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Abstract
Purpose of Review The present study focuses on investigating the interconnections between adsorption technology and biomass
energy production processes. A critical review on the different roles and perspectives of adsorption in these processes and on the
potential of biochar as a solid bio-sorbent is investigated.
Recent Findings Adsorption plays a role in CO2 capture as a purification final step and can be viable for capture at low tomedium
scale. Promising materials and processes are proposed in the literature. Biochar produced from biomass pyrolysis shows prop-
erties comparable with commercialized adsorbents.
Summary Adsorption in biomass associated with carbon capture and storage (Bio-CCS) is expected to grow if new adsorbents
and processes are performant at larger scale. New biomass-based processes involving adsorption can be developed; methanation
coupled withmethanization is one of them. Biochar is technologically ready for water depollution and soil amendment but further
work is needed for CO2 capture applications. These challenges will necessitate adapted policies and R&D to decrease the
production costs. Industrial exploitation of biomass necessitates interdisciplinary work.
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Introduction

In 2014, the 5th assessment report of the Intergovernmental
Panel on Climate Change (IPCC) [1•] confirmed the need to
deliver to 2050 all key greenhouse gas (GHG) emission mit-
igation methods such as fuel switch, energy efficiency, renew-
ables, and nuclear energy. It showed that bioenergy associated
with carbon capture and storage (Bio-CCS) could be a prom-
ising solution to remove historical CO2 emissions from the
atmosphere. A large majority of IPCC scenarios of CO2

equivalent emissions pathways to 2100 compatible with the

2 °C objective requires intensive use of negative emissions
technologies such as Bio-CCS (or BECCS), afforestation, di-
rect air capture, enhanced weathering, and ocean fertilization/
alkalinization [2•]. As explained by Kemper [3••], the defini-
tion of Bio-CSS is not consistent throughout the literature. In
this work, the definition from the Zero Emission Platform
(ZEP) and the European Biofuels Technology Platform
(EBTP) is adopted [4]. This definition encompasses all “pro-
cesses in which CO2 originating from biomass is captured and
stored.” In 2015, the Paris agreement [5] aimed at stabilizing
the rise in global average temperature below 2 °C above pre-
industrial conditions and proposed to go further with a limita-
tion of this increase to 1.5 °C. Therefore, biomass is expected
to play a major role in energy transition [6, 7]. Biomass con-
tributes to carbon abatement, first as a neutral energy source
and second as a transformed material (i.e., biochar and other
materials fixing carbon) derived from the initial feedstock.

Considering the global energetic dependency on fossil
fuels [8••], it is urgent to search new solutions to mitigate
the GHG impact. Biomass with CCS processes combining
with other mitigation methods will be necessary to limit the
global warming effect. Moreover, during the CCS sequence,
adsorption can be used for capture and purification. One aim
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of this work is to emphasize the latter point and deal with
large-scale Bio-CSS projects related to energy production
(post-combustion CCS and ethanol plants) [9] along with
smaller and emerging applications.

CO2 needs to be captured before conversion and/or direct
transportation and further storage in geological formations.
The capture can be operated in post-combustion or in the
exhaust gases of an industrial plant (cement, steel, ethanol,
biogas plants), in oxy-combustion, and in pre-combustion.
In oxy-combustion, oxygen replaces the air in the combustion
process leading essentially to CO2 and water in flue gases
without nitrogen. In pre-combustion, the resources (biomass
or fossil fuel) are transformed into syngas and then treated in a
water-gas-shift reactor to form a mixture of H2 and CO2. The
latter gas is then captured while H2 is burnt to produce energy
without CO2 emissions. The first part of this article investi-
gates the classical technologies applied for CCS and defines
adsorption. The second part of this article deals with adsorp-
tion in post-combustion applications. In the third part, projects
on pre-combustion and other applications are overviewed.
The last part is dedicated to the residue of processes involving
a partial combustion of biomass. Pyrolysis and gasification
produce a solid material called biochar (or charcoal if used
as a combustible) which can have a specific interest as
adsorbent. Biochar is also a sequestration media exhibiting
a higher carbon density than raw biomass and permitting soil
amendment [10].

