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Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has gained popularity as a very attractive target for 
diabetic therapies due to its role in lipid and glucose metabolism. Pharmacological activation of PGC-1α is thought to elicit 
health benefits. However, this notion has been questioned by increasing evidence, which suggests that insulin resistant is 
exacerbated when PGC-1α expression is far beyond normal physiological limits and is prevented under the condition of 
PGC-1α deficiency. This narrative review suggests that PGC-1α, as a master metabolic regulator, exerts roles in insulin 
sensitivity in a tissue-specific manner and in a physical activity/age-dependent fashion. When using PGC-1α as a target for 
therapeutic strategies against insulin resistance and T2DM, we should take these factors into consideration.
Level of evidence: Level V, narrative review.
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Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common 
metabolic diseases in the world. The pathogenesis has been 
shown to be associated with insulin resistance in insulin-
responsive tissues (e.g., skeletal muscle, liver, and adipose 
tissues) and reduced insulin secretion by β-cells [1, 2]. Fur-
thermore, T2DM may lead to lots of comorbidities, such as 
cardiovascular disease and certain cancers [3]. Therefore, 
there is an increasing need for more effective treatments than 
medications currently available to help manage T2DM.

Peroxisome proliferator-activated receptor-γ coactivator-1α 
(PGC-1α), originally discovered in brown adipose tissue 
(BAT) [4], is mainly expressed at high levels in energy-
demanding tissues such as skeletal muscle, BAT, pancreas, 
and liver [5]. It interacts with a wide range of transcription 

factors (TFs, reviewed in [6]) to modulate multiple cellular 
processes, including muscle fiber-type switching [7], hepatic 
gluconeogenesis [8], mitochondrial biogenesis [9], and insulin 
secretion [10]. It is highly inducible in response to physiologi-
cal stimuli, including cold exposure, fasting, and exercise [11, 
12]. It is dysregulated in pathological states, such as hyper-
gluconeogenesis in the liver and mitochondrial dysfunction 
in skeletal muscle. Dysregulation of PGC-1α has been impli-
cated in the pathogenesis of insulin resistance and T2DM [6]. 
On this basis, PGC-1α has been regarded as a promising target 
for anti-diabetic therapy [12].

However, mounting evidence has recently indicated that 
when using PGC-1α as a target for therapeutic strategies 
against insulin resistance and T2DM, we should take the 
following factors into consideration: PGC-1α’s expression 
level, the target tissues, the patient’s age, and the patient’s 
exercise [13, 14]. More importantly, several studies have 
highlighted the importance of PGC-1α deficiency, but 
not PGC-1α activation, in the prevention and treatment of 
insulin resistance and diabetes [15, 16]. In this narrative 
review, we summarize the major findings on the function 
of PGC-1α in multiple cellular processes and in different 
tissues, and then discuss its unlikely therapeutic applica-
tions for T2DM.
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Regulation of PGC‑1α

PGC-1α expression and activity are modulated by differ-
ent stimuli in distinct tissues. More especially, PGC-1α 
expression is markedly induced by exercise and calorie 
restriction in muscle [17, 18], by fasting in the liver [19], 
and by cold temperatures in BAT [4], by exercise in white 
adipose tissue (WAT) [20]. In addition, PGC-1α expres-
sion is modulated on both transcriptional and post-trans-
lational levels. At the level of gene expression, several 
signaling cascades (e.g., the cAMP pathway) and proteins 
(e.g., cAMP response element binding protein (CREB) 
and activating transcription factor 2 (ATF2)) have been 
involved in the modulation of PGC-1α. In particular, the 
cAMP pathway plays central roles in activating PGC-1α 
transcription via promoting the binding of ATF-2 or CREB 
to the PGC-1α promoter, hence activating its transcrip-
tion in many tissues. PGC-1α transcription is activated by 
β-adrenergic agonists through ATF-2 in BAT. The acti-
vation of PGC-1α in the liver by glucagon is mediated 
by CREB [8, 21], whereas calcium signaling cascades in 
combination with CREB are involved in the activation of 
PGC-1α in skeletal muscle by exercise [22, 23]. In addi-
tion, well-established post-translational modifications 
of PGC-1α include methylation [24], acetylation (medi-
ated by the sirtuin (SIRT) family and the histone acetyl-
transferase GCN5) [25–28], and phosphorylation (by p38 
MAPK, AMPK, Akt) [29]. The dynamic modifications of 

PGC-1α makes it to be implicated in the cellular adapta-
tion to environmental conditions [30].

