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Abstract The identification of activity locations in con-

tinuous GPS trajectories is an essential preliminary step in

obtaining person trip data and for activity-based trans-

portation demand forecasting. In this research, a two-step

methodology for identifying activity stop locations is pro-

posed. In the first step, an improved density-based spatial

clustering of applications with noise (DBSCAN) algorithm

identifies stop points and moving points; then in the second

step, the support vector machines (SVMs) method distin-

guishes activity stops from non-activity stops among the

identified stop points. A time sequence constraint and a

direction change constraint are applied as improvements to

DBSCAN (yielding an improved algorithm known as

C-DBSCAN). Then three major features are extracted for

use in the SVMs method: stop duration, mean distance to

the centroid of a cluster of points at a stop location, and the

shorter of distances from current location to home and to

the workplace. The proposed methodology was tested

using GPS data collected from mobile phones in the

Nagoya area of Japan. The C-DBSCAN algorithm achieves

an accuracy of 90 % in identifying stop points in the first

step, while the SVMs method is 96 % accurate in distin-

guishing the locations of activity stops from non-activity

stops in the second step. Compared to other variants of

DBSCAN used to identify activity locations from GPS

trajectories, this two-step method is generally superior.

Keywords Activity Stop � Non-activity stop � Stop
identification � DBSCAN � Support vector machines

1 Introduction

The collection of GPS data from the GPS module in a

mobile phone provides the opportunity to analyze the travel

behavior of mobile phone holders. Mobile phones are

enormously popular, so it is possible to obtain aggregate or

disaggregate travel patterns for a whole city or even larger

area by this method. The data can be used as a substitute

for traditional person trip (PT) surveys and as a data source

for activity-based travel demand analysis. GPS data usually

includes basic information such as longitude, latitude, and

a time stamp, while additional information including speed,

acceleration, and signal quality is sometimes available. The

basic information can be collected from any GPS module,

while the additional information is dependent on modules.

Recently, contextual information collected by sensors such

as accelerometers, gyroscopes, and rotation vector sensors

in smart mobile phones has provided assistance to obtain

the transportation mode of mobile phone holders from GPS

data [1].
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Using this type of data, one of the most significant pre-

analysis procedures is to split each continuous trajectory

into smaller segments (with a single trip as the smallest

unit) whose ends are activities. Stops are taken to be

obvious signs of some activity taking place or the trip

starting/ending. However, a stop does not necessarily

equate to activity. Some stops are followed by a certain

activity while others are not. In this paper, two types of

stop are defined: activity stops and non-activity stops,

respectively. An activity stop is a stop followed immedi-

ately by some activity such as work, shopping, recreation,

and so on; a non-activity stop is one that is not followed by

a particular activity, such as waiting for a green light at an

intersection or being stuck in traffic. Identifying stops and

distinguishing these two kinds of stop in a trajectory are

then essential procedures in the overall analysis of GPS

data.

The main contribution of this paper is to advance a

method to identify the locations of activity stops using only

coordinates and time stamps from a continuous GPS tra-

jectory. This method consists of an improved version of the

DBSCAN algorithm (as a first step) and SVMs (as a second

step). It has been tested with mobile phone GPS data, with

the result that it gives generally better accuracy than other

variants of DBSCAN in identifying activity stop locations.

The remainder of this paper is organized as follows:

related research is reviewed in the second section. Then

Sect. 3 introduces the dataset utilized in this research. The

methodology applied in this paper is proposed in the sub-

sequent section, with the constrained density-based spatial

clustering of applications with noise (C-DBSCAN) algo-

rithm and support vector machines (SVMs) interpreted in

detail. This is followed by the results section. Then a

comparison with two other DBSCAN variants is made.

Finally, conclusions are drawn.

2 Literature review

A person’s full day can be seen as a series of alternating

activities and trips. As a result, to some extent, segmenting

continuous GPS data into trips is equivalent to identifying

the activity stops in the GPS trajectory. In this subsection,

we provide a summary of trip end and activity stop iden-

tification in the literature.

