in the uniaxial tensile simulation, without confining pres-

sure, only an upward displacement of 5 mm was applied on

its top.

Comparisons of the triaxial compression and uniaxial

tests between the UMAT and ABAQUS model are shown

in Figs. 8 and 9, respectively. It shows that in both the

UMAT and ABAQUS model, the yield stresses are not

affected by the magnitude of w. That is to say, the shear

and tensile strengths of soil or rock are irrelevant to the

associated and non-associated flow rules because the dila-

tion angle w does not occur to the yield functions, i.e.,

Eqs. (3) and (4), at all.

Fig. 6 Comparisons of plastic potential surfaces in p plane in

principal strain space

Fig. 7 3D finite element model and meshes of a standard specimen

Fig. 8 Stress–strain curves of numerical simulations of triaxial

compression
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As a matter of fact, the theoretical strengths for the

triaxial compression and uniaxial tests can also be obtained

by Eq. (2) or by drawing the Mohr circles (respectively see

the biggest one and the first one on the right side of the s-

axis in Fig. 10), which are 110.667 and 31.64 kPa,

respectively. Almost the same results, i.e., 110.645 and

31.638 kPa, were respectively obtained by ABAQUS. It

proves that the M–C criterion is precisely replicated in the

embedded M–C model in ABAQUS. Accordingly, when

a = 0.05, slightly less results, i.e., 109.674 and 31.506 kPa

(with the relative errors of 0.9% and 0.4% or so), were

obtained by the UMAT, respectively. This is because the

yield surface of Abbo–Sloan function is inside the M–C

yield surface, as can be seen in Figs. 1 and 2. However,

evidently, when a is less than or equal to 0.05, the UMAT

already can depict the M–C criterion with a rather reliable

precision. Despite of that, from Figs. 8 and 9, one can see

that with the increase of a, the relative errors increase,

particularly in the uniaxial tensile tests. And this law is still

decided by the Abbo–Sloan hyperbolic yield function—the

closer the maximum principal stress away from the tip of

the M–C yield surface, the greater the relative error.

Figure 10 also shows several special Mohr circles, such

as the uniaxial compression (r1[ 0, r2 = r3 = 0), pure

shear (r1[ 0, r2 = r3\ 0, |r1| = |r2| = |r3|), and triaxial

tension circles (r1[ r2Cr3[ 0). Note that the triaxial

tension is one of the Mohr circles approaching the tip

(point O0) of the M–C yield envelope. In line with the

theory of the M–C criterion—Eq. (1), the possible maxi-

mum tensile stress rtmax can be

rtmax ¼ c

tan/
: ð19Þ

That is to say, when r1 = r2 = r3 = rtmax =

69.53 kPa (see Fig. 10), a stress point will reach point O0

as far as this clay is concerned. To test the actual tensile

strength, using the improved triaxial apparatus, Bishop and

Garga had ever conducted the triaxial drained tension tests

of the London clay [22], showing that under the low

confining pressure range, i.e., r3 = -21 to -70 kPa, the

tensile strength of the London clay is r1 = rtmax = 27–

34 kPa, which is much less than the theoretical strength

determined by Eq. (19). Obviously, the loading conditions

of their tests are similar to the two Mohr circles of tension

under low confining pressures as shown in Fig. 11. It is

easy to understand that without confining pressure, i.e.,

under the uniaxial tension, the tensile strength of clay

should be less than those with low confining pressures and

cannot reach the following theoretical strength expressed

as Eq. (20):

Fig. 9 Stress–strain curves of numerical simulations of uniaxial

tension

=17.13°φ

20

0 20
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80

40 60 80-20-40-60-80-100-120-140-160-180
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A
M-C yield envelope
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Pure shear

Uniaxial tension
Triaxial tension
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c

Fig. 10 Mohr circles corresponding to various stress states of soil
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rt ¼
2c cos/
1 þ sin/

; ð20Þ

derived from the M–C shear criterion—Eq. (2), which is

31.64 kPa exactly as far as the clay previously simulated is

concerned. It is more impossible for clay to reach the

maximum theoretical tensile strength determined by

Eq. (19). In other words, the M–C shear yield criterion

overestimates tensile strengths of soil and rock. Actually,

when the major principal stress at a point of a soil or rock

mass is positive or becomes tensile and exceeds the tensile

strength of the soil or rock, the tensile rather than shear

yield or failure will occur at this point.