Traditional Methods Employed for CO2
Capture and Adsorption Definition

For economic reasons, CCS technology was essentially ap-
plied to industrial sites emitting large amounts of CO2 and
already equipped (over 0.1 MtCO2/year according to special
IPCC report [11]). Out of a total of 13.5 GtCO2/year world-
wide in 2000, electricity generation from fossil fuels repre-
sented 78% of CO2 fixed source of emissions, against 7%
for cement plants, 6% for refineries, 5% for steel plants, 1%
for oil and gas industry, and 1% for bioenergy plants [12].
Addressing Bio-CSS represents today a minor case of study.
However, the role of biomass in energy, chemicals, and mate-
rials production is expected to grow.

Traditional methods for carbon capture from large point
sources provide a panel of technologies readily available for
Bio-CSS that only needs adjustments regarding the nature of
the exhaust gases. The different classical ways to remove CO2

from the air and industrial flue gas streams are the following:
(a) physico-chemical processes such as absorption, adsorp-
tion, membranes, hydrates formation, and cryogenic process-
es, (b) biological processes (microorganisms, coalbed
methanogenesis, algae’s systems for biomass production),

and (c) geological processes (in the oceans or with soil mixed
biochar).

The absorption process dates back to 1933 [13]. It gener-
ally consists of two columns, one for acid gases absorption
with an alkanolamine solution (MEA, DEA, MDEA, mix-
tures…) and the second to desorb CO2 and regenerate the
solvent. The process is already in use in many plants for gas
purification and intensive research has been pursued in the last
decade to improve its performance [14–16]. Therefore, it is
difficult for other technologies to compete economically with
this process of reference.

The adsorption process based on physical porous activated
carbons is already widely used for gas separation/purification
in the petro-chemical industry. To tackle the CO2 capture is-
sue, gas adsorption can be complementary with processes
based on amines or membranes, because of its high selectivity.
The process relies on interfacial mass flow transfers in a me-
dium exhibiting at least two phases where physico-chemical
reactions can occur at the interface. The phenomenon of ad-
sorption occurs when a gas is in contact with a porous solid
(activated carbon, biochar). It describes a variation of the mol-
ecules gas density between the bulk or compressed phase and
the adsorbed phase. Adsorption is an exothermic and revers-
ible process occurring at equilibrium. The amount of adsorbed
gas depends on several parameters such as gas/solid nature,
gas critical temperature, nature of the interactions, and solid
porous surface. When the solid is highly porous typically sev-
eral thousands of square millimeters per gram, a large amount
of gas is adsorbed and adsorption can be preferred to other
techniques. The adsorption equilibrium between the amount
of adsorbed gas per unit mass of solid and the pressure of the
bulk gas can be represented by the adsorption isotherm [17].
There are several types of isotherms as defined by the IUPAC
classification. Generally, the excess amount expressed in mass
of adsorbed gas per solid mass increases then reaches a pla-
teau. After the adsorption phenomenon, the material is regen-
erated at high temperature to release the adsorption sites.
Thus, in addition to adsorbent intrinsic properties (specific
surface area, porosity, particle size distribution, solid shape),
the material cyclic resistance properties, i.e., both mechanical
and thermal, are also evaluated for applications.

Adsorption in Post-combustion Bio-CCS
Capture Processes

Post-combustion Bio-CCS exhibits large flue gas volumes
with low CO2 partial pressure (15%vol or less, i.e., around
0.15 bar), because of nitrogen dilution. Using sorption tech-
nology is a great challenge conditioned by the properties of
the solid. Indeed the sorbent should (1) be able to permit high
loading with high selectivity for CO2 due to an adapted parti-
cle size distribution (PSD), (2) be easily regenerated at high
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temperature, and (3) exhibit appropriate mechanical proper-
ties, particle size, and good stability with moisture associated
to low costs of the material synthesis.

The performance of solid materials for CO2 adsorption
depends on several criteria:

– High adsorption capacity or gas loading [18–20] and spe-
cific selectivity for CO2 while using small amounts of
sorbent. High gas selectivity can be obtained with porous
materials; moreover additional surface modifications can
also increase the material adsorption capacities (pore net-
work functionalization, amine impregnation, etc. [8••]).