Since GPS first came into use as a way to obtain trip

features at the beginning of the 21st century, a lot of

investigations have paid great attention to trip segmenta-

tion or stop location identification. These efforts can be

divided into two groups depending on whether the GPS

data are continuous or not. Non-continuous GPS data were

typically obtained for travel behavior analysis with the first

generation of GPS applications, when the GPS devices

were installed in vehicles and turned on/off simultaneously

with the engine. At that time, ‘‘trip segmentation’’ usually

entailed dividing the whole GPS dataset into individual

trip-unit segments. On the contrary, continuous GPS data

are gathered with the second generation of GPS applica-

tions that are portable, extending the collection and anal-

ysis of trace data from of the road vehicle mode only to

other modes like rail, cycling, and walking. Accordingly,

the corresponding research generally mentions ‘‘stop

location identification.’’ In this subsection, existing

research related to ‘‘trip segmentation’’ and ‘‘stop location

identification’’ is summarized in relation to non-continuous

GPS data and continuous GSP data, respectively.

2.1 Trip segmentation

Non-continuous GPS data records are obtained when the

GPS equipment turns off automatically with the engine or

when, as a data collection rule, a portable GPS device is

turned off by the subject (the user) at the end of a trip.

Gong et al. [2] summarized the GPS data features usually

used for trip segmentation in existing research. The time

elapsed between two consecutive records is the decisive

feature used for trip segmentation, with the premise that the

vehicle or subject stops in a certain location. Elapsed time

thresholds adopted by researchers include 120 s [3–9],

180 s [10], 300 s [11], and even 600 s [12]. A stop is

defined as a speed of 0 m/s [4–11] or less than 0.01 m/s [3]

or as a longitude/latitude difference between consecutive

records of less than 0.00005� [4–6].

2.2 Stop location identification

Continuous GPS data have been collected since the GPS

devices became portable and particularly since smart

mobile phones began to feature GPS modules. In this case,

the data record the trajectories of a subject during all

movement or stops. As a result, trajectories consist of a

series of GPS tracking points of definite location and time,

perhaps with the addition of speed, acceleration and so on.

In methods used to date, these trajectory features have been

used directly or indirectly to identify stops and finally to

identify activity locations or significant locations for the

subject. Some researchers [13–20] have attempted to

identify stops for activity in a single step, while others [21–

25] have used a two-step procedure: identifying all stops in

the first step and refining the identification to isolate

activity stops in the second step.

Methods used for identification of stop locations can be

generally categorized into the following five groups: cen-

troid-based methods, speed-based methods, duration-based

methods, density-based methods, and hybrid methods. A

brief review of these is given below.
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2.2.1 Centroid-based method

A centroid-based method, specifically, a variant of the k-

means clustering algorithm has been applied [15] to obtain

the locations that are significant for the subject. The points

are divided into k clusters by iteratively calculating the

mean of points (or centroid of points) as the new temporary

center point within a given radius of the current temporal

center point until the center point converges. However, the

number of stops, k, has to be known beforehand. It is nearly

impossible to know how many stops there are in a

trajectory.

2.2.2 Speed-based methods

Agamennoni et al. [13] defined a scoring function involv-

ing speeds to reflect the significance of a vehicle’s current

location. The scoring function defined the significance of

the current location by comparing current speed with two

thresholds of speed in a mining environment. Mizuno et al.

[22] used speed and change rate of average speed as input

features for SVMs to obtain moving and stopping points.

Nevertheless, speed-based methods need to know speed,

which is not always available to all GPS devices or mod-

ules. Besides, some limitations arise in situations such as

the subject moving in parking lot or stuck in traffic or in

bad weather conditions.

2.2.3 Duration-based methods

Duration-based methods are the most popular method of

identifying stop location. Palma et al. [23] and Tran et al. [18]

applied a modified DBSCAN algorithm based on a minimum

stop duration instead of a minimum number of points in a

neighborhood when defining core points. The difference in

the two papers is that distance along the trajectory was used

for distance calculations by [23], whereas the straight-line

distance between two points was used for distance calcula-

tions by [18]. Alvares et al. [14] and Xie et al. [19] identified

stops by judging stop duration and whether the GPS point

intersect with the geometry of a spatial location. The differ-

ence is that Ref. [14] used a given threshold stop duration to

map the trajectory to possible activities, whereas Ref. [19]

utilized a matching table containing minimum and maximum

elapsed times for each possible type of activity. One problem

of duration-based methods is how to decide on the optimal

duration threshold because the result is very sensitive to the

setting of this threshold.