On the other hand, PGC-1α drives a pleiotropic transcrip-
tional response through binding to and co-activating TFs and 
nuclear receptors, leading to improved lipid, glucose, and 
energy homeostasis [6, 31]. These TFs and nuclear recep-
tors include myocyte enhance factor 2 [32], SIRT3 [33], 
hepatocyte nuclear factor 4α (HNF4α) [8], forkhead box 
O 1a (FOXO1a) [19], estrogen receptor-related α (ERRα) 
[34], peroxisome proliferator-activated receptor (PPAR) γ 
[4], PPARα [35], transcription factor A (TFAM), nuclear 
respiratory factor 1 (NRF1) [36], NF-κB [37], X-box binding 
protein 1 (XBP1) [38]. Accordingly, this makes regulation 
of PGC-1α a promising target for the treatment of insulin 
resistance and T2DM (Fig. 1).

Dysregulation of PGC‑1α in animals 
and humans with T2DM

Over the past years, people have realized that PGC-1α 
expression is dysregulated in key metabolic tissues (e.g., 
skeletal muscle, adipose tissue, and liver) of animals and 
humans with insulin resistance and T2DM. In particular, 
in skeletal muscle of humans with T2DM and prediabetic 
individuals, PGC-1α expression and its co-transcription 
activity were reduced, in parallel with the reduction of 
the expression of PGC-1α-responsive genes implicated in 
mitochondrial biogenesis and oxidative phosphorylation 

Fig. 1  Regulation and main functions of peroxisome proliferator-activated receptor gamma coactivator-1α
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(OXPHOS) [8, 10, 39, 40]. Similarly, in adipose tissue 
of insulin-resistant subjects, PGC-1α mRNA and pro-
tein expression were markedly downregulated [41]. In 
line with this observation, an high-fat diet (HFD)-fed 
mice with an adipose tissue-specific deletion of PGC-1α 
exhibited systemic deregulation of glucose homeosta-
sis, as manifested by the reduction of hepatic insulin 
sensitivity and elevated levels of blood triglycerides 
and cholesterol [42]. Moreover, the obesity-associated 
reduction of adipose PGC-1α has been correlated with 
obesity-associated inflammation [43]. Therefore, obesity-
associated inflammation and the development of systemic 
insulin resistance may be linked by the down-regulation 
of adipose PGC-1α. Furthermore, pre-diabetic individu-
als also exhibit decreased PGC-1α expression in muscle, 
indicating that PGC-1α inactivation is an early event in 
the development of this disease [39, 40].

Interestingly, ectopic expression of PGC-1α in muscle 
cells recovered expression of insulin-sensitive glucose 
transporter 4 (GLUT4) by coordinating the transcrip-
tional MEF2C on the promoter [32]. Consistent with this 
in vitro study, muscle overexpression of PGC-1α showed 
improvement in metabolic responses, as evidenced by 
increased insulin sensitivity and insulin signaling in 
aged mice [44]. These results highlight the importance 
of targeting PGC-1α modulators to specific tissues and its 
efficacy in metabolic disease models. As a consequence, 
increasing PGC-1α expression/activity has great poten-
tial in the prevention and treatment of insulin resistance 
and diabetes, which has been extensively reviewed [12, 
45, 46].

Paradoxical effects of increased PGC‑1α 
activation on T2DM

These foregoing studies have highlighted the therapeu-
tic potential of increasing PGC-1α activation for T2DM 
treatment. However, data from tissue-specific transgenic 
or knockout animal models of PGC-1α have yielded disap-
pointing results. In fact, the effects of PGC-1α activation 
on insulin sensitivity depend on several key factors, includ-
ing tissue, physical activity, age, and the level of PGC-1α 
expression (Fig. 2).

