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Abstract
Purpose of Review Energy storage is capable of providing a variety of services and solving a multitude of issues in
today’s rapidly evolving electric power grid. This paper reviews recent research on modeling and optimization for optimally
controlling and sizing grid-connected battery energy storage systems (BESSs). Open issues and promising research
directions are discussed.

Recent Findings Recent studies on BESS dispatch, evaluation, and sizing focus on advanced modeling and optimization
methods to maximize stacked value streams from multiple services. BESS models have been improved to better represent
operational characteristics or capture degradation effects. Different solution methods and optimization techniques have been
proposed to improve the benefits and cost-effectiveness of BESSs, using deterministic approaches prevalently but with
impressive progress in modeling and addressing uncertainties.

Summary Recent progress in BESS scheduling and sizing better supports planning and operational decision-making in
different use cases, which is highly important to advance the deployment of BESSs. Additional research is required to
properly model the trade-off between short-term benefits and service life with multiple degradation effects explicitly
considered in the decision-making process. Advanced methods are to be developed for effectively determining optimal
BESS sizes that maximize overall benefits within a varying lifetime considering diversified system conditions, as well as
uncertainties at planning and operational stages.

Keywords Battery degradation · Bundling grid services · Energy storage · Modeling · Optimal dispatch · Sizing ·
Stochastic optimization

Introduction

Battery energy storage systems (BESSs) are flexible and
scalable, and can respond instantaneously to unpredictable
variations in demand and generation. They can provide a
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variety of services for bulk energy, ancillary, transmission,
distribution, and customer energy management [1, 2]. The
development and deployment of grid-connected BESSs
have been gathering momentum, especially with the
increasing penetration of renewable generation. As the
technology has advanced [3], many demonstrations and
deployments have been realized [4], and the regulatory
structure is emerging [5]. For example, the Federal Energy
Regulatory Commission (FERC) issued Order 755 in 2011,
requiring ISO/RTO markets to compensate resources that
can provide faster-ramping frequency regulation. As a
result, 75% of large-scale battery storage power capacity
in the U.S. provided frequency regulation in 2018. In
February 2018, FERC issued Order 841 to further remove
barriers that had prevented the efficient deployment of
battery storage resources [6]. Clearly, developing less
expensive and safer storage devices with longer cycle
life is of great importance. There are quite a number of
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facilities demonstrating the technical feasibility of storage
technologies, but few of these are truly cost-effective
commercial ventures. Value streams must be identified and
appropriately monetized. Considering the cost of a battery
at current market rates, it will become necessary to capture
multiple value streams simultaneously for a project to be
financially viable.

Optimal dispatch and sizing considering Bundling
services is the key to maximize benefits and enhance
cost-effectiveness of BESSs. Economic benefits of a
BESS highly depend on its operational characteristics and
physical capability. Charging control could be extremely
complicated due to the competition among various services
for limited power and energy capacity, not only on a
time step but also intertemporally more-energy discharged
in the current hour, less is available for future hours. In
addition, battery charging and discharging profiles have
a direct impact on the battery degradation and loss of
life. Frequent charging/discharging helps increase short-
term benefits but accelerates degradation. Optimal strategies
are needed to maximize total economic benefits within the
battery lifetime, considering multiple degradation effects in
the decision-making process. The problem becomes even
more complicated when a BESS needs to be optimally
sized with an objective to not only maximize the net
benefits but also consider resilience performance. When
incorporating uncertainties into BESS scheduling and sizing
in addition to capturing diversified system conditions, these
problems become extremely challenging to solve due to the
complexity of uncertainty models and/or increased size of
the optimization problem.

Many studies have been dedicated to this topic during
the last few years. BESS models with different levels of
complexity and fidelity are proposed and used. Problem
formulation and solution methods largely depend on appli-
cations to be considered. This paper presents taxonomies
for classifying modeling and solution methods for grid-
connected BESSs, reviews existing studies in the context of
the taxonomies, and discusses open issues and promising
research directions.

ModelingMethods

Technical characteristics and physical capability need to
be appropriately modeled when scheduling, evaluating, or
sizing a BESS for grid applications. For example, the rated
power capacity of a BESS limits its ability to interact
instantaneously with the grid. The energy capacity limits
its capability to shift energy over time. The charging and
discharging profiles have a direct impact on loss of life
and degradation in performance, affecting strategies of
using a BESS for grid services over its service life. Note

Table 1 Existing studies grouped by BESS modeling methods

Degradation effects

No Loss-of-life Full model

Operational
Characteristics

Simplified [7–30] [31–43] [44–46]
High-fidelity [47–50] [51] [52]

that in addition to battery storage, a BESS also includes
other elements, such as monitor and control, protection,
thermal management, and power conversion systems. In
BESS scheduling and evaluation studies, black- or grey-
box models at the system level are generally preferred over
individual component models to avoid unnecessary details,
maintain modeling simplicity, and improve computational
efficiency.