2.2.4 Density-based methods

Kami et al. [16] proposed a fast algorithm for probabilis-

tically extracting significant locations from raw GPS data

based on data point density. This algorithm eases the dif-

ficulty in parameter setting and works well even if there are

a variety of noise levels in input data. Zimmermann et al.

[25] utilized an interactive density-based clustering algo-

rithm, in which the density was defined on the basis of both

the spatial and the temporal properties of a trajectory. Zhou

et al. [20] used a simplified mechanism of expanding

clusters in DBSCAN. According to the simplified mecha-

nism, any two clusters with shared points can be joined

together as one cluster. Density-based methods require data

to be collected at more frequent intervals. Moreover, since

density-based methods use the concept of spatial point

clustering, adjustments are needed when applied to GPS

trajectory situations, which are different from those with

spatial points with no direction of movement and time

stamps.

2.2.5 Hybrid methods

Hybrid methods use two of the variables such as speed,

duration, density, etc., together. Andrienko et al. [21]

extracted stops with a user-specified minimum duration

and a diagonal spacing that is less than a user-specified

distance threshold. Leclerc et al. [17] also used duration but

with an additional distance criteria for judging whether

points are in a stop location or not. Yan et al. [24] used a

speed threshold and minimal stop duration to distinguish

trajectories into stop episodes and move episodes. The

speed threshold is dependent on the moving object and the

location of the moving object. Hybrid methods might

improve accuracy to some extent, but it is hard to com-

pletely avoid the demerits of the other methods mentioned

above.

Overall, the centroid-based method is not a good option

for identifying stop locations unless the number of clus-

ters (i.e., stops) is known. Due to the limitations of speed-

based methods, they can best be utilized as assisting

variables to distinguish stops. Duration is a vital variable

for identifying stops from trajectories; however, duration

thresholds need to be selected very carefully because of

their sensitivity. Density-based methods use the spatial

reflection of the relationship between activity and point

density, and require data with more frequent intervals.

Furthermore, density-based methods need to consider

trajectory characteristics.

Each of these methods, however, was advanced to suit

particular data features. Considering the particular of fea-

tures of the dataset in this paper, we propose a two-step

method which uses a density-based clustering method to

identify all types of stops in the first step and then use a

supervised machine learning method to distinguish the

locations of activity stops and non-activity stops in the

second step.
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3 Data

The GPS data utilized in the research were collected from

30 volunteers in the Nagoya area of Japan over a period of

5 weeks in 2008. Each volunteer was assigned a mobile

phone with GPS module able to record and send GPS

information to the server every 10 s. The GPS information

sent back includes longitude, latitude, time stamp, signal

quality, etc. Sometimes the GPS module returns GPS

information with intervals longer than 10 s, such as in the

case of communication delay because of tunnels, subways,

etc. The signal quality feature of the GPS data is used to

identify this kind of signal loss, and points with low signal

quality are excluded from the dataset for analysis. Overall,

97.4 % of the GPS communication intervals in the data set

are less than 20 s. This interval is adequate for the appli-

cation of density-based methods to distinguish stop points.

Speed and acceleration are not available in this dataset.

On the other hand, volunteers were required to annotate the

information by inputting the start, end, mode, and purpose

of each trip through an application installed on the smart

phones. Additionally, socio-demographic information

about each volunteer was collected through a question-

naire, including home and workplace addresses, occupa-

tion, yearly income, possession of a driving license, daily

primary transportation mode, and so on.

Figure 1 illustrates the basic aggregated statistical

analysis of this dataset. Almost all volunteers are in the age

group 20–65, the working age in Japan, and almost all have

a full time or part time job. This means these volunteers are

active trip makers. Automobile, walking, and rail are the

main modes of transport; business, returning home, and

going to work are the main trip purposes in this dataset.

The full GPS trip dataset was divided almost equally by

time sequence for each subject into two parts: a training

dataset for estimating parameters in the C-DBSCAN

algorithm and training models in SVMs; and a prediction

dataset for validating the C-DBSCAN algorithm and test-

ing the learned SVMs.