Tissue

Skeletal muscle is a primary site for the utilization of glucose 
and fatty acids. Defects of these factors in combination with 
chronic low-grade inflammation, mitochondrial dysfunc-
tion, and oxidative stress contribute to the development of 
T2DM [2]. Evidence is emerging that PGC-1α can regulate 
the metabolic profile of muscle. First, PGC-1α can modulate 
the muscle fiber-type switch. Increases in the proportion of 
type I fibers, which contain more GLUT4 and mitochondria, 
have been observed in muscle of transgenic mice and pigs 
as well as exercised humans [7, 17, 47]. Second, PGC-1α 
regulates glucose metabolism. Increased GLUT4 expression 
and glucose uptake were observed in the ex vivo muscle 
with electrotransfection of PGC-1α [48] and in C2C12 and 
L6 muscle cells that overexpressed PGC-1α [32]. Apart 
from increasing glucose uptake, PGC-1α may increase fatty 
acid oxidation and glycogen synthesis and decrease glyco-
lysis and glucose oxidation, resulting in enhanced muscle 
glycogen stores [49, 50]. These findings are in accordance 

Fig. 2  Whether overexpression 
of peroxisome proliferator-
activated receptor gamma 
coactivator-1α exerts beneficial 
or detrimental effects depends 
on several key factors, including 
the tissue, activity, age, and the 
extent of its overexpression
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with other studies showing that mice with muscle-specific 
PGC-1α overexpression displayed elevated muscle gly-
cogen stores [51]. Third, muscle PGC-1α overexpression 
inhibits the development of inflammation, which has been 
demonstrated by both gain- and loss-of-function studies 
[52–54]. Last but not least, PGC-1α mediates OXPHOS and 
mitochondrial biogenesis in skeletal muscle. For example, 
forced expression of PGC-1α in cultured cardiac myocytes 
increased the cellular mitochondrial number and stimulated 
coupled respiration, as evidenced by the upregulated expres-
sion of nuclear and mitochondrial genes including NRF-1/2 
and TFAM [55]. Likewise, cardiac-specific induction of 
PGC-1α resulted in a large increase in cardiac mitochondrial 
number and size during the neonatal stages [56]. In contrast, 
PGC-1α knockout mice exhibit a reduction in the expression 
of genes involved in OXPHOS and impaired mitochondrial 
function [52, 57, 58]. In cell cultures of human myotubes, 
PGC-1α overexpression has been demonstrated to increase 
fatty acid oxidative capacity by improving mitochondrial 
function [59]. In accord with these findings, recent in vitro 
and in vivo studies have also reported that the expression 
of PGC-1α in myotubes and skeletal muscle was elevated 
by a novel small molecule (ZLN005), exerting promising 
therapeutic effects for treating T2DM [60]. Overall, these 
findings highlight the importance of PGC-1α activation in 
the treatment of T2DM.

Adipose tissue is mainly composed of WAT and BAT. 
WAT mainly stores energy in form of lipid droplets, whereas 
BAT possesses non-shivering thermogenic properties due to 
increased mitochondrial content and expression of uncou-
pling protein-1 (UCP-1) [2, 61]. In vivo and in vitro studies 
have shown that PGC-1α increases adaptive thermogenesis 
[15, 16, 62] and mitochondrial biogenesis in BAT, as evi-
denced by the activation of transcription of mitochondrial 
UCP-1 [4]. In contrast, PGC-1α knockout in BAT resulted in 
dysregulation in lipid turnover, as manifested by a reduced 
level of lipid metabolizing enzymes and fatty acid trans-
porters [63]. A recent study has identified four compounds 
with the ability to stabilize PGC-1α1 protein in BAT, set-
ting the foundation for a novel generation of therapeutics 
based on the activation of PGC-1α1 that could be of use in 
metabolic disease [64]. Moreover, PGC-1α is implicated in 
the conversion of white fat into a brown fat-like phenotype. 
Ectopic expression of PGC-1α in WAT leads to its “brown-
ing” while suppression of PGC-1α may favor a white adipo-
cyte phenotype [65–67]. Intriguingly, a brown-like adipose 
tissue gene programme can also be induced by muscle-spe-
cific overexpression of PGC-1α, as evidenced by increased 
UCP1 and Cidea expression in the subcutaneous fat layer 
(inguinal). This browning of WAT is stimulated by muscle-
derived FNDC5 (a membrane protein that is cleaved and 
secreted as a myokine, irisin), whose expression is induced 
by increased muscle PGC-1α [68]. Unlike BAT, PGC-1α 

mRNA expression in WAT can be induced by exercise [20]. 
PGC-1α overexpression in WAT promotes mitochondrial 
biogenesis [69], whereas its deficiency gives rise to reduc-
tions in mitochondria [16]. Taken together, these observa-
tions highlight the beneficial effects of PGC-1α activation 
in BAT and WAT.

