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Abstract
Ghrelin is a gastric hormone circulating in acylated (AG) and unacylated (UnAG) forms. This narrative review aims at pre-
senting current emerging knowledge on the impact of ghrelin forms on energy balance and metabolism. AG represents ~ 10% 
of total plasma ghrelin, has an appetite-stimulating effect and is the only form for which a receptor has been identified. 
Moreover, other metabolic AG-induced effects have been reported, including the modulation of glucose homeostasis with 
stimulation of liver gluconeogenesis, the increase of fat mass and the improvement of skeletal muscle mitochondrial func-
tion. On the other hand, UnAG has no orexigenic effects, however recent reports have shown that it is directly involved in the 
modulation of skeletal muscle energy metabolism by improving a cluster of interlinked functions including mitochondrial 
redox activities, tissue inflammation and insulin signalling and action. These findings are in agreement with human stud-
ies which show that UnAG circulating levels are positively associated with insulin sensitivity both in metabolic syndrome 
patients and in a large cohort from the general population. Moreover, ghrelin acylation is regulated by a nutrient sensor 
mechanism, specifically set on fatty acids availability. These recent findings consistently point towards a novel independent 
role of UnAG as a regulator of muscle metabolic pathways maintaining energy status and tissue anabolism. While a spe-
cific receptor for UnAG still needs to be identified, recent evidence strongly supports the hypothesis that the modulation of 
ghrelin-related molecular pathways, including those involved in its acylation, may be a potential novel target in the treatment 
of metabolic derangements in disease states characterized by metabolic and nutritional complications.
Level of evidence Level V, narrative review.
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Introduction

The coordinated regulation of food intake, energy expendi-
ture and adiposity is dependent on a complex signalling net-
work involving both peripheral signals and central nervous 
system. Growing evidence has shown that the gut plays a 
key role in this homeostatic process and may, therefore, be 

considered as the body’s largest endocrine organ [1]. The 
gastrointestinal tract is, in fact, able to release more than 
20 different hormones, mostly in relation to the quality and 
quantity of nutrients in the tract. These have so far been 
characterized as able to produce a large and widespread 
set of effects, including, at local level, the regulation of 
gut motility, the modulation of glucose homeostasis and of 
peripheral insulin sensitivity as well as the stimulation of 
hunger or satiety feelings at central level [2]. Among these 
peptides, increasing interest is growing for ghrelin, the only 
gut hormone known to stimulate appetite [1, 2]. Since 1996, 
9716 papers are currently (October 2018) recorded in Pub-
med, as detected by performing a general search using the 
keyword “ghrelin”. This narrative review aims at present-
ing and discussing the most significant advancements in 
the understanding of the complex biology of this hormone 
and of its effects on the modulation of energy balance and 
metabolism.

This article is part of the topical collection on Italian Society of 
Obesity’s Reviews.
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Ghrelin: cell biology

Ghrelin is a gastric hormone, first identified in 1996 by 
Kojima et al. in rat stomach [3]. In the previous years, 
several small synthetic molecules had been discovered 
for their ability to induce growth hormone (GH) release 
by acting at hypothamical level independently from GH 
releasing hormone pathways [4] and were, therefore, 
named growth hormone secretagogues (GHS) [5, 6]. How-
ever, while a specific receptor for GHS (GHSR) had been 
identified in 1996 [7], its endogenous ligand was unknown 
until Kojima et al. finally identified a novel hormone that 
was able to simulate GH secretion through GHSR [3] and 
named it “ghrelin” after the Proto-Indo-European word 
root (“ghre”) meaning “grow” [8]. Almost contemporarily, 
Tomasetto and others identified the same hormone for its 
regulatory role in gastrointestinal motility and named it 
motilin-related peptide [9].

Ghrelin is mainly secreted by endocrine cells (P/D1 in 
humans and X/A-like in rats) located in the gastric fundus, 
and gastrectomy reduces ghrelin plasma concentrations 
by 65% [10], but its expression has also been described in 
duodenum, jejuna, ileum, colon and at lower concentra-
tions in the pancreas, adipose tissue, kidneys, testes, pla-
centa, hypophysis and nucleus arcuatus in the hypothala-
mus, an important region for appetite regulation [11–20].

Transcriptional regulation and polymorphisms

The gene coding for the ghrelin peptide, GHRL, is highly 
conserved in mammals [8] and spans 5 kb on chromosome 
3p 25–36 in humans. The sequence includes four exons 
encoding a precursor 117 aa protein, preproghrelin [21], 
while two further exons with regulatory function were dis-
covered later [22]. Preproghrelin undergoes splicing and 
editing ultimately resulting in the bioactive peptides obesta-
tin and ghrelin (Fig. 1).

Interestingly, obestatin, a 23 amino acid peptide discov-
ered by Zhang et al. [25], is also involved in the complex-
regulation of the gut–brain network, with initial reports 
showing its ability to counteract ghrelin’s effects [25], 
potentially suggesting GHRL as an important effector in the 
maintenance of energy homeostasis. However, while pleio-
tropic metabolic effects have been reported, other groups did 
not confirm the inhibitory effect on food intake, making of 
obestatin a controversial peptide whose effects are currently 
largely undefined [26–30].