4 Methodology

The two-step methodology described above consists of

using an improved DBSCAN algorithm in the first step and

SVMs in the second step.

4.1 C-DBSCAN algorithm

In this section, key definitions in the original DBSCAN

algorithm are introduced first. Then the improved

DBSCAN algorithm, named C-DBSCAN, is interpreted.

4.1.1 Original DBSCAN algorithm

We use the same notation as presented by Ester et al. [26].

We apply the key definitions of DBSCAN in the context of

GPS tracing points in order to separate the stop points and

the moving points from the GPS trajectories.

Definition 1 (Eps-neighborhood of a point) The Eps-

neighborhood of a point p, denoted by NEps(p), is defined by

NEps(p) = {q[D| dist(p,q) B Eps}. Here, NEps(p) is a set of

points in which each point q belongs to database D and has

a distance shorter than Eps to point p, and Eps is a given

distance threshold.

Fig. 1 Aggregated statistical analysis of dataset. Note: One trip may be made by more than one mode so the total number of modes is greater

than the total number of purposes
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Definition 2 (Directly density-reachable) A point p is

directly density-reachable from a point q w.r.t. Eps, MinPts

if.

(1) p[N Eps(q) and

(2) |N Eps(q)| C MinPts,

where MinPts is the minimum number of points in the Eps-

neighborhood of point q.

Definition 3 (Density-reachable) A point p is density-

reachable from a point q w.r.t. Eps and MinPts if there is a

chain of points p1,…, pn (where p1 = q, and pn = p) such

that pi?1 is directly density-reachable from pi.

Definition 4 (Density-connected) A point p is density-

connected to a point q w.r.t. Eps and MinPts if there is a

point o such that both p and q are density-reachable from

o w.r.t. Eps and MinPts.

Definition 5 (Cluster) Let D be a database of points. A

cluster C w.r.t. Eps and MinPts is a non-empty subset of

D satisfying the following conditions:

(1) Vp, q: if p [ C and q is density-reachable from p w.r.t.

Eps and MinPts, then q[ C. (Maximality).

(2) Vp, q [ C: p is density-connected to q w.r.t. Eps and

MinPts. (Connectivity).

Definition 6 (Noise) Let C1,…, Ck be the clusters of

database D w.r.t. parameters Epsi and MinPtsi, i = 1,…,

k. Then we define the noise as the set of points in database

D not belonging to any cluster Ci, i.e., noise

¼ p 2 Dj8i : p 62 Cif g:

4.1.2 Improvements for application to the context of GPS

trajectories

When DBSCAN is applied in the situation of GPS track

points, points in a cluster are the equivalent of stop points,

which gather together with a higher density; on the other

hand, points in the noise are the equivalent of moving

points along road or rail network links with a lower density.

The DBSCAN algorithm was developed to solve the

spatial point classification problem without consideration

of their temporal sequence. Consequently, in a detoured

trajectory, one distinguished stop cluster may contain other

moving points or points in subsequent clusters sharing the

same location. Moreover, due to the definitions and con-

cepts of the original DBSCAN algorithm, points repre-

senting movement along a straight road at low speed when

the GPS signal transmission frequency is high may be

grouped into a single cluster under certain given parameter

values. As a result, applying the original DBSCAN

algorithm to GPS trajectories may lead to errors. Here, we

advance the C-DBSCAN algorithm in which two con-

straints are added in order to avoid these two potential

errors.

The first constraint is all points in a cluster should be

temporally sequential. This means the sequential order

should increase one by one and no ‘‘sudden increase’’ is

allowed in the cluster. If such a ‘‘sudden increase’’ is

found, the cluster will be divided into two potential clusters

at the point of sudden increase and each one will be tested

to see if it satisfies the condition of minimum number of

points in one cluster. If not, the points in the potential

cluster will be labeled as moving points. Otherwise the

points in the potential cluster will be tested by the second

constraint.

The second constraint is that the percentage (PCT) of

abnormal points in a cluster should not exceed a given

threshold named PCTAP. To be specific,

PCT �PCTAP ð1Þ

where PCT ¼ APj j
Cj j ; APj j is the number of abnormal points

in the cluster and |C| is the total number of points in the

same cluster.