The liver is an organ that exerts important roles in con-
trolling glucose homeostasis. In both fasting and well-fed 
states, the glucose concentration in the blood is stably main-
tained within a narrow range under normal conditions. Glu-
coneogenesis by the liver, together with glucose absorption 
by the intestine and glucose utilization by skeletal muscle, 
determines blood glucose levels [12]. The liver of mice 
with T2DM exhibits elevated gluconeogenesis, which is 
the main source of endogenous glucose production [8, 70]. 
The gluconeogenic enzymes such as phosphoenolpyruvate 
carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) 
control rates of hepatic glucose production [71]. Interest-
ingly, these gluconeogenic enzymes (PEPCK and G6P) are 
transcriptionally modulated by PGC-1α. It functions as a 
co-activator of FOXO1 and HNF-4α and as a co-suppressor 
of XBP1s, leading to impaired glucose homeostasis in obese 
and diabetic mice [19, 38, 71]. Furthermore, PGC-1α may 
decrease inhibition of hepatic glucose production by insu-
lin, contributing to the onset of insulin resistance in liver 
through PPARα-dependent induction of Tribbles homologue 
3 (an Akt inhibitor) [72]. Thus, PGC-1α expression is posi-
tively associated with hepatic glucose production [8, 73]. 
Increased expression of hepatic PGC-1α, as seen in several 
insulin-resistant animal models, including liver-specific 
insulin receptor-knockout, ob/ob [8], db/db [74], and HFD-
fed [75] mice, has been demonstrated to cause hepatic insu-
lin resistance [73]. Conversely, obese mice with genetically 
decreased levels of hepatic PGC-1α produced less glucose 
and were protected against insulin resistance [76]. Thus, in 
contrast to the induction sought after in tissues like skeletal 
muscle and adipose tissues, an inhibition of hepatic PGC-1α 
activity can reduce gluconeogenic activity and hence hold 
more promise for treating diabetes [77].

The main function of pancreatic β cells is to synthesize 
and secrete insulin, which contributes to maintain circulat-
ing glucose concentrations within a normal range. Normal 
mitochondrial function and ATP production are required 
for insulin secretion from pancreatic β cells [78]. The 
reduction of insulin secretion from β cells have been dem-
onstrated to exacerbate T2DM. Like in the liver, PGC-1α 
is expressed at abnormally high levels in islets from dia-
betic rodents. In vitro studies have shown that overex-
pressing PGC-1α in isolated pancreatic rat islets blocks 
membrane polarization and induces G6P, thus decreas-
ing insulin secretion [10]. PGC-1α impairs the ability of 
β-cells to secrete insulin through multiple mechanisms: 
(1) by impairing β-cell mass and function [79]; (2) by 
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promoting β-cell apoptosis [80]; (3) by increasing mito-
chondrial biogenesis, oxidative stress and AMPK activa-
tion [81]. Of note, the onset of β-cell dysfunction may be 
associated with elevated expression of UCP2 [82], whose 
expression can be increased by PGC-1α in rat pancreatic 
islets and in INS-1 cells [83, 84]. In contrast, antisense 
oligonucleotide-induced suppression of rat islet PGC-1α 
corrects UCP2 expression level and to some extent nor-
malizes insulin secretion by β-cells [83]. Intriguingly, the 
function of pancreatic islets is also regulated by IL-6, a 
myokine that is produced and secreted from muscle. In 
glucose intolerant and type 2 diabetic patients, reduced 
muscle PGC-1α expression elevated levels of circulating 
IL-6, leading to a reduction in insulin secretion by β-cells 
[53]. Therefore, similar to liver, a suppression of PGC-1α 
activity in pancreatic islets is beneficial for the treatment 
of diabetes.

Overall, PGC-1α affects lipid and glucose metabo-
lism in a tissue-specific manner. In particular, increased 
PGC-1α expression is beneficial in skeletal muscle and 
adipose tissues, where it induces a change of muscle fiber 
phenotype towards oxidative metabolism and promotes 
thermogenesis and fat browning in adipose tissue, changes 
that inhibit diabetes. In contrast, its role is obviously del-
eterious in the liver and pancreas, in which it increases 
hepatic glucose production and suppresses insulin secre-
tion, leading to the development of diabetes. Of note, the 
health benefits of increased PGC-1α expression in muscle 
go beyond the muscle tissue itself. PGC-1α induces the 

production and secretion of myokines (such as IL-6 and 
irisin) from skeletal muscle that influence the function of 
other tissues such as adipose tissue and pancreatic β cells 
(Fig. 3).