Genomic variation of the ghrelin gene has been associ-
ated with obesity development in humans. Two polymor-
phisms have been reported in humans: Leu72Met and Arg-
51Gln [31–33]. Individuals presenting Leu72Met allele are 
reportedly protected against fat accumulation and associated 
metabolic comorbidities [34]. The Arg51Gln polymorphism 
changes the processing site of ghrelin within its precursor 

Fig. 1   Diagram showing ghrelin 
gene splicing products and ghre-
lin’s post translational modifica-
tions. Adapted from Liu et al. 
and Sato et al. [23, 24]
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protein, preventing normal ghrelin editing. Importantly, its 
prevalence was shown to be 6.3% in obese subject, while it 
was not detectable among non obese individuals, showing a 
clear link with obesity development [33].

Post‑translational modifications

It is important to note that the hormone described by Kojima 
et al. as an endogenous ligand for GHSR was an acylated 
peptide. The ghrelin peptide, in fact, undergoes post-trans-
lational modifications, the main being acylation on S3 by 
the membrane bound enzyme ghrelin-O-acyl-transferase 
(GOAT) [35] (Fig.  1). This enzyme, highly conserved 
across species, has a tissue expression profile similar to 
ghrelin, with highest expression in stomach, pancreas and 
intestine and ghrelin acylation is completely prevented in 
GOAT knock-out mice [36–38]. While fatty acids derived 
from acetic (C2) to tetradecanoic acid (C14:0) are all pos-
sible ligands, octanoic acid (C8:0) is the principal fatty 
acid involved in this reaction, with decanoic (C10:0) and 
likely decenoic (C10:1) acids also being reported as optimal 
ligands [37, 39–41]. No differential effects between these 
identified acylated forms on receptor binding and GH secre-
tion activity in vitro has been found [40].

Ghrelin phosphorylation has also been reported, with 
induced protein structural changes which affect both acyla-
tion and membrane binding in vitro [42], but its potential 
importance in vivo is currently unclear.

Ghrelin secretion and circulating forms

Ghrelin release from the stomach has been reported to 
involve sympathetic nerves [43] and recent evidence shows 
that ghrelin secretion in gastric endocrine cells is mediated 
by a series of G-protein coupled receptors (GPCRs), allow-
ing for its release to be integrated in a network of modula-
tory signals [44].

Both acylated (AG) and unacylated (UnAG) ghrelin 
forms are detectable in human and animal plasma. Interest-
ingly, most circulating ghrelin is unacylated, whereas the 
acylated hormone is generally considered to only account for 
approximately 10% [35, 45–47] of total ghrelin, with pos-
sible variations depending also on the detection technique 
used. Mizutani et al. have shown that, while unacylated ghre-
lin is localized in both gastric open-type cells and closed-
type round cells, the acylated form is present only in the 
latter [48, 49]. Both cell types are able to release hormone 
forms, with enhanced unacylated but not acylated ghrelin 
secretion at lower gastric pH [49], suggesting a potentially 
different physiological role for the two forms.

Circulating ghrelin is subject to de-acylation and cleav-
age, with a half-life of respectively 240 min in humans and 

30 min in rats, depending on the mediation of different enzy-
matic systems across species [50].

Ghrelin acylation influences its transport across compart-
ments, in particular across the blood–brain barrier (BBB). 
While octanoylated ghrelin crosses the mouse BBB mainly 
from brain to blood, passage for the unacylated peptide was 
observed only in the opposite direction [51]. Interestingly, 
later studies showed that whole body energy balance impacts 
on ghrelin transport at BBB level, with obese mice showing 
reduced permeability compared to lean animals. Moreover, 
triglyceride co-administration increased ghrelin transport 
[52], suggesting a role for nutrients in modulating ghrelin 
action at central level.

Ghrelin release modulation and feedback regulation

Regulation of ghrelin secretion is still partly unknown but 
it is well established that ghrelin mRNA and plasma con-
centrations are increased during fasting [53, 54], and in 
humans circulating ghrelin is characterized by a peak just 
before meals, suggesting a potential role in meal initiation 
[55, 56]. On the contrary, ghrelin expression and plasma 
concentrations are decreased by food intake [56, 57] and 
in relation to food composition, with maximum inhibitory 
effect observed after carbohydrate ingestion, compared to 
proteins and lipids [58, 59].