Before giving a definition of an abnormal point, the

direction and direction change of a point in a cluster need

to be explained, as follows. The direction of a point is

defined in an imaginary situation in Cartesian coordinates

where the point is the origin and the direction is defined as

the angle between the negative direction of the vertical axis

and the line between the point and the previous point, like

a1 for point P1 and a2 for point P2 in Fig. 2. Suppose three

points in the cluster are marked sequentially as P0, P1, and

P2. The direction change from point to point P1 is defined

as the angle from ray P0P1 to ray P1P2; shown as Da in

Fig. 2. Da is the angular change between a1 and a2, i.e.,
Da = a2–a1. Since we use the cosine value of Da, it does
not matter whether Da is negative or positive.

If a cluster represents a stop location, the points are

scattered around the location, and the points should have an

even distribution of direction changes. This means that the

cosine of direction change (or the direction change coef-

ficient, (DCC)) should nearly always differ from 1. Points

with a DCC value close to 1 probably represent movement

of the subject along a straight link in the network. In a

cluster, the points should have an even distribution of

DCC. So abnormal points are those points without an even

distribution of DCC, to be specific, a DCC close to 1. Here

we use DCCAP denote the approximation to 1.

Abnormal Point ¼fDCC�DCCAPjPoint 2 Clusterg:
ð2Þ
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4.1.3 C-DBSCAN algorithm

The improved DBSCAN algorithm used in this research,

C-DBSCAN, is shown in Fig. 3. First, the DBSCAN

algorithm is applied to obtain the cluster points (stop

points) and noise points (moving points) in line 2. Then

each cluster is tested against constraint 1. Here a new

cluster may be split from the older one or the old cluster

may be labeled as noise if it does not follow the cluster

rule. Finally a cluster satisfying constraint 1 will be tested

against constraint 2. Clusters that satisfy both constraints 1

and 2 are marked as stop points; other points are marked as

moving points.

4.1.4 Parameter estimation

In the C-DBSCAN algorithm, there are four parameters

needing to be estimated. These are Eps, MinPts, DCCAP,

and PCTAP. The cumulative frequency method (at least

90 %) is used to estimate these four parameters using the

samples in the training dataset. The estimation results of

these four parameters are shown in Fig. 4.

Figure 4a demonstrates that if MinPts equals four points

in the neighborhood, there is 95 % probability a stop point

is identified and included in a cluster. Figure 4b shows that

with the premise that MinPts equals four points, if an Eps

value of less than 25 meters for a cluster candidate means

there is a 90 % probability that a stop point is included in a

cluster. Figure 4c indicates that there is 90 % probability

that a point with DCC value more than 0.8 is a moving

point. Figure 4d shows that with the premise that DCCAP is

equal to 0.8, a PCTAP value of less than 60 % for a cluster

candidate means there is a 93 % probability that the cluster

candidate is a stop. Consequently, we obtain the estimated

parameters as follows: Eps = 25 m, MinPts = 4, DCCAP =

0.8, and PCTAP = 60 %.

Note that demographic information and available modes

of transport may influence the thresholds of parameters
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Fig. 2 Direction of a point and direction change of two points for a second point in different quadrants
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Fig. 3 C-DBSCAN algorithm
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needing to be estimated. However, in this research, the

datasets used for training and testing are obtained from the

same group of volunteers using several modes of transport,

so we do not verify this influence in detail.

4.2 Support vector machines

SVMs is a supervised machine learning method which can

be used for classification or regression analysis. It was

developed by Vladimir N. Vapnik, and the current standard

incarnation (soft margin) was proposed by Cortes and

Vapnik in 1993 and published in 1995 [27].

For application to classification, SVMs divide a training

dataset with a hyperplane that maximizes the margin

between two classes in the first step. In the second step, the

learning from this training dataset is applied to the pre-

diction dataset and the classification is implemented. The

hyperplane can be linear or non-linear depending on

whether the input data are linear or non-linear. In the non-

linear case, SVMs use a kernel function to map the points

in the dataset linearly separable in the higher dimensions

using a non-linear mapping function / The separating

hyperplane in the higher dimensions can be represented by

the following formula:

xT/ðxiÞ þ b ¼ 0; ð3Þ

where x is the weight vector normal to the hyperplane,

xi 2 R
n
; i = 1,…, l are the n-dimensional vectors used for

training or that are to be divided into two classes, and b is

the intercept associated with decision boundaries.