For this reason, the tension cutoff can be considered by

defining the uniaxial tensile strength of soil or rock when

using the M–C model embedded in ABAQUS. Jia’s com-

ment (Ref. [9]) on that the tensile strengths of soil and rock

are not considered in the embedded M–C model is not

pertinent. For the UMAT in this paper, tensile strength can

be reflected by simply defining the magnitude of parameter

a. That is to say, the value of a decides not only the sim-

ilarity between the Abbo–Sloan and M–C yield surfaces,

but also the uniaxial tensile strength of soil or rock. As far

as this clay is concerned, given a = 0.2 or 0.5, actually the

uniaxial tensile strength was let be 30.802 or 26.584 kPa,

and h = - 30�, of course, these two strength values can be

obtained by Eq. (4) as well. Obviously, respectively spec-

ifying these two values to be the tension cutoff strengths,

the precise numerical simulations can be realized by

ABAQUS (see Fig. 9). If the uniaxial tensile strength of the

soil is known or given by the Mohr circle of the hypo-

thetical uniaxial tension as indicated in Fig. 11, then

parameter a can be calculated by Eq. (4).

5.2 Stability analysis of a typical slope

A homogeneous two-dimensional soil slope [17, 23, 24]

was cited herein. The sizes and discretization of the model

are shown in Fig. 12. The quadrilateral element with full

integration (CPE4) was adopted to discretize the model.

The grid density is completely consistent with those of

Dawson et al. [17] and Fei and Zhang [24]. The mechanical

parameters of the soil are the unit weight c = 20 kN/m3,

the cohesion c = 12.38 kPa, and the internal friction angle

/ = 20�. With these soil parameters, the stability safety

factor of the slope is exactly 1.00 according to the limit

analysis solution of Chen [23].

Over the last two decades or so, the finite element

strength reduction technique has been widely used in slope

stability analysis. But there is still a controversy on what

judgment criterion should be adopted when determining
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Fig. 11 Mohr circle analyses of tensile strengths of a soil

Fig. 12 Model sizes and meshes of a typical slope
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the factor (Fs) of safety. Generally, three judgment criteria

were used: the non-convergence of numerical calculation

(criterion 1), the plastic penetration (criterion 2), and the

displacement mutation (criterion 3) [25–27]. Usually, the

computed results by criteria 2 and 3 are not significant, and

they are close to the results of the limit equilibrium or limit

analysis methods. In this paper, the numerical analyses of

the slope using criteria 1 and 2 were performed. When

using the UMAT, the associated flow with w = /=20� and

non-associated flow rules with w = 0.5/ = 10� or with

w = 0.1� (approximately 0�, which is tantamount to no

consideration of dilation because w is not allowed to equal

zero in both ABAQUS and the UMAT to avoid numerical

singularity) were adopted respectively. And let parameter

a be 0.05, 0.5, and 0.99, respectively. Actually, when

a = 0.5 or 0.99, it means the uniaxial tensile strength is

7.11 or around 0 kPa according to Eq. (4). Here, two cases

were considered. One is the conventional method that

parameter a of the whole soil mass is 0.5 or 0.99. Usually,

tensile stresses merely occur in the shallow layer near the

top of a slope, so in the second case, for the deep layer, let

a be 0.05, and for the shallow soil layer like the top three

rows of elements in Fig. 12, let a be 0.5 or 0.99. Corre-

spondingly, when using ABAQUS, firstly the maximum

allowable dilation angle is w = 17.831� to keep its

potential surface convex and similar in shape to the M–C

yield surface. Then, when w = 10 or 0.1�, similar analyses

were performed with the tension cutoff of 7.11 and

0.01 kPa (approximately 0 kPa because it is not allowed to

equal zero in ABAQUS to avoid numerical singularity).

Only when the tension cutoff was considered, criterion 3

was adopted to determine the factors of safety because

plastic penetration zone cannot be obtained. All the factors

of safety are listed in Table 1.

From Table 1, the following conclusions can be drawn:

1. The factor of safety increases with the dilation angle,

and it reaches the minimum (even less than 1.00) or

maximum (greater than 1.00), respectively, when zero

dilation or full dilation (associated flow rule) is

considered.

2. When criterion 1 is used without tension cutoff, the

computed factors of safety with respect to the three

dilation angles by ABAQUS are respectively 15%,

14%, and 6% greater than the exact factor of safety of

1.00; when criterion 2 is used without tension cutoff,

they are respectively 8%, 3% greater or 2% less than

1.00. Similar results are obtained by the UMAT.

Moreover, for both ABAQUS and the UMAT, the

factors of safety by criterion 1 often deviate from 1.00

farther than those of by criterion 2.

3. When criterion 1 is used with tension cutoff, the

computed factor of safety by ABAQUS obviously

decreases but its variation with the dilation angle is

unremarkable; when criterion 2 is used with the tension

cutoff, ABAQUS is unable to show the plastic penetra-

tion zone so that no values are listed in those columns in

Table 1, and in this case, criterion 3 was adopted to

determine the factors of safety, which actually are

around 0.94 for both tensile strengths rt = 7.11 and

0.01 kPa and for all three dilation angles.

At this point, it shows that the computed results by

ABAQUS in consideration of tension cutoff are not

satisfying.

4. For the UMAT, when a = 0.05 for the whole slope,

which means that tensile yield is not considered, the

factors of safety with criterion 2 are less than those by

ABAQUS and closer to 1.00. The differences between

the results from UMAT and ABAQUS are caused by

the different potential functions.