In the long term, plasma ghrelin levels are known to be 
related to body weight and composition, with lower levels 
in obese patients and higher concentration in anorexia and 
in negative energy balance conditions including cachexia 
[8, 60, 61]. Importantly, among selected obese individuals, 
lower ghrelin levels were specifically related to a decrease in 
UnAG with no change in AG levels compared to non-obese 
[62]. Interestingly, the same study also showed that AG lev-
els in obese individuals which did not meet the diagnostic 
criteria for metabolic syndrome diagnosis were comparable 
to both lean and obese subjects with the metabolic syndrome 
[62] and in obese patients undergoing bariatric surgery, the 
obesity-associated altered AG/UnAG ratio was found to be 
maintained even at 12 months after surgery despite weight 
loss [63]. This evidence suggests that the modulation of 
ghrelin acylation and its kinetics may be a potentially inter-
esting target for further research not just in the treatment of 
obesity and its related complications, but also in the mecha-
nisms underlying the pathogenesis of obesity per se.

At molecular level, ingested fatty acids are directly used 
for AG acylation and GOAT activation is reported to be 
modulated by ingestion and availability of medium chain 
fatty acids and triglycerides [8, 64–66]. GOAT is also 
potently inhibited by octanoylated ghrelin end-products, 
suggesting the existence of a negative feedback regulation 
in AG synthesis [37]. Moreover, recent evidence shows that 
GOAT expression levels decrease during prolonged fasting, 
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leading to an increase in UnAG rather than AG in that con-
dition. Interestingly, GOAT-null mice, while not expressing 
AG, present a marked increase in UnAG levels in association 
with lower body weight and fat mass, and opposite effects 
are observed in transgenic mice overexpressing GOAT [37, 
64]. This body of evidence strongly supports the hypoth-
esis that the GOAT-ghrelin system acts as a nutrient sensor 
providing information on the presence of nutrients, poten-
tially leading to the optimization of nutrient partitioning and 
growth signals [64, 65, 67].

Ghrelin receptor

Acylated ghrelin’s receptor is a G-protein coupled recep-
tor produced in two isoforms by alternative splicing of an 
mRNA transcript of a single gene, located on chromosome 
3 q26-27 [8]. AG binding sequence has been identified in 
the first four residues at the N-terminus of ghrelin, which 
include the octanoylation site in Ser3 [68], and its interac-
tion with ghrelin receptor (GHSR) leads to a Gq-mediated 
activation of phospholipase C and subsequent production of 
inositol 3 phosphate and diacylglycerol. In turn, this leads to 
Ca2+ release from the sarcoplasmic reticulum and ultimately 
to GH secretion.

GHSR1a is highly expressed in the pituitary and hypo-
thalamus but also at lower levels in other brain areas includ-
ing hippocampus, ventral tegmental area, nucleus tractus 
solitarius and substantia nigra. Interestingly, also numer-
ous peripheral tissues express GHSR including intestine, 
pancreas, heart, lung, kidney and adipose tissue [69–73]. 
Evidence by several authors is consistent in failing to detect 
GHSR1a expression in both skeletal muscle and liver [69, 
74–78]. Interestingly the expression of both ghrelin and 
GHS-R1b has been reported also in tissues not expressing 
the active receptor form, including liver [69, 77], suggesting 
that ghrelin may anyway produce tissue-specific effects by 
activating different pathways [69, 79].

Supported by observations showing differential biologi-
cal activities between ghrelin forms, as well as by evidence 
from activation experiments of GHS-R1 variants in different 
cell types, some authors have proposed the existence of a 
novel class of receptors specifically binding UnAG [80, 81]. 
However, no receptor for UnAG has been currently identi-
fied [67, 80].

Ghrelin effects on energy metabolism, body 
mass and composition

Since its discovery, ghrelin has been progressively character-
ized as a hormone involved in energy balance homeostasis 
as well as in GH secretion, as its functions span from cen-
tral regulation of feeding to the modulation of whole body 

and tissue-specific metabolism [67]. With regard to ghrelin 
acylation, AG has long been considered the active form of 
the hormone for its interaction with GHSR and for its impact 
on GH secretion and on appetite stimulation, while UnAG 
was regarded as a precursor/degraded form without specific 
biological activities. As a consequence, until recent years 
most studies were focused on AG, or did not differentiate 
the two forms [82].

Food intake and energy balance

Ghrelin has a modulatory role in the regulation of energy 
homeostasis, including appetite stimulation [83, 84]. Both 
peripheral and central treatment with AG increase food 
intake and body weight in experimental models [85–87]. In 
agreement with the described low permeability of BBB to 
AG in the blood-to-brain direction [51], one study reports 
that ghrelin signalling from the stomach to the central nerv-
ous system (CNS) is principally mediated by afferent vagal 
nerve, and ghrelin-induced stimulation of appetite and GH 
secretion are prevented by blocking vagal fibres [20]. How-
ever, this point remains controversial since other studies 
show that vagal afferents are not necessary for AG effects 
on appetite stimulation and ghrelin analogues are effective 
also after gastrectomy and related vagotomy [88–90]. Impor-
tantly, effects of AG in appetite stimulation are preserved 
in GH-deficient rats, showing its independence from GH 
release [85].