Since the instance counts of different labels are not

balanced in this dataset, assignment of the same cost value

to the two classes would cause skewing of the separating

hyperplane towards the minority class as a result of this

imbalance. In order to avoid suboptimal SVMs models

arising because of the imbalance, two different misclassi-

fication costs, C? and C-, are assigned in the SVMs

models [28] as the following formulas:

min
x;b;e

1

2
xTxþ Cþ

Xl

ijyi¼þ1

ni þ C�
Xl

ijyi¼�1

ni; ð4Þ

s:t: yiðxT/ðxiÞ þ bÞ� 1� n i; ð5Þ

ni � 0; i ¼ 1; . . .; l; ð6Þ

where C? and C- are the misclassification cost (or penalty)

for the positive class examples and negative class exam-

ples, respectively, y 2 Rl is an indicator vector such that

yi 2 f1;�1g; and ni is the slack variable.

The dual problem of the situation represented by

Eqs. (4)–(6) is as follows:

min
x;b;e

1

2
aTQa� eTa: ð7Þ

s:t: 0� ai �Cþ; if yi ¼ 1; ð8Þ
0� ai �C�; if yi ¼ �1; ð9Þ

yTa ¼ 0; ð10Þ

where e = [1,….,1]T is the vector of ones, Q is an l by l

positive semi-definite matrix, Qij � yiyjKðxi; xjÞ; and

K xi; xj
� �

� / xið ÞT/ xj
� �

is the kernel function.

After problems (7)–(10) are solved, using the primal–dual

relationship, the optimal model can be represented as follows:

x ¼
Xl

i¼1

yiai/ðxiÞ; ð11Þ

and the decision function is expressed as.

sgn xT/ðxÞ þ b
� �

¼ sgn
Xl

i¼1

yiaiKðxi; xÞ þ b

 !
: ð12Þ

For the kernel function, Kðxi; xjÞ; a Gaussian kernel is

believed to be the most suitable function given our data

size and attribute size [29]. The Gaussian kernel function is

shown as follows.

Kðxi; xjÞ ¼ e�jjxi�xjjj2=2r2 ; ð13Þ

where r is the Gaussian parameter and ||xi-xj|| is the

Euclidean distance between vectors xi and xj.

To implement this SVMs model, the software LibSVM

[28] is utilized. LibSVM applies the SVMs to the training

dataset and stores the values of yiai8i; b; label names,

support vectors and other information such as kernel

parameters in the trained model file for implementing

forecasts on the prediction dataset.

4.2.1 Attribute selection

This section describes the features in GPS trajectories that

are selected for implementing SVMs in order to distinguish

activity stops and non-activity stops. Stop duration is the
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first attribute that comes to mind, because no matter what

kind of activity takes place, a certain period of time is the

basic requirement. The distribution of stop duration for the

two kinds of stops in the training data trajectories is

illustrated in Fig. 5.

This shows that stop duration is an important stop-dis-

tinguishing feature of the trajectories. First, a sharp

increase in accumulative frequency of activity stop after

300 s, which means almost 80 % of activity stops have a

duration more than 300 s, demonstrates that much more

activity stops have a much longer duration than non-ac-

tivity stops. Second, it is found that a threshold can be used

to distinguish these two kinds of stops. If 105 s is taken to

be the threshold, almost 92.5 % of stops are accurately

distinguished. However, this leaves 7.5 % of stops with an

erroneous classification. Specifically, almost 7.5 % of

activity stops have a stop duration from 30 to 105 s while

7.5 % of non-activity stops have a stop duration from 105

to 170 s. The reasons for these short activity stops may be

that subjects incorrectly turn off the GPS function

immediately upon arriving home or at the workplace, or

particularly efficient deliveries to customers. Non-activity

stops with a longer duration may be caused by long waits at

major intersections with longer signal cycles. This overlap

in stop duration means that other features extracted from

the trajectories are also needed as attribute inputs for the

SVMs.