Also other parameters enter into account such as:

– Facility of solid regeneration under non-binding condi-
tions that ensure the process viability

– Ability to process large volumes of gas per solid unit
mass

– High availability of the absorbent
– High mass transfer and fast reaction kinetics impact the

equipment size
– Low heat of adsorption
– Yield (amount of pure gas output/amount of gas mixture

input)
– Both chemical and thermal stabilities for adsorption/solid

regeneration steps
– Process energy efficiency per unit volume of the pure gas

produced that can make CO2 capture economically viable

The most advanced capture technology for post-
combustion capture is absorption with chemical solvents and
amines specifically. Physical solvents are limited by the low
concentration of CO2 in post-combustion. Using adsorption to
remove low CO2 content in gas streams necessitates to com-
bine high selectivity and capacity with easy regeneration. The
two classical groups of solid adsorbents are the ultra porous
carbonaceous materials and the zeolites. Activated carbons
exhibit high CO2 adsorption capacities but low adsorption
selectivity of CO2 relatively to the other gases of the mixture
conversely for zeolites. To improve the material selectivity,
the surface of the adsorbents can be modified by
functionalization, cation substitution, coating, chemical treat-
ment, and impregnation with amines. It is also possible to
change the process conditions of TSA and pressure swing
adsorption (PSA) cyclic processes or its complexity (by ad-
sorption and absorption combination, PTSA process, etc.)
[21•, 22–25]. The capacity of adsorption increases at low tem-
perature and high pressure. Therefore, post-combustion con-
ditions (low pressure, high temperature) penalize adsorption
thermodynamically. The TSA process would require heating
and cooling large quantities of adsorbent while PSA could
work despite the volume of gas to be compressed. The

economic viability largely depends on the performance of
the adsorbent. To this end, many studies are devoted to a better
understanding of CO2 adsorption mechanisms [19, 26–28]
and to an improvement of adsorbents selectivity for CO2 with
respect to H2O and N2. Moreover, the preparation of low-cost
and environmentally friendly carbon adsorbents by single-
step activation enables energy savings [29]. Along with clas-
sical carbonaceous and zeolites adsorbents, research onMOFs
(metal organic frameworks) is also very active [8••, 30•, 31,
32]. It shows promising results for CO2 capture and conver-
sion. Research projects on PSA capabilities [33•] and novel
processes such as PTSA [34], electric swing adsorption [35,
36], thermal swing sorption-enhanced reaction [37], and
mixed matrix MOFs membranes [30•] are also conducted in
parallel.

Adsorption in Other Bio-CCS Capture
Processes

Oxy-combustion and pre-combustion Processes

In oxy-combustion processes, pure oxygen replaces air in the
combustion process. For this purpose, adsorption of N2 by
zeolites with desorption controlled by temperature or pressure
is still less efficient than cryogenic distillation. However,
promising membrane technologies such as ITM oxygen pro-
cess (air products) or BOC ceramic autothermal recovery
(CAR) process could be able to compete with cryogenic dis-
tillation [8••]. Oxy-combustion flue gases contain up to 90%
of CO2 so the purification step is operated by cooling and
compressing. The only issues relate to diluents and contami-
nants [38]. Similarly, bioethanol plants produced off gases
close to 100% CO2 on a dry basis meaning that the separation
is only required to meet specifications (O2, H2O).

Pre-combustion processes are on the contrary promising
for adsorption. Indeed, CO2 partial pressure is high; therefore,
the challenge is to compete with absorption by physical or
chemical solvents. After the gasification of the feedstock into
syngas, the water-gas-shift reaction allows adjusting the ratio
H2/CO depending on the objective (H2 production in this
case). CO and H2O are transformed into CO2 and H2. At this
point, CO2 is captured traditionally by physical absorbents
[8••] and then H2 is combusted with residual CH4, CO and N2.

Pre-combustion capture resulted to the concept of
Integrated Gasification Combined Cycle (IGCC), which takes
advantage of the heat of combustion to produce electricity
with steam and gas turbines. As an example, Nuon Magnum
(the Netherlands, [39]) launched in 2012 its first IGCC power
plant project with mixed sources including biomass and CCS
technology (physical solvent absorption). IGCC can be com-
bined with CCS technology and use biomass as a feedstock
(BIGCC). Fantozzi and Bartocci wrote recently a book
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chapter [40] on the topic and conclude like Siemens
[41] that, for this application, biomass should be co-
gasified with coal to be attractive. That was also the
choice of Nuon Magnum.

The previous paragraph on post-combustion demonstrated
intense research in the development of new adsorbent mate-
rials and processes for CO2 separation. However, the chal-
lenge of minimizing the energy requirement is still topical.
In the case of pre-combustion, recent publications [33•, 42,
43••, 44] proved that adsorption could be an interesting alter-
native for small to medium cases and even larger scale if
promising materials (enhanced adsorbents, MOFs, K-HTC)
and processes are validated at pilot scale.