At CNS level AG-induced effect on appetite stimulation is 
mediated by hypothalamic neuropeptide Y (NPY) secretion 
but also by interaction with other known appetite regulators 
at this level, including AgRP, orexin, endocannabinoids and 
leptin [8, 85, 91, 92]. NPY-producing cells largely express 
ghrelin receptors, and ghrelin i.v. administration in mice 
largely stimulates hypothalamic activity in the same neu-
rons [93, 94].

Nucelus caudatus and mesolimbic centres are also 
involved in long term energy homeostasis regulation by 
ghrelin [55] and effects on appetite possibly involve hedonic 
appetite regulation pathways [95]. In agreement, using func-
tional magnetic resonance imaging, Davis et al. have shown 
that ghrelin administration increases activity in food-reward 
brain regions in humans [96].

UnAG effects on food intake poorly understood and likely 
marginal. While some authors report that in rodent models 
peripheral UnAG treatment decreases food intake in asso-
ciation with slower gastric transit [97], others do not con-
firm this effect but describe an inhibitory effect of UnAG 
on AG-induced increase in food intake when both forms 
are administered simultaneously [98]. This effect appears 
to be independent of GHSR1a modulation and at least in 
part mediated by UnAG-induced release of nesfatin-1, an 
inhibitor of NPY. Central administration of UnAG, on the 



1001Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity (2019) 24:997–1013	

1 3

contrary, is reportedly also orexigenic [99], indicating that 
further investigation on UnAG effects and receptor interac-
tion is needed.

Whole body glucose homeostasis

Ghrelin also causes several direct effects on systemic and 
tissue metabolism, independently of food intake. At whole 
body level, ghrelin has an important impact on glucose 
homeostasis, as an important player in the pathophysiology 
of obesity-related metabolic complications [100]. Not long 
after ghrelin’s discovery, Broglio et al. reported that AG 
increases blood glucose levels and reduces insulin secre-
tion [101]. Later studies showed that AG reduces glucose-
stimulated insulin secretion, rather than fasting insulin levels 
[102]. Consistently, GHSR null mice have lower fasting gly-
caemia compared to control [103]. Underlying mechanisms 
were later investigated, showing that AG inhibits insulin 
release at pancreatic level by acting on voltage-dependent 
K channels (Kv) in β-cells. In fact, AG interaction with 
GHSR activates Kv channels through the receptor coupled 
G-protein αi, thus preventing Ca2+ signalling and limiting 
insulin exocytosis [104].

Ghrelin also modulates insulin sensitivity. In humans, 
total circulating ghrelin levels are positively associated with 
insulin sensitivity both in the general population [105] and 
in insulin-resistant diseases, including chronic renal dis-
ease [106] and obesity [107]. In addition, epidemiological 
data clearly shows that total plasma ghrelin levels are also 
inversely associated to the risk of developing type 2 diabetes 
and to several cardiovascular risk factors [105, 108].

With specific regard to the unacylated form, in 2004 Bro-
glio et al. reported that UnAG coadministration with AG in 
humans counteracted the decrease in insulin levels induced 
by AG alone [109]. Later evidence showed that, at variance 
with AG, UnAG potently rises insulin release in glucose-
stimulated conditions in rats [110], suggesting a potential 
independent role for UnAG in regulating glucose and lipid 
metabolism. Studies performed in a cohort of 45 metabolic 
syndrome patients clearly showed different associations of 
ghrelin forms with insulin resistance. AG ghrelin levels 
were, in fact, positively correlated with insulin resistance 
(HOMA index), while UnAG levels were markedly inversely 
correlated with the same parameter [62].

Importantly, in a population cohort from the Mo.Ma epi-
demiological study [111], UnAG was independently posi-
tively associated with insulin sensitivity, and lower UnAG 
plasma levels predicted 5-year insulin resistance [112]. 
Although it has been reported that UnAG may show a posi-
tive modulatory effect on insulin release in vitro [113, 114], 
in vivo studies collectively strongly suggest that UnAG met-
abolic effects are mainly related to the modulation of insulin 
action at tissue level. In excellent agreement, other studies 

show that acute administration of UnAG does not impact 
basal or stimulated insulin secretion in β-cells in humans 
[115].

However, further investigation on the molecular mech-
anisms involved in ghrelin forms’ metabolic actions is 
required, as several studies show that ghrelin signalling 
transduction is interlinked with other pathways, and may be 
modulated by different expression of receptor forms and by 
interactions among tissues [116–119].

Ghrelin and liver metabolism

Ghrelin reportedly modulates hepatic gluconeogenesis, and 
therefore, glucose release from the liver. Moreover, AG and 
UnAG have differential effects on glucose release in cul-
tured hepatocytes, with AG stimulating gluconeogenesis 
and UnAG suppressing it [120]. It should be pointed out 
that the underlying mechanisms need further investigation 
as the same effects were not replied with the GHSR1a ago-
nist hexarelin, in agreement with reports of no expression of 
GHSR in hepatocytes [120] and with the fact that hexarelin 
administration in humans does not increase plasma glucose 
levels [120].