Non-activity stops with a longer duration may be caused

by long waits at major intersections. It shows in Fig. 5 that

longer duration of non-activity stop is more than 105 s and

the percentage of more than 180 s is almost zero. It means

that non-activity stop in our dataset does not include situ-

ation of traffic congestion which usually lasts for a long

time. For non-activity stop such as waiting at major

intersections, unlike activity stops, it does not involve any

local walking, as would be the case with an activity stop at

home, a workplace or at a convenience store, post office,

and so on. As a result, GPS points collected during non-

activity stops are scattered over a very limited area. This

area can be measured by taking the average (mean) dis-

tance of each of the scattered GPS points to their common

centroid. Figure 6 shows the average distance to the cen-

troid for each stop; almost all non-activity stops have an

average distance from the centroid of less than 30 meters.

Considering the immediate turning off of GPS functions

by some subjects, these short-duration activity stops may

be identified by the distance between stop location and the

home or workplace. In this research, the shorter of these

two distances is used for each stop. This distance is plotted

against stop duration in Fig. 7. This demonstrates that

activity stops are concentrated within 10 km, whereas non-

activity stops are at a greater distance.

Figure 8 plots stop duration, mean distance of GPS

points to the cluster centroid, and the shorter of the
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distances from the current location to home and to the

workplace by activity stop and non-activity stop in three-

dimensional space. It can be concluded from this that most

stops can be distinguished by the use of the three features.

Consequently, these three features are selected and utilized

as input features in the SVMs.

5 Results

After processing the data for scale, optimal values of the

parameters cost, C, and gamma, c, are calculated by the

grid module in LibSVM for different settings of C? and

C-. A ‘‘grid-search’’ using cross-validation is imple-

mented. Various pairs of (C, c) in increasing order are

tested exponentially, a method found to be suitably prac-

tical to identify good values of parameters by Hsu et al.

[29]. The test values of parameters C and c were as follows:
C = 2-30, 2-29,…, 230; c = 2-30, 2-29,…, 230. These pairs

of (C, c) were tested in five situations: with C?=C, 2C, 3C,

4C, 5C, and C-=C. And a five-fold cross-validation was

implemented to avoid the overfitting problem. The results

for the tested situations are shown in Table 1. The cross-

validation accuracy reaches a peak of 95.65 % when

C = 221, c = 2-3, C?=2C and C-=C.

The learning by the SVMs in situation II is then used to

test the dataset, achieving an accuracy of 94.12 %.

This still leaves about 4 %–6 % of stops falsely distin-

guished as activity stops or non-activity stops. These are

the stops with very similar vector values. In future work,

these results might be improved by increasing the number

of vector dimensions, such as by including the frequency of

stops at the same destination, distances to locations on the

important address list, GIS information, and so on.

6 Comparison with other methods

6.1 Other methods for comparison

Since the two-step method proposed in this paper is an

extension of the DBSCAN algorithm, in this subsection,

two variants of the DBSCAN method (one in the duration-

based category and the other in the density-based category,

respectively) are tested using our dataset in order to com-

pare accuracy. Here we list the primary characteristics of

these algorithms. Details can be found in the corresponding

papers.

The density-based method is called the DJ-cluster

algorithm [20], a simplified version of the DBSCAN

algorithm. It uses the same concept of a core point as

DBSCAN. However, concerning expansion of the cluster,

density-reachability, and density-connectivity are replaced

by the concept of density-joinability. To be specific,

instead of using core points to expand a cluster, any shared

point is used to combine clusters.

The duration-based method is called the TrajDBSCAN

algorithm [18]. In contrast with the original DBSCAN

algorithm, the key feature of TrajDBSCAN is that it defines

a temporal linear neighborhood with a core point deter-

mined based on a minimum stop time (not a minimum

number of points).

6.2 Accuracy of calculation and results

The aim here is to show differences in accuracy when

applying these methods to the identification of activity stop

locations in continuous GPS trajectories. We selected the

four indexes listed below with which to comprehensively

describe accuracy. These indexes were calculated for each

stop location, and Table 2 shows the average value of these

indexes among all activity stops. Parameter values used in

the comparison are the recommended ones or as calculated

following the methods in the corresponding papers.