A BESS can be represented as a dynamical system
with two kinds of state variables to capture temporal
interdependency of charging/discharging operations:

– State of charge (SOC) or energy state is a state variable
that is used to describe the fast dynamics of present
energy level.

– Several state of health (SOH) or degradation state
variables are used to describe the slow dynamics of
capacity loss associated with battery aging.

Modeling methods for representing operational characteris-
tics and capturing degradation effects are summarized and
classified as follows. Existing studies are grouped by BESS
modeling method in Table 1.

Operational Models

BESS operational models describe how a BESS can be
operated using charging/discharging power and SOC. SOC
is defined as the ratio of energy level to energy capacity
(the usable energy from a fully charged BESS). The SOC
dynamics characterize how the charging and discharging
power affects future SOC. A BESS’s charging/discharging
power is limited by the rated power capacity and could also
depend on SOC. BESS operational models can be classified
into two types that are described as follows.

Simplified Linear Systems

Most existing BESS scheduling and evaluation studies are
based on a scalar linear system that resembles a simplified
dynamics of energy state parameterized by static charging
and discharging power limits, energy or SOC limits, and
constant efficiencies. These models are also characterized
by static power and energy capabilities that are independent
of SOC. Some studies are based on a constant round-trip
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efficiency (RTE) model to capture electrical and other
losses, such as [11, 24, 39]. However, the same RTE
with different one-way efficiencies may lead to different
optimal operating schedules. More importantly, by using
an RTE only, one cannot accurately estimate SOC during
charging or discharging and therefore could obtain an
operating schedule that cannot be followed. Modeling
one-way efficiencies is straightforward using conditional
expressions as shown in studies such as [15, 35, 43].
Nevertheless, the conditional expressions cannot be directly
integrated into standard mathematical programming. One
common method to work around this is to introduce two
non-negative auxiliary variables representing charging and
discharging power and thereby capture losses associated
with charging and discharge separately. Simultaneous
charging and discharging lead to “fictitious” consumption
of energy in a BESS with non-ideal efficiencies. Such
kind of solutions are physically unrealizable. To address
this problem, studies such as [13, 14, 38] introduce binary
variables to avoid charging and discharging at the same
time. An alternative method is to add complementarity
constraints where the product of charging and discharging
power at any time must be equal to zero, as shown in
[22]. Note that a solution with simultaneous charging and
discharging is not optimal for many practical applications
because it causes unnecessary losses [19, 23]. In those
cases, binary variables and complementarity constraints can
be ignored, as adopted in many studies such as [8, 9,
44]. In cases where simultaneous charging and discharging
could be an optimal solution, relaxation of complementarity
constraints can be used [18, 53].

High-Fidelity Systems

The simplified scalar linear model is easy to use but subject
to several disadvantages and limitations. First, the power
capability generally depends on SOC, but is completely
ignored in the simplified models. In addition, the rate of
change of SOC depends on not only charging/discharging
power but also SOC. Furthermore, the charging/discharging
efficiency also varies with SOC and power, whereas
constant efficiencies are assumed in the simplified models.
Several studies are dedicated to building generalized high-
fidelity models into BESS scheduling and evaluation. The
high-fidelity models can be a set of lookup tables or
analytical expressions, as reported in [47–50, 52]. Such
types of models can be constructed using manufacturer’s
specifications, test data, or existing empirical models.
Regression techniques are commonly used to generate
lookup tables or determine modeling parameters [50]. Note
that depending on the characteristics of BESSs, high-fidelity
models can be linear systems that well represent varying
efficiencies, varying power capability, and SOC change rate

as functions of power and SOC. These high-fidelity models
help improve accuracy but increase computational burden
and complexity when non-linearity is introduced.