In the meantime, the HyGenSys process [45] from IFPEN
(France) already uses PSA adsorption process on molecular
sieves to purify H2 after amine scrubbing. Finally, the pre-
combustion case illustrate globally the separation issue for
H2 production from biomass in other cases of biomass valori-
zation since the water-gas-shift reaction can be applied to an-
aerobic digestion on CH4 to produce H2 and CO2, to
bioethanol obtained by fermentation, directly to pyrolysis gas-
es, or to gasified pyrolysis oil leading to similar separation
issues. Pyrolysis processes need more developments to intro-
duce CO2 capture.

Methanization and Industrial Plants Coupled
with Methanation

A complementary solution to CO2-CCS is to reuse the CO2

captured to produce CH4 using the methanation process. The
CH4 distribution network is already well developed [46], and
CH4 is generally produced from fossil resources. Therefore,
CH4 production from biomass-based industries emitting CO2

is currently under investigation. The first application targeted
is methanization (20–50%vol CO2) and power plants (power-
to-gas). Contrarily to biological methanation that can only
proceed at low temperatures, catalytic methanation uses H2

produced from electrolysis to react at high temperature. With
H2 produced from renewables, it provides a flexible and sus-
tainable energy system. As an illustration of a power-to-gas
installation experimentation, the Jupiter 1000 project [47•]
will permit to produce a CH4-rich gas mixture from CO2 cap-
tured from industrial exhaust gases and H2 generated from a
green electrolysis process using methanation. The gas mixture
obtained can further be separated into its main components
using a selective adsorption process modulated in pressure
and/or temperature. Similarly, in the framework of the
European project STORE&GO, a new methanation plant in
Falkenhagen (Germany) was completed in May 2018 as an
expansion to the existing power-to-gas plant producing so-
called windgas. Research on methanation is still active in co-
ordination with adsorption research teams.

Biochar as an Adsorbent

Biochar Production

Biochar is produced from biomass thermochemical degrada-
tion processes which are differentiated by O2 input level such
as combustion, gasification, or pyrolysis. Biochar is obtained
with various physico-chemical properties depending on pro-
cess parameters [48•, 49]. When stoichiometric conditions are
reached, biochar is not produced in large quantities and is not
proper for adsorption (many ashes, broken structure). In the
case of pyrolysis, the process is operated under inert atmo-
sphere. The heat provokes the breakdown of the feedstock
into a solid, a gas mixture, and also liquids, if a condenser is
used. Roughly, two types of pyrolysis can be differentiated:
fast pyrolysis with residence time below 1 s and slow pyroly-
sis for residence times of minutes and more. In the case of
gasification, the process is operated on sub-stoichiometric
conditions. The feedstock is converted into a gas mixture at
higher temperature than pyrolysis, and less biochar is pro-
duced [50].

The factors influencing biochar yield and properties are:

– The biomass chemical composition and structure which
have an influence on pH, chemical composition, porosity,
and yield of biochar [51]

– The type of process which influences biochar yield: sur-
rounding 12% for fast pyrolysis, 35% for slow pyrolysis,
and 10% for gasification [52]

– The heating rate and the residence time which have a
direct influence on char yield, on char absolute composi-
tion (CHONS analysis), and on the material porosity [53]

– The operating temperature (pyrolysis starts at around
300 °C). It affects the pH and carbon concentration of the
biochar (both increasing with temperature). The nitrogen,
hydrogen, and oxygen concentrations are expected to de-
crease with rising temperature. Moreover, the crystalline
biochar structure changes with the temperature [54].
Finally, the porosity increases with the temperature to an
optimal value around 600–700 °C [53, 55, 56]. Nowadays,
biochar is commonly used for water and soil depollution. It
can also participate to decrease emissions of GHG in the
atmosphere and for many other applications.

Biochar as a Sequestration Media

In 2017, 3 billion tons of biochar were produced [57]. Even if
it is commonly used for soil and water treatment [58, 59], for a
medical use [60] or to improve soils fertility, the long biochar
residence time (1300–1400 years) [61] and its interesting cy-
cle carbon assessment [62] make it a potential solution for the
GHG emissions.
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The porous structure and special chemistry composition favor
biochar for organic pollutants adsorption when mixed to soil.
Pollutants are trapped on the surface by chemical reactions.
CO2 is captured, thanks to biochar’s minerals such as Mg, Ca,
Fe, andKwhich formmineral complexes by chemisorption [63].