(1) Ratio of number of locations identified by method

over ground truth. This index is used to evaluate the

redundancy of activity stop location candidates.

When equal to one, all identified activity stop location

candidates are actual activity stop locations. If greater

than 1, then activity stop locations have been

erroneously determined as candidates by the method.

If less than 1, the method has failed to identify some

actual activity stop locations.

Table 1 SVM results for different (C, c) pairs for five situations of

C? and C-

Situation C? C- C c Accuracy (%)

I 1C 1C 230 2-3 95.55

II 2C 1C 221 2-3 95.65

III 3C 1C 217 2-2 95.45

IV 4C 1C 218 2-3 95.36

V 5C 1C 218 2-3 95.16

Table 2 Four indexes used to compare the proposed method with

other DBSCAN variants

Method Index

1

Index 2

(m)

Index 3

(%)

Index

4 (%)

DJ-cluster 1.46 8.9 90 95

TrajDBSCAN 6.62 3.4 93 94

C-DBSCAN and SVM 1.02 3.0 88 99
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(2) Average distance between center of identified loca-

tion and ground truth. This index is used to evaluate

the geographical accuracy of activity stop location

candidates. A shorter distance between the center of

an identified location and the ground truth location

means higher accuracy has been achieved. Here the

center of an activity stop location is calculated as the

centroid of the stop points indicating the stop

location.

(3) Percentage of points in the ground truth correctly

identified. This index is used to indicate identification

accuracy at the level of GPS points. It shows the

percentage of points in the ground truth that are

identified by each method. The higher the value of

this index, the more actual stop points are correctly

identified by the method.

(4) Percentage of stop points identified by the method in

ground truth. This index is used to show redundancy

at the level of GPS points. It shows the percentage of

points identified by each method that really exist in

the ground truth. The higher the value of this index,

the lower the percentage of useless GPS points in the

identified stop locations by the method.

The comparative results shown in Table 2 clearly show

that the two-step method proposed in this paper gives

generally better performance than the other two DBSCAN

variants in identifying activity stop locations in the

continuous GPS trajectories.

7 Summary and conclusions

In this research, a two-step methodology is proposed for

identifying activity stops in continuous trajectories utiliz-

ing a variation of the DBSCAN algorithm and the SVMs

method. In order to adjust DBSCAN to the context of GPS

trajectories, two constraints are applied as improvements: a

time sequence constraint and a direction change constraint.

Three major features are extracted for utilization in the

SVMs method: stop duration, mean distance to the centroid

of a cluster of points at the stop location, and the shorter of

the distances from the current location to home and to the

workplace.

Application of this proposed methodology to GPS data

collected using mobile phones in the Nagoya area of Japan

in 2008 demonstrates that the improved DBSCAN algo-

rithm (C-DBSCAN) achieves an accuracy of 90 % in

identifying stop locations and the SVMs method is almost

96 % accurate in distinguishing activity stops from non-

activity stops. Therefore, this two-step method may be

suitable for identifying activity stops in continuous GPS

trajectories with a higher frequency of data points,

especially those that lack a speed component for any rea-

son. In comparison with other similar methods, this two-

step procedure demonstrates better performance overall.

With the latest GPS-capable devices, the corresponding

data collection interval can be as short as one second, and

the information collected also covers speed and accelera-

tion. However, the method advanced in this paper can

certainly be applied to GPS data with more features than

were used in this work. On the other hand, this method also

offers the possibility of reducing the number of features

required when collecting GPS data, thereby reducing

memory requirements.

Since the dataset used in this study has the feature

demonstrating the GPS signal quality which was used to

exclude the trajectory point with low signal quality caused

by the underground or tunnel condition. One future

research trend can be trying to include this part of data with

the help of supplement data collected by other types of

sensors on the mobile phone. We used three features as

independent variables in SVMs and there still be improving

space. So another direction of future research could be

focusing on trying to increase the dimensionality of the

vectors utilized in the SVMs for higher accuracy. Our

dataset does not include traffic congestion. So for the sit-

uations like this, it may be similar to an activity stop and

current methods and attributes used in SVMs may not

handle it well. But it may also be worthy to try by adding

dimensionality of the vectors in the SVMs in the future

research.
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