However, consistently with in vitro experiments, the 
expression of PGC1α, a gluconeogenesis inducer, is 
increased in the liver of AG-treated rats [121], and mice 
studies with radiolabeled glucose showed that AG partially 
antagonizes insulin-induced suppression of gluconeogenesis 
[116]. Moreover, AG reduces insulin signalling in rodents, 
and this effect is not associated with changes in mitochon-
drial function [117, 121]. The same authors showed that 
sustained AG treatment also causes modulation of liver lipid 
metabolism by inducing a pro-lipogenic gene expression pat-
tern, increasing tissue triglyceride content and reducing the 
activation of the stimulator of fatty acid oxidation AMP-
activated protein kinase (AMPK) [117].

Both antioxidant and anti-inflammatory effects of AG 
have also been reported in the liver. In in vivo experiments 
of liver injury in rodent models, as well as in in vitro experi-
ments on primary human stellate cells exposed to chemical 
damage, AG blunted liver pro-oxidant and pro-inflammatory 
changes and this result was associated with reduced fibrosis 
[76, 122].

AG was also reported to improve liver redox state in 
association with improved inflammation markers in high fat 
diet-fed rats [123, 124]. However, studies in high fat fed 
rats show that the beneficial impact of AG on liver redox 
state and inflammation is not paralleled, expect in one study 
[123], by improved hepatic insulin signalling, but rather by 
decreased activating phosphorylation at AKT and GSK-3β 
levels [121, 124, 125]. This finding, which is also in agree-
ment with in vitro studies in hepatoma cells [125], is con-
sistent with reports showing that in rodent high-fat feeding 
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models, liver AKT activation may directly contribute to 
hepatic lipogenesis, oxidative stress and inflammation [126].

Fewer reports on UnAG effects on liver metabolism are 
available. Recent evidence has shown that 4-day UnAG 
administration does not modify liver redox state, mitochon-
drial function, inflammation and insulin signalling in young 
healthy rats, and that these findings are tissue-specific [127]. 
These results have also been confirmed in transgenic mice 
with UnAG expression upregulation [128]. However, recent 
evidence both in vivo and in vitro suggests that in tissue 
metabolic stress conditions, such as during ischemia/reper-
fusion, UnAG may improve liver mitochondrial function and 
protect against apoptosis [129].

Ghrelin and adipose tissue

Appetite stimulating effects of ghrelin were very soon asso-
ciated with increased body weight, and particularly with fat 
mass [87]. Further studies in animal models have shown that 
ghrelin-induced effects are mainly observed in retroperito-
neal fat mass and only to a lesser extent in subcutaneous 
adipose tissue [130]. In a model of daily peripheral ghrelin 
administration these effects were found to be independent 
of appetite-induced increased food intake but instead related 
to reduced fat utilization [87], and in vitro experiments con-
firmed that ghrelin inhibits lipolysis in adipocytes [131]. 
Also, AG administration did not impact on food intake in 
high fat diet feeding but increased adipose tissue mass and 
favoured the expression of lipogenesis markers [132]. Con-
sistently, ghrelin- or GHRS-null mice were protected from 
high fat diet induced obesity [133, 134].

Ghrelin promotes adipocyte differentiation [135] and 
ghrelin’s proadipogenic effect are at least in part mediated 
by peroxisome proliferator-activated receptor γ (PPARγ2), a 
transcription factor which favours triglyceride synthesis and 
downregulates lipolysis [136].

Interestingly, in white adipose tissue, ghrelin enhances 
the expression of the uncoupling protein 2 (UCP-2), a pro-
tein involved in the regulation of mitochondrial reactive 
oxygen species (ROS) generation, and in UCP-2 null mice, 
ghrelin enhances its lipogenic effects, suggesting a possible 
feedback regulation mechanisms involving mitochondrial 
function [137].

UnAG impact on adipose tissue has been less investi-
gated. While in vitro reports suggest that it may induce at 
least in part superimposable effects to those produced by AG 
on adipogenesis upregulation and lipolysis inhibition [131, 
138], in vivo studies in rodents show that UnAG peripheral 
administration may reduce fat mass [139]. Although further 
studies are needed on the potential role of UnAG on adipose 
tissue regulation, reported evidence suggests that UnAG is 
an active hormone with modulatory functions in the complex 
context of lipid homeostasis.

Ghrelin and skeletal muscle

Skeletal muscle metabolism is characterized by a cluster of 
interlinked metabolic functional pathways, including mito-
chondrial function, redox state regulation, inflammation 
and insulin signalling and action [84, 140–144]. Increased 
muscle ROS production and inflammation are linked at 
the level of IκB/NF-κB activation, and may cause insulin 
resistance by inhibition of insulin signalling downstream of 
insulin receptor [145–148]. Interestingly, ghrelin has been 
reported to be an important modulator of these factors at 
several levels.