Physical activity

In response to exercise training, insulin sensitivity is 
enhanced and circulating levels of free fatty acids and insulin 
are reduced [85, 86]. PGC-1α expression can be increased 
in skeletal muscle (especially, the high-oxidative fast type) 
after prolonged exercise in humans [87, 88] and rodents [11, 
86, 89]. Increased muscle PGC-1α promotes the production 
and secretion of certain myokines, mediating many of the 
beneficial effects of exercise locally and systemically. Once 
exposed to these myokines, muscle resident macrophages are 
polarized towards anti-inflammatory M2 phenotype, lead-
ing to increased secretion of anti-inflammatory cytokines 
(Fig. 2) [90]. Moreover, increased PGC-1α induces a coordi-
nated program of increased fatty acid uptake, mitochondrial 
biogenesis, and fatty acid oxidation to meet the increased 
energy demands of working skeletal muscle [14, 91]. The 
activation and upregulation of PGC-1α have been demon-
strated to be partially responsible for the beneficial effects 
exerted by exercise on skeletal muscle oxidative metabolism 
and insulin sensitivity, making it an attractive target for the 
development of antiobesity and/or antidiabetic drugs [11, 
92–95]. Of note, increased physical activity does not upregu-
late the PGC-1α protein expression in the liver, suggesting 

Fig. 3  Beneficial effects exerted by increased peroxisome proliferator-activated receptor gamma coactivator-1α are partially mediated by 
myokines
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that PGC-1α may be not involved in the action of exercise 
in improving hepatic insulin sensitivity [86].

Paradoxically, in sedentary state, elevated PGC-1α 
expression was not followed by improved glucose and insu-
lin levels, and instead contributed to insulin resistance in 
mice fed HFDs [13, 14]. This increased insulin resistance 
may be due to an elevated provision of lipid, which exceeded 
the energetic demand of β-oxidation, thus causing a net ele-
vation of intramyocellular fat and diacylglycerol content and 
insulin resistance [13, 96, 97]. Importantly, however, these 
detrimental effects could be reversed when these HFD-fed 
mice received a continuous exercise intervention [13]. These 
findings suggest that the effects of PGC-1α overexpression, 
as a monotherapy, depend on physical activity. In particular, 
elevation of PGC-1α is beneficial in exercised animals and 
is detrimental in sedentary animals who consume a HFD.

Age

Diabetes risk elevates greatly with age and is related to lower 
muscle oxidative capacity. Intriguingly, PGC-1α expression/
activity in skeletal muscle also decreases with age [98, 99]. 
Using muscle-specific PGC-1α knockout mice, recent stud-
ies have demonstrated that a decline in PGC-1α and reduced 
mitochondrial oxidative capacity potentiate the development 
of glucose intolerance and insulin resistance associated with 
aging [100]. More importantly, when PGC-1α is lacking, 
age-associated decreases in mitochondrial proteins in skel-
etal muscle cannot be prevented by exercise training [101]. 
Consistent with these observations, gain-of-function studies 
have suggested that mildly increased muscle PGC-1α pro-
tects against age-related obesity and diabetes [44]. Overall, 
these observations highlight the importance of increasing 
PGC-1α expression in the prevention and treatment of age-
induced diabetes.

Paradoxically, muscle PGC-1α overexpression led to 
insulin resistance in young mice fed HFDs [14]. In con-
trast, young muscle-specific PGC-1α knockout mice showed 
modestly improved glucose homeostasis [100]. These mice 
are capable of elevating mitochondrial protein expression 
in response to exercise training [102]. Therefore, PGC-1α 
is mandatory for the beneficial effects of moderate exercise 
training in elderly but not in young subjects to maintain 
mitochondrial metabolic and anti-oxidant capacity.

The level of PGC‑1α expression

The extent of PGC-1α increases also influences its effects. 
For instance, in transgenic mice that overexpressed PGC-1α 
mRNA 10–13-fold, the GLUT4 mRNA and whole-body 
insulin sensitivity were reduced [103]. Limiting PGC-1α 
overexpression to skeletal muscle also yielded undesirable 
pathological effects, exacerbating fat-induced muscle insulin 

resistance despite an increase in mitochondrial density and 
mitochondrial activity [14]. PGC-1α overexpression in these 
models may have been far too large to be physiologically 
beneficial, since the increase in PGC-1α protein (5–30-fold) 
in genetically altered mice is considerably higher than those 
in rodent muscle stimulated by exercise training (1.5–2.5 
fold) [89, 104] or cold exposure (1.5–2.8 fold) [105]. Exces-
sive PGC-1α production leads to intramuscular lipid accu-
mulation, contributing to insulin resistance in humans and 
animals [14, 48]. Therefore, these findings suggest that mas-
sively overexpression of PGC-1α leads to deleterious effects, 
calling into question the therapeutic potential of PGC-1α 
activation.