5. The tensile strength of clay may be considered by the

UMAT through changing the magnitude of parameter

a, but comparisons show that merely in the potential

tensile stress zone, a set to be the value matched with

the tensile strength is more reasonable, and if in slope

stability analysis, a is set to be 0.99, that actually

means no tensile but shear strength is considered.

Table 1 Computed factors of safety Fs

w = 17.831� for ABAQUS w = 20� for UMAT w = 10� w = 0.1�

Criterion 1 Criterion 2 Criterion 1 Criterion 2 Criterion 1 Criterion 2

ABAQUS rt = not set 1.15 1.08 1.14 1.03 1.06 0.98

rt = 7.11 kPa 1.02 – 1.02 – 0.98 –

rt = 0.01 kPa 0.96 – 0.96 – 0.95 –

New UMAT a ¼ 0:05 1.07 1.04 1.07 1.02 0.99 0.97

a ¼ 0:5 1.03 1.01 1.02 0.99 0.95 0.95

a ¼ 0:05 or 0:5 1.05 1.03 1.05 1.01 0.98 0.97

a ¼ 0:05 or 0:99 1.02 0.99 1.00 0.98 0.96 0.96

‘‘rt = not set’’ means that no tensile but shear failure was considered; ‘‘–’’ means that the shear plastic zone did not penetrate the whole slope
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Given the non-associated flow rule with no dilation

(w = 0.1�), without considering the tensile strength of this

clay, Figs. 13 and 14 show the contours of the magnitude

of equivalent plastic strains (PEMAG in ABAQUS or

defined as SDV9 in the UMAT) and the contours of dis-

placements in critical plastic penetration state, respectively,

obtained by ABAQUS (rt = not set) and the UMAT

(a = 0.05). Evidently, the contour distributions and dis-

placement magnitudes obtained by ABAQUS and the

UMAT are quite similar or close. The slight differences

between them are attributed to the different potential

functions. Likewise, without considering shear dilation but

considering a uniaxial tensile strength of 7.11 kPa (i.e.,

rt = 7.11 kPa in ABAQUS or for the whole slope, a = 0.5

in the UMAT), the same comparisons are shown in

Figs. 15 and 16. One can see that no plastic penetration

zone is shown by ABAQUS even if non-convergence

occurred, but it can still be revealed by the UMAT. To save

Fig. 15 Contours of PEMAG and displacements (ABAQUS, rt = 7.11 kPa, w ¼ 0:1�)

Fig. 14 Contours of PEMAG and displacements (UMAT, a = 0.05)

Fig. 13 Contours of PEMAG and displacements (ABAQUS, rt = not set)
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the space, the contour comparison of other cases were not

provided here.

6 Conclusions

The modified Mohr–Coulomb model in this paper can

approach the hexagonal pyramid surface when hT = 29�
and a B 0.05. The methods of stress adjustment after

yielding avoid solving the second derivative of the plastic

potential function and inverse matrix, and therefore, a fully

implicit backward Euler integral regression algorithm was

adopted in the UMAT and proved to be highly efficient in

numerical convergence.

The examples of the numerical simulations on the tri-

axial compression and uniaxial tension tests show that both

ABAQUS and the UMAT can obtain the solutions con-

sistent with the analytical solutions. The magnitude of

dilation angle does not affect the yield strength of soil or

rock.

Theoretical analysis shows that the plastic flow direction

is related to the potential function. Therefore, even if the

total plastic strains are the same, the plastic strain com-

ponents such as the plastic shear strain and the plastic

volumetric strain may still be different due to different

potential functions, which have been proven by compar-

isons of the contours of equivalent plastic strains and dis-

placements obtained by ABAQUS and the UMAT.

Comparisons of the typical soil slope stability analyses

by ABAQUS and the UMAT show that the differences are

not remarkable when only the shear yield and the plastic

penetration criterion are considered. The results by the

UMAT are slightly less than that by ABAQUS and closer

to the theoretical results. Therefore, the UMAT is more

reliable than the embedded Mohr–Coulomb model.

The factor of safety of a slope is influenced by the

dilation angle. The larger the dilation angle, the greater the

factor of safety, and the factor of safety reaches its maxi-

mum when the associated flow rule (the dilation angle

equals to the angle of internal friction of soil or rock) is

adopted by the UMAT. Usually, the limit equilibrium

method and limit analysis method cannot fully consider the

influence of the dilation of soil and rock. Consequently, if

the accurate value of the dilation angle of soil or rock can

be obtained by test, the results by the UMAT or ABAQUS

will be definitely more reliable than those of the limit

equilibrium and limit analysis methods.

When the tensile strength of soil or rock is considered, it

seems the factor of safety by ABAQUS is not so reliable

because it is not sensitive to the magnitude of tensile

strength. The relatively accurate results, however, can still

be obtained by the UMAT through setting parameter a in

the potential tensile stress zone of a slope to be the value

matched with the tensile strength.
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