Mitochondrial function

Mitochondrial respiration may be modulated by several 
mechanisms including UCPs, which selectively reduce 
mitochondrial ROS generation by inducing mild uncou-
pling [149–151]. In skeletal muscle, both UCP2 mRNA 
and protein levels are increased after 4-day AG treatment 
at non orexigenic doses in healthy rats, and this finding is 
importantly associated with enhanced mitochondrial enzyme 
activities [117]. Moreover, the same AG treatment improved 
altered mitochondrial oxidative capacity and transcription 
of mitochondrial regulatory genes in both uremic rats and 
in mice with chronic heart failure [152, 153], and was asso-
ciated with preserved muscle triglyceride accumulation in 
high fat diet-fed rodents [121].

On the contrary, recent evidence has shown that UnAG 
treatment is associated with reduced ATP synthesis in 
healthy rats and that this finding is also present in obese 
mice with UnAG overexpression [127].

Redox state

In addition, a role for ghrelin in blunting oxidative stress is 
supported by several studies at whole body level and in sev-
eral tissues. In obese patients ghrelin levels negatively corre-
late with systemic oxidative stress marker 8-epi-prostaglan-
din F2α (8-epi-PGF2α) [154] and in normobaric hypoxia, 
ghrelin administration attenuates hypoxia-induced increase 
in plasma levels of malondialdehyde (MDA), another marker 
of oxidative stress [155]. Moreover, evidence supporting 
ghrelin as a negative modulator for oxidative stress has been 
reported also tissues. In experimental models of ischemic 
or alendronate-induced gastric injury, intravenous ghrelin 
treatment lowered tissue damage in association with lower 
ROS production [156, 157], and reperfusion with ghrelin in 
a rat model of cardiac cachexia decreased myocardial lipid 
peroxidation [158].

Underlying mechanisms may involve a negative modula-
tion in ROS generation. While AG effect on ROS production 
by inducing mild uncoupling in mitochondria has already 
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been described, some observations suggest that AG may also 
act by increasing antioxidant mechanisms [159–161].

Few data are available on ghrelin effects on muscle oxi-
dative stress. AG potential role in skeletal muscle redox 
state modulation has been investigated in a rodent model 
of diet-induced obesity. In 1-month high fat diet-fed rats, 
sustained 4-days AG treatment did not modify obesity-
induced increase in muscle glutathione peroxidase (GPx) 
or glutathione oxidation status [162].

On the contrary, some interesting in vitro evidence shows 
that UnAG, differently from AG, reduces mitochondrial 
ROS generation in neonatal ventricular myocytes [163]. 
Moreover, Togliatto et al. have shown that increased skeletal 
muscle ROS imbalance in a mouse model of limb ischemia 
was counteracted by UnAG but not AG treatment via an 
increase in SOD-2 expression [164]. The same authors also 
observed similar protection of skeletal muscle from ROS in 
a mouse model of glucose intolerance with peripheral artery 
disease [165]. A potential role for UnAg in ROS modula-
tion in skeletal muscle was further confirmed and defined by 
recent evidence, which showed both in vivo and in vitro that 
UnAG lowers mitochondrial ROS generation, thus improv-
ing overall redox state and that this finding is unrelated to 
changes in antioxidant systems [127, 166]. Improved redox 
state was also observed in the gastrocnemius muscle of diet-
induced obese mice overexpressing UnAG, with levels com-
parable to wild-type control [127].

Inflammation

AG has been reported to lower inflammation in different 
experimental settings [167]. GHSR is expressed in both 
human T lymphocytes and monocytes, and in these cells 
ghrelin inhibits the expression of the pro-inflammatory 
cytokines IL-1β, IL-6 e TNF-α [168]. Accordingly, ghre-
lin levels are increased in septic dogs [169] and ghrelin is 
among the first increasing hormones responding to endo-
toxic shock in humans [170], further supporting its potential 
anti-inflammatory role. Moreover, AG-induced reduction of 
pro-inflammatory cytokines is paralleled by increased levels 
of the anti-inflammatory cytokine IL-10 in several cell types 
[171, 172]. This consistent evidence on the systemic and 
tissue anti-inflammatory effects of ghrelin has suggested its 
potential use as a therapeutic agent in clinical settings char-
acterized by high inflammation. Clinical trials have so far 
shown that ghrelin treatment suppresses airway neutrophil-
dominant inflammation in patients with chronic respiratory 
infection [173] and that postoperative ghrelin administration 
in patients with oesophageal cancer inhibited inflammatory 
mediators and ameliorated their clinical course [174].

The role of ghrelin in skeletal muscle inflammation is 
largely to be investigated. However, sustained administration 
of AG markedly lowered tissue NF-κB nuclear translocation 

and tissue TNFα expression in a rodent model of diet-
induced obesity, independently from changes in redox state 
[162]. Interestingly, AG effects in lowering inflammation 
are also associated with improved redox state in different 
models [156, 157], strongly suggesting an interplay between 
ROS production or scavenging and inflammation modula-
tion. Since in skeletal muscle high TNFα levels may reduce 
mitochondrial function [175], AG might improve mitochon-
drial function with a mechanism at least in part involving the 
reduction of TNF-α levels.

