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Abstract
Prognosis aims at estimating the future course of a given disease in probabilistic terms. As in diagnosis, where clinicians 
are interested in knowing the accuracy of a new test to identify patients affected by a given disease, in prognosis they wish 
to accurately identify patients at risk of a future event conditional to one or more prognostic factors. Thus, accurate risk 
predictions play a primary role in all fields of clinical medicine and in geriatrics as well because they can help clinicians 
to tailor the intensity of a treatment and to schedule clinical surveillance according to the risk of the concerned patient. 
Statistical methods able to evaluate the prognostic accuracy of a risk score demand the assessment of discrimination (the 
Harrell’s C-index), calibration (Hosmer–May test) and risk reclassification abilities (IDI, an index of risk reclassification) 
of the same risk prediction rule whereas, in spite of the popular belief that traditional statistical techniques providing rela-
tive measures of effect (such as the hazard ratio derived by Cox regression analysis or the odds ratio obtained by logistic 
regression analysis) could be per se enough to assess the prognostic value of a biomarker or of a risk score. In this paper we 
provide a brief theoretical background of each statistical test and a practical approach to the issue. For didactic purposes, in 
the paper we also provide a dataset (n = 40) to allow the reader to train in the application of the proposed statistical methods.
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Introduction

Prognosis, together with diagnosis and treatment, is one of 
the three decisional processes of clinical medicine, and a 
fundamental element of public health as well. Prognosis of 
a given patient over a pre-defined time period is generally 
done by prognostic biomarkers and/or risk prediction rules, 
the latter being mathematical combinations of multiple 

prognostic factors (i.e. biomarkers and/or other quantitative 
and qualitative variables such as age and gender), to be able 
to calculate the probability of a specific outcome on indi-
vidual basis. Furthermore, biomarkers and risk prediction 
rules should be intended as a support in clinical medicine 
and not be used alone.

Before being adopted in daily clinical practice a candi-
date risk prediction rule needs to be carefully developed in 
a representative patients’ cohort and externally validated in 
an independent series of patients affected by the same dis-
ease. Finally, a randomized controlled clinical trial would be 
ideally needed to demonstrate that the allocation of patients 
to specific treatments according to a given risk stratifica-
tion tool leads to better outcomes as compared to those of 
patients allocated to a different risk stratification rule.

The evaluation of the prognostic accuracy of a risk score 
demands the assessment of discrimination, calibration and 
risk reclassification abilities of the same prediction rule. In 
this paper, using a simulation study, we describe how to 
formally calculate the Harrell’s C-index (to assess discrimi-
nation) [1], the Hosmer–May Test (an index of calibration) 
[2] and the integrated discrimination improvements (IDI, an 
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index of risk reclassification) [3] to evaluate the accuracy 
of a new prognostic scoring system (the PREDICT model) 
for disease-specific mortality in a cohort of patients aged 
> 60 years with localized prostate cancer [4]. For didactic 
purposes we use a small sample of patients (n = 40) but 
the reader should be aware that the validation of a risk pre-
diction rule requires a sample size adequately predefined 
according to a specific power analysis [5]. In the same exam-
ple, we also describe how to compare the accuracy of PRE-
DICT with that provided by the score proposed by Ash et al. 
[6]. In the Online Appendix, we also provide the clinical 
dataset used to explain the above mentioned concepts and 
the STATA commands that interested readers can be easily 
trained in performing data analysis.

Indexes of prognostic accuracy

Discrimination measures how much a predictive model dis-
tinguishes patients with a end point from those without a 
given endpoint (for example, mortality). Discrimination, as 
assessed by the Harrell’s C-index [1], ranges from 0.5 (no 
discrimination) to 1.0 (perfect discrimination). The higher 
the Harrell’s C-index, the higher the accuracy of the model 
in predicting the study outcome. The interpretation of the 
Harrell’s C-index is conceptually similar to that of a ROC 
curve analysis [7]. Briefly, the Harrell’s C-index represents 
the proportion of all possible pairs of patients in which the 
risk of death as estimated by the model agrees with the 
observed outcome. The concept underlying this index is 
that, under the assumption of random sampling, the pre-
dicted probabilities in patients who experience a given out-
come should be systematically higher than those in patients 
who did not (tied observations are excluded). Calibration 
measures how much the outcome probability estimated by a 
predictive model matches the “real” probability of the same 
outcome. In calibration analysis, predicted and observed out-
come probabilities are compared by the Hosmer–May test. 
When not significant, this test provides statistical evidence 
that predicted and observed outcome probabilities do not dif-
fer between them implying that the model is calibrated. To 
understand the difference between discrimination and cali-
bration, we consider a hypothetical set of patients followed 
up for 20 years with an observed frequency of mortality of 
40%. A prognostic model including clinical and laboratory 
variables which provides a 40% probability of death at 20 
years in this patients’ cohort is perfectly calibrated (esti-
mated and observed death probabilities coincide). Now let us 
suppose that another prognostic model (i.e. a new risk pre-
diction rule) provides a 25% chance of death in all survivors 
and a 26% chance in all non-survivors. It is clear that the 
threshold of 25% (as derived by the new prognostic model) 
accurately discriminates patients who die from those who 

survive, but it is not calibrated because the estimated prob-
ability of mortality (25%) is much lower than the observed 
death probability (40%). Thus, the model is “discriminat-
ing” but underestimates the true risk of mortality. IDI is 
an index of risk reclassification which quantifies whether a 
new variable provides a clinically relevant improvement in 
prediction beyond and above that provided by a model based 
on a previous risk prediction rule and not including the same 
variable. The methodological background of IDI is that an 
adequate prognostic variable will increase the estimated risk 
for patients with the outcome of interest and will decrease 
the estimated risk for patients not experiencing the same 
event.