DegradationModels

Battery life is a measure of battery performance and
longevity, which can be quantified in two ways: calendar
and cycle life. Calendar life is the elapsed time before a
battery becomes unusable whether it is in active use or
inactive. It reflects a battery’s inherent degradation over
time. Cycle life is defined as the number of cycles a
battery can perform before its nominal capacity falls below
a certain percentage of its initial rated capacity. It depends
on several factors such as depth of charge, discharging rate,
and ambient temperature. Many existing studies for BESS
scheduling and evaluation assume fixed lifespan to capture
calendar aging, without explicitly modeling cycle aging. As
a result, the value of a BESS may be overestimated when the
battery needs to be retired earlier than its calendar life due to
accelerated cycle aging. Degradation models describe how
different operations affect the aging of cycle life, energy
capacity, and resistance of a BESS. Most scheduling and
evaluation studies that involve degradation models are based
on simplified loss-of-life calculation. There are few studies
that employ models to fully capture aging effects, including
degradation in performance. Two types of degradation
models are summarized as follows.

Loss-of-life Models

The cycle life of a battery can be measured using either
(a) total amount of energy in kilowatt hours that can
flow throughout it or (b) the number of times it can be
cycled before it needs to be replaced. The loss-of-life cal-
culation depends on multiple factors, such as number of
cycles, depth of cycles, and amount of energy charged and
discharged. When capturing loss of life associated with
different charging and discharging operations, almost all
existing studies introduce an aging or degradation cost to
transform the long-term installation cost to the short-term
operational cost. In practice, irregular charging-discharging
cycles make it difficult to count the number of life cycles
and the corresponding energy throughput. Approximation
methods are typically used. Given the lifetime through-
put energy, the degradation cost per kilowatt hour of dis-
charged energy can be estimated [34, 35]. Alternatively,
given the number of cycles to failure at different depth
of discharge (DOD), the corresponding degradation cost
per cycle can be calculated [32, 43]. Aging cost can also
be approximated as a piecewise linear function of charg-
ing/discharging power [31, 39], DOD [38, 40, 42], or both
[35].
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Full Degradation Models

In addition to loss of life, charging and discharging
operations over time also slowly impact the performance
of a BESS, including reduced capacity and increased
resistance, and thereby affect how a BESS will be used
in future years and the corresponding benefits. The fading
capacity and growing loss could significantly affect BESS
scheduling strategies and evaluation results, but have not
been well considered in charging control in existing
studies. Some studies such as [44, 46] explicitly model
dynamics of energy capacity to more accurately calculate
degradation cost or limit the number of cycles within
the calendar life. Other works such as [45] evaluate
BESS capacity degradation via a post-processing step.
An existing degradation-cost-based dispatch strategy can
prevent charging/discharging operations with benefits less
than the cost associated with loss of life, but does not
necessarily maximize the total benefits over a BESS’s useful
lifetime. In other words, the degradation effects are not
appropriately modeled to capture the reduced benefits in
future years as an opportunity cost of cycling a BESS to
maximize short-term benefits.

Use Cases and OptimizationMethods

The benefits from a BESS depend on how it is scheduled
and dispatched to provide different services. The opera-
tional flexibility and degradation models describe feasi-
ble charging and discharging operations. Charging control
needs to be designed to optimally use a BESS to maximize
the total benefits from multiple grid services in both opera-
tional scheduling and long-term planning studies. Require-
ments and rules could be very different from one service
to another. Objective functions and constraints need to be
designed to properly model each service in different use
cases. In addition, it is also necessary to capture the coupling
among different services and their dependence on sched-
uled operation and capability to deviate from the scheduled
baseline. Due to the temporal interdependency of BESS
operations, multi-period optimization is almost a must. The

problem formulation and solution methods largely depend
on the nature of the problem. This section summarizes
different use cases, problem types, solution methods, and
optimization techniques in existing BESS scheduling, eval-
uation, and sizing studies. Table 2 groups these studies by
problem type, number of applications, and solution method.

Use Cases

While a BEES can provide Bundling grid and end-user
services, many studies focus on a single application, such
as [13, 51, 55] on energy arbitrage or energy cost reduction,
[15, 34] on microgrid cost reduction, and [56] on frequency
regulation. Considering the cost of batteries at current
market rates, value streams from multiple applications are
extremely important for a BESS project to be financially
viable. Scheduling and evaluation of a BESS to capture
stacked value streams has been a focus during the past few
years. Energy arbitrage and frequency regulation are the two
applications that are often considered simultaneously for
grid-scale BESSs in existing studies such as [11, 37, 39]. As
for behind-the-meter services, energy and demand charge
reduction are commonly considered together [16, 20]. There
are also studies that consider three or more services at the
same time such as [9, 24, 31]. Several papers such as [27,
29, 41] are dedicated to the use of BESSs to simultaneously
generate economic benefits and improve system resilience.