UnAG effects on muscle inflammation have only been 
recently investigated, with reports showing that hormone-
induced improvements in muscle redox state are paralleled 
by the development of an anti-inflammatory cytokine pattern 
at tissue level both in vivo and in vitro [127, 166].

Tissue insulin signalling and action

Available data globally suggests that AG enhances mito-
chondrial function, with reports showing also associated 
improvements in redox state and inflammation. In sev-
eral models and experimental settings, it has been shown 
that these effects, alone or combined, are associated with 
increased tissue insulin sensitivity and action [146–148, 
153], indicating that AG may potentially improve insulin 
sensitivity at least partly through these pathways.

In several tissues AG has in fact been reported to acti-
vate protein kinase B (AKT), a main mediator of insulin 
signalling pathway, in association with beneficial effects in 
different experimental settings [176–180]. Acute AG infu-
sion in humans [181, 182] or experimental models [116] has 
provided conflicting results in term of systemic or muscle 
insulin sensitivity changes, with reports of enhanced [116, 
121, 168], unchanged [182] or reduced [181] insulin action.

Fewer reports are available on UnAG effects on insulin 
signalling. Interestingly, one study by Lear et al. showed that 
in HL-1 cardiac cells and in primary cultures of neonatal rat 
cardiomyocytes, while both ghrelin forms do not activate 
AKT, UnAG but not AG increases insulin-induced GLUT4 
activation [183]. Recent evidence shows that in young adult 
rats as well as in vitro, UnAG increases activating phospho-
rylation at AKT level and downstream, with activation of 
GSK-3β, and of the protein anabolic mediators PRAS40 and 
P70S6K [127, 144, 166]. Importantly, UnAG treatment was 
able to counteract muscular mass wasting in a rodent model 
of chronic kidney disease [166].

Autophagy

Autophagy is an intracellular selective auto-degrada-
tion process that contributes to amino acid recycling 
for essential proteins synthesis, but may also eliminate 
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dysfunctional mitochondria, thus removing inefficient 
energy consumption and also excess ROS generation [184, 
185].

In 2012 Słupecka et al. showed that enteral AG admin-
istration was able to favour small intestine mucosa 
renewal in new-born piglets in association with enhanced 
autophagy [186], demonstrating for the first time a link 
between ghrelin and autophagy. These findings were fol-
lowed by other studies in different tissues, experimental 
models and conditions, and mostly confirmed ghrelin as 
an autophagy inducer.

Interestingly, experiments in an in vitro model of car-
diac hypoxic injury showed that AG stimulated autophagy 
with parallel reduction of ROS generation [187]. In skel-
etal muscle cells, both AG and UG reportedly enhanced 
autophagy markers, while blunting apoptosis. Moreover, in 
a mouse model of gene-induced insulin resistance, UnAG 
was also able to improve muscle insulin signalling and 
GLUT4 activation in association with increased autophagy 
[188]. Recent evidence both in vivo and in vitro further 
shows that UnAG-induced beneficial effects on skeletal 
muscle metabolism, with lower mitochondrial ROS pro-
duction, lower inflammation and enhanced insulin sig-
nalling and action in rat muscle are at least in part be 
mediated through upregulation of autophagy [127, 166] 
(Fig. 2). In vitro experiments with prolonged hormone 
incubation of C2C12 myotubes confirmed UnAG-relate 
findings, while only highest AG doses selectively induced 
a moderate increase of GSK-3βS9 phosphorylation but 
failed to reduce ROS production and to enhance down-
stream insulin signalling [127], suggesting that AG may 
be a weaker autophagy inducer than UnAG.

Ghrelin in obesity‑induced insulin resistance

Despite the fact that ghrelin was at first characterized for 
its effects on GH secretion, polymorphism studies in ghrl 
gene have also established a link between ghrelin, obesity 
and obesity-correlated comorbidities development [33, 
34]. Moreover, effects of ghrelin on appetite stimulation 
and therefore on body weight and fat mass increase were 
soon identified [67]. Also, patients with Prader–Willy 
Syndrome (PWS), a complex genetic disease characterized 
by hypomentia, hormonal impairments and early obesity 
development, present high levels of circulating AG but 
not UnAG both in fasting and in postprandial conditions 
[189–192]. These findings soon led to the hypothesis that 
ghrelin agonists could be potentially used as anti-obesity 
drugs. Some studies further supported this hypothesis 
showing that engineered mice lacking GHSR expression, 
as well as mice with induced expression of an inactive 
form of GHSR, did not develop obesity under high fat diet 
treatment [133, 134, 193]. However, enthusiasm for treat-
ing obesity by counteracting ghrelin-mediated effects on 
appetite was replaced by scepticisms, as data from other 
studies showed that decreased ghrelin action does not 
always result in hypophagia and loss of body mass [194, 
195], and that the ablation of ghrelin cells in adult mice 
does not decrease response to HFD [196].