The prognostic accuracy of the PREDICT 
in the study cohort

PREDICT (pre treatment estimation of the risk of death 
in cancer of the prostrate) is a risk prediction rule for dis-
ease-specific mortality developed by Kerkmeijer et al. [4] 
in 3383 patients with localized prostate cancer enrolled 
between 1989 and 2008 in four university hospitals in 
Netherlands and Belgium. Such a risk score was specifi-
cally developed to help clinicians in therapeutic decision-
making. Kerkmeijer et al. identified, by multivariate Cox 
regression analysis, clinical T stage, biopsy grade, PSA 
and age as correlates of mortality. The PREDICT score 
provides five prognostic strata: low risk category (score < 
3), intermediate risk category (score ranging from 3 to 7), 
moderate risk category (score ranging from 8 to 11), high 
risk category (score ranging from 12 to 16) and very high 
risk category (>16). We tested the prognostic accuracy of 
PREDICT as categorical variable in a series of 40 patients 
aged > 60 years and affected by localized prostate cancer 
(see Table S1 in Online Appendix) and followed up for a 
median time of 15 years (range 1–26 years). Over a total 
person-time of 552 years, 24 patients died. According to 
PREDICT, at baseline 12 patients (30%) were classified 
at low risk, 9 patients (22.5%) at intermediate risk, 11 
patients (27.5%) at moderate risk, and the remaining 8 
patients (20%) at high risk. No patient was classified at 
very high risk. A Kaplan–Meier survival analysis (Fig. 1) 
shows that the cumulative survival reduces from the 
low risk category onwards and the difference in survival 
among the four groups is of high statistical significance 
(Log rank test = 29.3; P < 0.001). Furthermore, in a Cox 
model 1 unit increase in PREDICT categories entailed a 
3.8 times increase (95% CI 2.2–6.5, P < 0.001) in the 
hazard ratio of death (Table 1 basic model). Although both 
the Kaplan–Meier and Cox regression analyses consist-
ently indicate a significant and direct association between 



281Aging Clinical and Experimental Research (2021) 33:279–283	

1 3

PREDICT and the hazard ratio of mortality, they do not 
provide quantitative information about the discriminatory 
power of this risk prediction rule for death in the study 
cohort. Therefore, to assess the discriminatory power of 
PREDICT we calculated the Harrell’s C-index and we 
found a value of 84.3%, a figure of high statistical sig-
nificance (P < 0.001). Furthermore, the Hosmer–May test 
indicates that the prognostic estimates derived by PRE-
DICT are calibrated because observed and predicted out-
comes do not differ between them (Hosmer–May Wald 
Chi Squared = 2.28, P = 0.32). Overall, in the example 
including 40 patients aged > 60 years with localized pros-
tate cancer, PREDICT accurately discriminates patients 

who died from those who survived and provides calibrated 
risk estimates.

Does sedentary lifestyle increase 
the prognostic accuracy of PREDICT 
for mortality in the study cohort?

A fundamental issue in prognosis is whether a new variable 
increases the prognostic accuracy of a previous risk predic-
tion rule in predicting the occurrence of a given outcome. 
In our study cohort, in a Cox regression model, sedentary 
lifestyle is significantly related to the risk of mortality (haz-
ard ratio 2.8, 95% CI 1.2–6.5, P = 0.02). Given the fact that 

Fig. 1   Kaplan–Meier survival 
curves according to PREDICT 
categories
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Table 1   Univariate and multiple 
Cox regression analyses for 
all-cause mortality of PREDICT 
either unadjusted (basic model) 
or adjusted (expanded model) 
for sedentary lifestyle

The difference in the − 2LL (113–109 = 4.6, P = 0.032) between the two models which just differ for one 
variable has a Chi squared distribution with one degree of freedom (1 df) and can be used to assess whether 
the addition of a variable (sedentary lifestyle in our case) to an existing model significantly improves the 
goodness of fit. Data are hazard ratios (HRs), 95% CIs and P values
a The hazard ratio of the PREDICT score for death corresponds to 1 unit increase of the same covariate. 
The prognosis of patients in each PREDICT category is reported graphically in Fig. 1. Given the fact that 
the two functional forms of PREDICT (continuous versus categorical) have identical prognostic perfor-
mances (data not shown), we introduced this score as a continuous variable into the model

Units of increase Basic model (univariate Cox 
analysis)

Expanded model (multiple Cox 
analysis)