Biochar’s porosity is classified in three general categories:
micropores (d < 2 nm), mesopores (d = 20–50 nm), and
macropores (d > 50 nm). The adsorptive capacity is based on
the amount of micropores and narrowmicropores (d < 0.7 nm)
while macropores play a role in gas diffusion in the solid.
Thanks to all these capacity, biochar can be used as a universal
bio-adsorbent, as shown in Table 1 [64–89]. This table shows
panel of different biochar potentialities for the capture of a
large variety of compounds. It includes soil amendment in
which various properties are considered such as material sta-
bility in soils and material porosity. The latter property is
known to have a positive impact on soils [90].

In the study [91], an economical adsorption method to
minimize the environmental GHG in highly polluted regions
was tested using a biochar fluidized bed column to reduce the
CO2 concentration in the air. The adsorbed CO2-biochar sys-
tem can further be tested as soil fertilizer to increase crop
production [92–94]. Experiments showed that biochar sorp-
tion can be effective without any transformation for water and
soil treatment, but, for CO2 sorption, biochar needs to be
transformed to be competitive against commercial activated
carbon.

Biochar Modification

Biochar activation (physical or chemical) aims at increasing
specific area and pore fraction. Physical activation uses gases
such as steam, CO2, and ozone at temperatures above 700 °C.
In the chemical activation, the char is doped by a chemical

Table 1 Panel of the extent of biochar applications

References Adsorbate Adsorbate origin Adsorbent

[65] H2S and SO2 (acid gases) Oil and gas production processing Activated biochar (with steam, CO2, or H3PO4)

[66] CH4 GHG and energy storage Waste wood biochar

[67, 68] VOC (volatile organic compound) such
as acetone cyclohexane and toluene

Industry, chemical pollution Vapor sorption process on biochar

[69] Hydrogen Green energy storage Slow pyrolysis biochar

[70] Ozone Ozone reactor Slow pyrolysis biochar

[71] NOx, SO2 GHG Biochar from a fixed bed pyrolysis reactor

[72] Formaldehyde Indoor air pollutant (ex from tobacco) Activated biochar (with ammonia or KOH)

[73] Pyrene Atmospheric pollution Slow pyrolysis biochar

[74] Lithium selenium Energy storage, battery Activated biochar

[81] Element mercury Hg(0) Coal-fired power plant Chemisorption by pyrolysis biochar

[75] Water For dehydration Hydrochar and pyrochar

[76] Pesticide Agriculture Wood biochar treated with heat and iron

[77] Carbaryl Agriculture (pesticide) Hydrolysis of pesticide with biochar

[77] Atrazine Agriculture (pesticide) Hydrolysis of pesticide with biochar

[78] Diclofenac Pharmaceutical pollutant Activated carbon from biochar

[79] Heavy metals Industry Slow pyrolysis biochar

[80] Ammonium nitrogen Agricultural waste Biochar heated at 550 °C

[82] Inorganic compounds (Cd2+, Cu2+,
Hg2+, Pb2+, Zn2+, NH4

+, NO3
−, PO4

3−,
CrO4

2−, and AsO4
3−)

Water pollution Activated biochar and sorption improved by
metal cation

[83, 84] Cadmium Inorganic pollutant Phyllostachys pubescens biochar

[83] Lead Inorganic pollutant Phyllostachys pubescens biochar

[85] Sulfonamides and chloramphenicol Antibiotic Functionalized biochar for water and wastewater
treatment

[64] Aromatic compounds Water pollution Biochar from biomass pyrolyzed at 700 °C

[86] Carbamazepine Anti-epileptic drug Biochar with hydrophobic π-π sites

[87] Methylene blue Dye pollutants Sludge-derived biochar

[88] Dyes Clothe industry Biochar from agricultural waste

[89] Phosphorous Water pollution Biochar from magnesium-pretreated biomass
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agent, which produces micropores by dehydration and oxida-
tion [95, 96]. A biochar specific area surrounding 300 m2/g
can be enhanced to 900 m2/g after activation [97]. Another
possibility is to increase the pressure. It raises the adsorption
capacity until the isotherm curve reaches a plateau [29].
Conversely, temperature has little impact on biochar ad-
sorption capacity; room temperature is satisfying [97].
Furthermore, the influence of water steam on CO2 adsorption
capacity is negligible because of the slow kinetics of
adsorption of H20 [29]. Thus, the ideal experimental
conditions for CO2 adsorption are obtained and adapted
to various environmental conditions.