Paradoxically, upregulation of PGC-1α in vivo, similar to 
those that can be induced by physiological stimuli (< 100%), 
can protect against obesity and T2DM. In rat tibialis ante-
rior muscle, overexpression of PGC-1α within physiologi-
cal limits via an electrotransfection procedure, such as is 
observed with exercise, led to increased mitochondrial bio-
genesis and insulin sensitivity [48]. Beneficial effects of a 
modest elevation in PGC-1α levels have also been obtained 
in insulin-resistant muscle of obese Zucker rats, in which 
intramuscular lipids were reduced [106]. Therefore, modest 
upregulation of PGC-1α within physiological limits may be 
sufficient to reprogram the metabolic capacity of skeletal 
muscle. However, these observations should be subjected 
to a clinical trial.

PGC‑1α deficiency prevents 
the development of insulin resistance 
and diabetes

Several loss-of-function studies have provided evidence of 
the contribution of PGC-1α to the pathogenesis of insulin 
resistance and diabetes. For instance, data from two mod-
els of PGC-1α-null mice have shown that these mice were 
protected from diet-induced obesity and insulin resistance 
[15, 16]. Moreover, these findings show that PGC-1α is dis-
pensable for mitochondrial biogenesis and muscle fiber-type 
transformation [15, 16, 107]. Like whole body PGC-1α-null 
mice, muscle-specific PGC-1α-null mice have preserved 
mitochondrial content and displayed normal peripheral insu-
lin sensitivity [53, 108]. More importantly, when challenged 
with a HFD, glucose intolerance or insulin resistance was 
not observed in these mice with total muscle PGC-1 defi-
ciency, although mitochondrial structural derangements and 
impaired muscle oxidative capacity were observed [109]. 
Interestingly, normal glucose tolerance was also observed 
in β-cell-specific PGC-1α-null mice, despite disruption of 
insulin secretion [110]. Further evidence comes from the 
finding that adipose tissue-specific PGC-1α-null mice did 
not exhibit impaired mitochondria biogenesis, manifested 
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by no alterations in the expression levels of mitochondrial 
genes. Consistent with these in vivo observations, PGC-1α 
knockdown in cultured 3T3-L1 adipocytes did not impact 
the mitochondrial gene expression and the adipocytes’ res-
piratory capacity [111]. Overall, these observations present 
evidence that PGC-1α deficiency may exert beneficial effects 
on insulin resistance and consequently diabetes. Although 
in that loss of function models one would expect to observe 
worsening of the metabolic profile, in most cases these mice 
show no effects. This could be the results of compensatory 
effects occurring in the transgenic animals, masking the real 
functional role of the transcription factor.

Concluding remarks

The prevalence of T2DM is increasing rapidly in both 
developed and developing countries. Effective therapeutic 
measures are urgently needed to reduce the current epi-
demic and to control this disease. PGC-1α, a transcription 
co-activator, has been regarded as a potential therapeutic 
target of antidiabetic therapy and pharmacological activa-
tion of PGC-1α is thought to elicit health benefits. How-
ever, this notion remains contentious, with studies failing 
to provide consensus evidence of a benefit from PGC-1α 
activation. Insulin resistant occurs when PGC-1α over-
expression is far beyond normal physiological limits. In 
addition, PGC-1α activation exacerbates insulin resistance 
when PGC-1α expression is increased in tissues such as 
liver and pancreas, in young insulin-resistant subjects, and 
in animals and humans in sedentary state. More impor-
tantly, increasing studies have highlighted the contribution 
of PGC-1α deficiency to T2DM prevention and treatment. 
Thus, the literature reviewed here suggests that PGC-1α 
is differentially expressed in different tissues and has dis-
tinct and even opposite functions in different cells. When 
using PGC-1α as a target for therapeutic strategies against 
insulin resistance and T2DM, we should take the following 
factors into consideration: its expression level, the target 
tissues, the patient’s age, and the patient’s exercise.
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