Problem Types

From the perspective of time frame, existing studies can be
classified into two groups:

– short-term operation (scheduling and dispatch)
– long-term planning (evaluation and sizing)

In operational scheduling studies such as [22, 38, 43, 47],
model predictive control (MPC) problems are formulated
over a short period of time, typically a day, to make
charging/discharging decisions at each time step. This type
of studies focus on BESS scheduling and dispatch methods,
without any cost-benefit analysis over a long-term or battery
life. Nevertheless, these methods can be used to repeatedly

Table 2 Existing studies grouped by problem type, number of applications, and solution method

Mathematical programming Other methods

Deterministic Stochastic Deterministic Stochastic

Operational
Scheduling

Single application [18, 32, 34] [13, 22, 38] [12, 19, 21] [35, 43, 51]
Multiple applications [7, 23, 31, 46, 47] [17, 24, 40] [48, 49] [25, 37]

Evaluation
or Sizing

Single application [14, 44] [10, 36] [33, 42] [26, 28, 54]
Multiple applications [9, 11, 15, 16, 39] [27, 29] [20, 30, 48, 50] [41, 45]
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schedule and simulate BESS hourly and daily operations
over one or multiple representative years and thereby to
estimate the present value of net benefits. Such a strategy
is popular in many BESS evaluation studies, such as [9,
11, 39, 50]. Some other evaluation studies such as [11, 16]
formulate the value assessment problem as an optimization
by explicitly modeling BESS operations over a longer
period (such as a month or year) in which diversified loading
conditions and varying prices are captured.

While rated capacity and maximum charging are given in
optimal scheduling and evaluation studies, sizing problems
aim to identify the optimal BESS sizes to maximize the
net benefits, considering the trade-off between benefits
and cost. Optimal dispatch and/or charging/discharging
control rules are generally involved to capture how the
net-benefits vary with BESS size. These problems are
generally more challenging to solve. To simplify the
problem, simplified linear operation models are commonly
used. In addition, degradation effects are not considered, or
simply represented by degradation cost functions. To further
simplify the problem, many sizing studies such as [14, 15,
44] only consider a short time frame or a few operation
snapshots instead of a large number of diversified system
operating conditions.

SolutionMethods

Value from a BESS depends on how it is used. It is
desirable to find the best way to charge and discharge a
BESS and thereby maximize the economic benefits from
one or multiple applications. Optimization problems need
to be formulated and solved based on BESS operational
characteristics and degradation models while capturing the
coupling among different applications. There are different
approaches for optimally scheduling and sizing a BESS.

Most existing studies are based on mathematical pro-
gramming methods, where the scheduling and sizing prob-
lems are formulated as standard programming problems
(e.g., linear and convex programming) and then solved using
off-the-shelf solvers. While almost all of these problems
involve non-linear terms and logical expressions, optimiza-
tion modeling techniques such as piecewise linear approxi-
mation, convex relaxation, and Big-M method can be used
to generate their linear or convex equivalents or approxima-
tion. Linear programming (LP) is the most popular method
that is used in many existing studies such as [9, 39, 44, 46].
Often, binary variables are introduced to represent gener-
ator on/off and battery charging/discharging status as well
as the selection of options in different use cases, resulting
in mixed-integer LP problems, such as the ones formulated
in [14, 29, 38]. There are also studies based on convex
optimization such as quadratic programming in [7], second-
order cone programming [18], and conic programming [22].

Dynamic programming (DP) and reinforcement learning
(RL) are also used for BESS scheduling and evaluation,
especially when non-linear characteristics and constraints
are involved. While the original engineering problems
are described by continuous variables, DP and RL find
approximate solutions in the discrete space. In these
methods, BESS scheduling and evaluation problems are
formulated as a Markov decision process. At each time
step, given the current SOC, a BESS is charged/discharged
according to a control policy and transits into a new SOC.
The goal is to find a charging control policy that maximizes
the cumulative benefits. Examples that are based on DP
algorithms include [35, 49, 50]. To solve the curses of
dimensionality of DP, approximated dynamic programming
(ADP) algorithms have been proposed in [26, 28] for
energy storage scheduling problems. While DP algorithms
are model-based, RL can be seen as model-free or sample-
based. Several RL algorithms have been developed for
BESS scheduling [43, 51].