Nowadays, other techniques for adsorption improvement
are developed, such as nitrogen enriched biochar. In this tech-
nique, biochar is heated at high temperature in a 99.99% N2

atmosphere, and then N2 is replaced by other chemical com-
ponents such as CO2 or ammonia in order to improve biochar
sorption performance [98, 99]. Sometimes, acid pre-dishing
treatments are performed to enhance both physical and chem-
ical adsorption capacities of derived nitrogen-enriched bio-
char, by destroying C-O-Si bounding in the biomass structure
[100]. Another example of biochar treatment is the formation
of a metal composite [101]. Creamer et al. [102] proved that a
Fe2O3 biochar composite has a higher surface area than a
simple biochar; moreover, this material demonstrates low re-
generation cost and temperature desorption (120 °C).

Thanks to its highly porous structure, its specific mineral
composition, and its ability to be modified, biochar is not only
a CO2 adsorbent but could be considered also as a universal
sorbent. It is an adsorbent of dangerous pollutants as shown in
Table 1, which can be used for gas, water and soil depollution.
Moreover, thanks to its methane [103], and hydrogen [104]
sorption capacity, biochar is a promising alternative for renew-
able energy storage and transportation problematic.

Conclusions

This review highlighted the numerous interconnections be-
tween biomass and adsorption. It showed that the competition
for CO2 capture between technologies is severe and restrained
by economic imperatives. Other conversion technologies such
as solar-to-fuel [105] or biological processes using microor-
ganisms, not developed in this article, will also emerge.
Companies like LanzaTech (New Zealand, commercial plants
in 2014) are already developing plants with their technologies.
CCS and Bio-CSS in particular as negative emission technol-
ogy have been clearly identified as key technologies for GHG
emission mitigation at the levels recommended by IPCC [1•,
11]. Bio-CSS and biochar production will confront general
issues related to biomass industrial use such as the sustainabil-
ity of the source of biomass (pressure on water, lands, forests,
competition with food/feed, use of pesticides), logistics, size

of the plant, legal framework, and public perception. Few
studies on social acceptance of Bio-CSS such as [106] can
be found in the literature. However, public acceptance can
have a sufficient impact to lead to the abortion of a project
[107] and then Bio-CCS could learn from the experience of
other bioenergy projects.

The focus of IPCC on Bio-CSS technology led to many
publications questioning its limits of application [2•, 3••, 108,
109]. Kemper defends righteously the need of a nexus ap-
proach because of the complex links between food, water,
energy, and climate. How to reconcile large-scale projects
with sustainability and biodiversity preservation is one of ma-
jor pending issue.

Bio-CSS projects should be currently operating, and some
are underway but more demonstrations are needed to prove
the reliability of the technology and decrease the costs.
Financial incentives, regulations, and policies could be a
way to move forward.

Finally, Bio-CSS will have to take part in next generation
processes for biofuels, biochemicals, and material production
from lignocellulosic feedstock (agricultural and forestry resi-
dues, short rotation crops, algae) in biorefinery approaches.

From a technical perspective, biomass density and heat
capacity are fundamentally lower than fossil fuels. This im-
plies a technical challenge to obtain high-performance
processes able to convert efficiently the biomass into
fuels and also the need to valorize byproducts to in-
crease the profitability.

The review showed that adsorption already has a place in
Bio-CSS as a final purification step and can be competitive in
pre-combustion gasifiers and methanization. Other opportuni-
ties might appear with the development of new technologies.
The direct catalytic conversion of CO2 into CH4 through
methanation process is also an interesting option which allows
the local production of methane next to the biogas or biomass
powered plant. The separation of the exhaust gases could rely
on adsorption, and the transportation on the local gas network.
Absorption technology (physical and chemical) is mature and
widely applied in the industry but since it requires the use of
chemical solvents, the process can be corrosive, energy-con-
suming, and expensive. The adsorption technology has inter-
esting characteristics due to its high flexibility, minimum en-
ergy requirements, and simplified procedure that contributes
to the reduction of operating costs. In order to be competitive
with other technologies, adsorption needs to be less adsorbent
consuming and tried at larger scale. At the moment, biochar is
not able to compete with classic commercial activated carbon
because of the lack of mass production system; besides, bio-
char activation needs additional investments. In the future, it
might be interesting for adsorption in Bio-CSS and biochar
production to target niche markets such as high purity H2

production, soil depollution, and heavy metals while develop-
ing pilots and materials for large-scale application.
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