However, observations suggesting that ghrelin could 
regulate glucose homeostasis and energy metabolism also 
independently of food intake, led to further investiga-
tions of its potential role in obesity and obesity-related 
co-morbidities, given their complex metabolic pathophysi-
ology [197–199]. The first evidence linking ghrelin with 
human obesity and insulin resistance was reported soon 
after the discovery of the hormone. In 2001, Tschöp et al. 
clearly showed that plasma ghrelin levels were decreased 
in obese humans [61] and a few years later McLaughlin 
et al. showed that among obese individuals, ghrelin levels 
were lower in insulin-resistant subjects [107]. This find-
ing was further investigated in studies in selected patients 
with the metabolic syndrome which demonstrated that 
obesity-associated reduction in total plasma ghrelin lev-
els was related to a decrease of the unacylated form, while 
absolute AG levels were not modified compared to non-
obese [62]. The same study also showed that in metabolic 
syndrome patients, among markers [200], while AG levels 
were positively associated with insulin resistance, waist 
circumference and BMI, UnAG levels strongly negatively 
correlated with HOMA [62]. More recently, data analysis 
from a large cohort has confirmed these findings both in 
the general population and more specifically in overweight 
subjects. In addition, UnAG levels were also found to be 

Fig. 2   Proposed interactions between UnAG and clustered metabolic 
alterations in skeletal muscle: chronic UnAG over-exposure lowers 
mitochondrial production of reactive oxygen species (ROS), inflam-
mation and insulin signalling activation levels. Our findings further 
indicate UnAG to directly lower mitochondrial ROS generation 
through autophagy stimulation
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independently negatively associated with the development 
of insulin resistance after 5 years [201].

At tissue level, ghrelin has shown to produce a pattern 
of tissue-specific effects in obese models. In rats fed with 
high fat diet (HFD) (60% of calories from fat) diet for 
4 weeks, 4 day sustained AG administration improved liver 
oxidative stress and inflammation [124] and similar results 
were obtained also by other authors after 8 weeks HFD and 
AG treatment throughout the whole period [123]. These 
findings were not paralleled, except in one study [123], by 
improved hepatic insulin signalling, but rather associated 
with decreased activating phosphorylation at AKT and 
GSK-3β levels [121, 124, 125]. Decreased hepatic insulin 
sensitivity in obese rats is also reportedly associated with 
a decrease in liver expression of insulin receptor substrate 
1 (IRS-1), an important mediator and modulator of insu-
lin signalling transmission from insulin receptor to AKT 
[202]. Interestingly, this finding was reversed by UnAG 
administration [203]. Collectively, these observations are 
consistent with reports showing that liver AKT activation 
may directly contribute to hepatic lipogenesis, oxidative 
stress and inflammation in rodent models of obesity [126]. 
Mechanisms involved in AG modulation of liver metabo-
lism in diet-induced obesity are unknown, but a recent 
report has shown that in fat-induced obese rodents, and in 
in vitro hepatocytes incubated with saturated fatty acids, 
AG treatment reduced lipotoxicity via autophagy induc-
tion [204].

With regard to adipose tissue, Perez-Tilve et al. have 
shown that chronic central AG administration in HFD-
fed rats, while not increasing food intake, was however 
associated with enhanced lipogenesis and increased body 
fat mass, indicating that AG modulation of adiposity is 
independent of orexigenic effects [132].

In skeletal muscle, sustained 4-day AG treatment was 
associated with the prevention of obese-related tissue 
triglyceride content after 4 weeks of HFD [121, 205]. 
Moreover, although in a similar study by the same group 
no effect on obesity-induced increase in muscle oxidized 
glutathione was observed, sustained administration of AG 
markedly lowered tissue NF-κB nuclear translocation and 
tissue TNFα expression [162]. This finding was not how-
ever associated with significant increases in muscle insulin 
signalling activation at AKT and GSK-3β levels compared 
to non-treated obese rats [162].

On the contrary, recent evidence shows for UnAG more 
clear results. The beneficial effects of UnAG on muscle 
mitochondrial function, redox state, inflammation and 
insulin signalling observed in lean rats were in fact con-
firmed in transgenic mice, in which UnAG overexpression 
was able to normalize obesity-induced insulin resistance 
[127].

Conclusions

Collectively, the literature shows that ghrelin forms may play 
a major role in energy homeostasis and in the regulation 
of energy metabolism with complex interactions at several 
levels. While AG is a main appetite modulator at CNS level 
that also induces a complex set of tissue-specific metabolic 
effects at tissue level, UnAG is emerging as a novel inde-
pendent hormone, which is directly able to reduce skeletal 
muscle ROS generation also by increasing autophagy, with 
associated improved tissue inflammation and insulin activ-
ity. Moreover, reports of beneficial effects induced by ghre-
lin forms in different models of pathological conditions, 
including obesity, suggest that further research is strongly 
needed to investigate the potential use of ghrelin forms in 
clinical practice. Further study of the molecular mechanisms 
involved might also lead to the discovery of important new 
therapeutic targets.
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