MPC is a standard method used to perform iterative
and finite-horizon optimal dispatch of a BESS. One main
advantage of MPC is that the model prediction allows
to formulate system constraints explicitly in the optimal
control policy design. At each time step, one solves a
finite-horizon optimal dispatch problem online and updates
system states. The iterative scheduling and dispatch process
helps implicitly address uncertainties to some degree. Such
a strategy has been employed in many studies, such as [9,
47, 48].

As for BESS sizing, one popular method is to formulate
standard mathematical programming problems in which
BESS energy and power capacity are treated as decision
variables and the net benefits become the objective function
to be maximized [14, 16, 44]. Bilevel optimization is an
another approach for optimal sizing [30, 54], where the
lower-level evaluation of a given size of BESS is embedded
within the upper-level size searching problem. Searching
algorithms such as gradient-based methods, particle swarm
optimization, and genetic algorithm are often used at the
upper level. Analytical approaches have also been proposed
for BESS sizing in existing studies, such as [20, 42], based
on an objective quantitative analysis of cost and benefits.
Such kinds of methods identify key factors that affect
optimal sizing and directly link the optimal sizes to input
parameters.

Note that a large body of literature is based on
deterministic methods using historical or representative
system data, without explicitly modeling and addressing
uncertainties associated with system load, renewable
generation, and prices. In practice, scheduling and sizing
decisions need to be made under uncertainties. Stochastic
programming [24, 43], chance-constrained optimization
[36, 40], ADP [26, 28], and robust optimization [17, 38]
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are popular methods for handling uncertainties in BESS
scheduling and sizing problems. Reference [57] provides
stochastic optimization canonical modeling framework
and four fundamental classes of policies that encompass
all the competing solution approaches. In addition to
centralized approaches where a single control center gathers
information from and provides control signals to the entire
system, a number of distributed alternatives have been
proposed for BESS operational scheduling [12, 19, 21]. In
these algorithms, each coordination agent only maintains
a set of variables and updates them through information
exchange with a few neighbors.

Discussion

Most existing studies focus on formulating BESS schedul-
ing, evaluation, and sizing problems into standard math-
ematical programming through innovative linearization or
relaxation methods. Simplified BESSmodels are commonly
used. Optimal charging/discharging methods based on more
accurate non-linear models are studied less often. Modeling
methods to fully capture degradation effects are under-
explored. How to explicitly build high-fidelity models and
degradation effects into sizing process remains an open
question. Even with simplified BESS models, sizing prob-
lems are computationally intensive and difficult to solve.
This is why many sizing studies only consider a short
time frame or a few operation snapshots that cannot fully
represent diversified system operating conditions.

While centralized deterministic methods are prevalent,
promising methods have been developed in recent years
to make decisions in a distributed manner or to address
uncertainties, especially for operational scheduling. While
distributed control can help to overcome disadvantages
of centralized control, additional efforts are required to
develop more robust and efficient algorithms. Incorporating
uncertainty at both the long-term planning stage and the
short-term operational stage into evaluation and sizing
would enhance the understanding of practically achievable
BESS benefits, is yet to be developed. This would
require computationally efficient multi-stage stochastic
optimal sizing methods with uncertainties at different stages
properly modelled.

One important problem that is largely ignored in the
literature is how to optimally distribute battery cycle life
over years. Degradation cost associated with loss of battery
life is well considered in the existing literature. The optimal
dispatch is determined by maximizing the difference
between the revenue and the corresponding degradation cost
within a day or a year. One main disadvantage of such kinds
of methods is that they do not necessarily maximize the
total benefits over a BESS’s useful lifetime. For example,

using these methods, a BESS may be cycled in some hours
even though the returned revenue is just slightly higher
than the degradation cost. The battery life could be saved
for future more profitable operations. In other words, the
degradation-cost-based dispatch methods fail to model the
temporal interdependency of the use of a BESS over its
useful lifetime and tends to overuse a BESS in early years,
leading to suboptimal solutions. It seems that coupling SOC
and SOH dynamics need to be modeled for maximize the
benefits from a BESS. In addition, strategies and rules need
to be developed to guide operational scheduling considering
the loss of potential gain from high-value services in future
years.

Conclusions

In this paper, we provided an overview and critical
review of existing modeling and optimization methods
for BESS scheduling, evaluation, and sizing. Existing
models for describing BESS operational characteristics
and degradation effects were summarized, classified, and
compared. The advantages and shortcomings of different
modeling methods were highlighted. In addition, existing
studies were grouped based on problem type, number of
applications, and solution method. Key solution methods
and optimization techniques were summarized. Finally, we
discussed open issues and promising research directions.
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