HR (95% CI) P HR (95% CI) P

PREDICTa 1 unit 3.8 (2.2–6.5) < 0.001 4.0 (2.2–7.2) < 0.001
Sedentary lifestyle 0 = no; 1 = yes 2.6 (1.1–6.6) 0.04

− 2 log likelihood (− 2LL) = − 
2 × 56.8 = 113.6

− 2 log likelihood (− 
2LL) = − 2 × 54.5 = 109
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PREDICT developed by Kerkmeijer et al. does not include 
sedentary lifestyle, now we want to calculate to what extent 
taking into consideration this variable could increase the 
prognostic power of PREDICT for mortality in the study 
cohort. From a practical point of view, we should compare 
two prognostic models: a model based on PREDICT (basic 
model) and a model including PREDICT and sedentary 
lifestyle (expanded model). The two models are “nested” 
because the basic model (based on PREDICT alone) is a 
simplified version of the expanded model (PREDICT+ sed-
entary lifestyle).

First, we build a Cox model including the two variables 
(see Table 1 expanded model) and we find that both PRE-
DICT and sedentary lifestyle are significantly related to the 
hazard ratio of mortality. It implies that sedentary lifestyle 
is associated with the mortality risk in the study cohort inde-
pendent of PREDICT and vice-versa. However, although 
statistically significant in a Cox model, we cannot take for 
granted that sedentary lifestyle adds meaningful prognostic 
information to PREDICT in predicting mortality in the study 
cohort.

As shown in Fig. 2, the inclusion of sedentary lifestyle to 
the model based on PREDICT marginally increased discrim-
ination (Harrell’s C-index from 84.3 to 86.1%, + 1.8% gain) 
and the goodness of fit (Chi Square = 4.6, P = 0.032 with 
1 degree of freedom) and provided a poor and not signifi-
cant integrated discrimination improvement (IDI, + 4%, P = 
0.22). The goodness of fit of a statistical model specifically 
describes how well it fits a set of observations. Measures of 
goodness of fit (such as the Chi Square) typically summarize 
the agreement between observed and expected values, i.e. 
values estimated by the model.

Calibration did not materially change (Hosmer–May 
Wald Chi Square = 1.86, P = 0.39, see Fig. 2) after the 
inclusion of sedentary lifestyle into the model. Overall, these 
results indicate that sedentary lifestyle does not materially 
increase the prognostic accuracy for mortality of PREDICT 
in the study cohort.

Comparison of the prognostic power 
of PREDICT and Ash classification 
for predicting mortality in the study cohort

In a Cox regression model, the Ash classification [6] resulted 
to be directly and significantly related to the incidence of 
mortality in the study cohort [HR (1 category increase): 3.1, 
95% CI 1.5–6.4, P = 0.002]. The question now is whether 
the prognostic information provided by PREDICT are com-
parable to those provided by an existing risk prediction rule, 
the Ash classification [6].

When comparing the model based on PREDICT with 
that based on Ash classification we deal with two prognostic 

models which are not nested between them, i.e. the one can-
not be considered a simplified version of the other, as in 
the previous example. The correct approach to be applied 
in this instance is the Akaike Information Criterion (AIC) 
which does not contemplate the nested assumption. Given 
the fact that our example is based on a small sample size, 
we need to correct the AIC by a correction factor (AICc) 
which takes into account the number of patients and the 
degrees of freedom. The lower the AIC or AICc, the higher 
the prognostic accuracy of a predictive model. Because AIC 
is a “criterion” and not a “test”, the AIC calculation does not 
provide a P value.

To assess which one among the set of the two candidate 
models (PREDICT and Ash classification based models) 
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Fig. 2   Discrimination and calibration abilities of Cox models includ-
ing PREDICT alone and PREDICT + sedentary life style (see text for 
more details)
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is the best prognostic model, we analyze delta AICc and 
Akaike weights. To calculate delta AICc we preliminaryly 
identify the model with the minimum AICc and then we sub-
tract this value from the AICc values of the remaining mod-
els. The delta AICc is used to derive the Akaike weights, 
i.e. the probability that a given model is the best one among 
the full set of candidate models. In our example, the model 
based on PREDICT has >99% chances to be the best model. 
Accordingly, both discrimination (84.3%) and calibration 
(Hosmer–May Wald Chi Square = 2.28, P = 0.32) provided 
by PREDICT are better than those of the Ash classification 
(discrimination: 73%; calibration: Hosmer–May Wald Chi 
Square = 1.02, P = 0.60).

Conclusions

Risk prediction rules are tools to predict the future course of 
a disease and to help clinicians to provide a prognosis or to 
decide to start/intensify a given therapy on individual basis. 
To evaluate the implementation of risk prediction rules in 
clinical practice, they should be carefully developed and 
externally validated by appropriate statistical methods such 
as measures of discrimination, calibration and risk reclassi-
fication. Finally, researchers should provide robust evidence, 
in the framework of a randomized clinical trial, that the use 
of a new risk prediction rule preludes better clinical out-
comes as compared to those achieved by the adoption of 
an existing risk prediction model or standard clinical care.
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